Please use this identifier to cite or link to this item:
http://hdl.handle.net/123456789/4229
Title: | Effect of Graphene Oxide on the Properties of Polymer Inclusion Membranes for Gold Extraction from Acidic Solution | Authors: | Husna S.M. Yusoff A.H. Mohan M. Azmi N.A. Ter T.P. Shoparwe, N.F. Sulaiman A.Z |
Keywords: | gold extraction;graphene oxide (GO);membrane characterization;polymer inclusion membrane (PIM) | Issue Date: | 2022 | Publisher: | MDPI | Journal: | Membranes | Abstract: | The cyanidation leaching method is hazardous to the environment, but it is widely applied in the gold mining process because it is effective for gold extraction. This study fabricates polymer inclusion membranes (PIMs), which have environment-friendly properties, with graphene oxide (GO) as an alternative to the cyanidation leaching method for gold extraction. Poly(vinylidenefluoride-co-hexa-fluoropropylene)-based PIMs with different GO concentrations in five membranes (i.e., M1 (0 wt.%), M2 (0.5 wt.%), M3 (1.0 wt.%), M4 (1.5 wt.%), and M5 (2.0 wt.%)) are studied for their potential to extract gold from a hydrochloric acid solution. The membranes are prepared using di-(2-ethylhexyl) phosphoric acid as the extractant and dioctyl phthalate as the plasticizer. Scanning electron microscopy, Fourier-transform infrared spectroscopy, thermogravimetric analysis, ion exchange capacity, and water uptake are used to characterize the physical and chemical properties of the fabricated PIMs. The results show that the optimized membrane for gold extraction is M4 (1.5 wt.% GO), which yields a better performance on thermal stability, ion exchange capacity (IEC), and water uptake. M4 (1.5 wt.% GO) also exhibits a smooth and dense structure, with the maximum extraction efficiency obtained at 84.71% of extracted gold. In conclusion, PIMs can be used as an alternative for extracting gold with a better performance by the presence of 1.5 wt.% GO in membrane composition. |
Description: | Web of Science / Scopus |
URI: | http://hdl.handle.net/123456789/4229 | ISSN: | 20770375 | DOI: | 10.3390/membranes12100996 |
Appears in Collections: | Faculty of Bioengineering and Technology - Journal (Scopus/WOS) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
membranes-12-00996-v2.pdf | 4.22 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.