Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/385
Title: An enhanced segment particle swarm optimization algorithm for kinetic parameters estimation of the main metabolic model of Escherichia coli
Authors: Kunna M.A. 
Kadir T.A.A. 
Remli, M.A. 
Ali N.M. 
Moorthy K. 
Muhammad N. 
Keywords: metabolic engineering;kinetic model;kinetic parameters estimation;PSO algorithm;Se-PSO algorithm
Issue Date: Aug-2020
Journal: Processes 
Abstract: 
Building a biologic model that describes the behavior of a cell in biologic systems is aimed at understanding the physiology of the cell, predicting the production of enzymes and metabolites, and providing a suitable data that is valid for bio-products. In addition, building a kinetic model requires the estimation of the kinetic parameters, but kinetic parameters estimation in kinetic modeling is a difficult task due to the nonlinearity of the model. As a result, kinetic parameters are mostly reported or estimated from different laboratories in different conditions and time consumption. Hence, based on the aforementioned problems, the optimization algorithm methods played an important role in addressing these problems. In this study, an Enhanced Segment Particle Swarm Optimization algorithm (ESe-PSO) was proposed for kinetic parameters estimation. This method was proposed to increase the exploration and the exploitation of the Segment Particle Swarm Optimization algorithm (Se-PSO). The main metabolic model ofE. coliwas used as a benchmark which contained 172 kinetic parameters distributed in five pathways. Seven kinetic parameters were well estimated based on the distance minimization between the simulation and the experimental results. The results revealed that the proposed method had the ability to deal with kinetic parameters estimation in terms of time consumption and distance minimization.
Description: 
Web of Science / Scopus
URI: http://hdl.handle.net/123456789/385
ISSN: 22279717
DOI: 10.3390/PR8080963
Appears in Collections:Faculty of Bioengineering and Technology - Journal (Scopus/WOS)

Files in This Item:
File Description SizeFormat
processes-08-00963-v2.pdf810.75 kBAdobe PDFView/Open
Show full item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.