Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/375
DC FieldValueLanguage
dc.contributor.authorRosle M.S.en_US
dc.contributor.authorMohamad, MSen_US
dc.contributor.authorChoon Y.W.en_US
dc.contributor.authorIbrahim Z.en_US
dc.contributor.authorGonzález-Briones A.en_US
dc.contributor.authorChamoso P.en_US
dc.contributor.authorCorchado J.M.en_US
dc.date.accessioned2021-01-17T04:32:49Z-
dc.date.available2021-01-17T04:32:49Z-
dc.date.issued2020-08-
dc.identifier.issn22279717-
dc.identifier.urihttp://hdl.handle.net/123456789/375-
dc.descriptionWeb of Science / Scopusen_US
dc.description.abstractRecently, modelling and simulation have been used and applied to understand biological systems better. Therefore, the development of precise computational models of a biological system is essential. This model is a mathematical expression derived from a series of parameters of the system. The measurement of parameter values through experimentation is often expensive and time-consuming. However, if a simulation is used, the manipulation of computational parameters is easy, and thus the behaviour of a biological system model can be altered for a better understanding. The complexity and nonlinearity of a biological system make parameter estimation the most challenging task in modelling. Therefore, this paper proposes a hybrid of Particle Swarm Optimization (PSO) and Harmony Search (HS), also known as PSOHS, designated to determine the kinetic parameter values of essential amino acids, mainly aspartate metabolism, inArabidopsis thaliana. Three performance measurements are used in this paper to evaluate the proposed PSOHS: the standard deviation, nonlinear least squared error, and computational time. The proposed algorithm outperformed the other two methods, namely Simulated Annealing and the downhill simplex method, and proved that PSOHS is a more suitable algorithm for estimating kinetic parameter values.en_US
dc.language.isoenen_US
dc.publisherMDPI AGen_US
dc.relation.ispartofProcessesen_US
dc.subjectParticle Swarm Optimizationen_US
dc.subjectHarmony Searchen_US
dc.subjectparameter estimationen_US
dc.subjectArabidopsis thalianaen_US
dc.titleA Hybrid of Particle Swarm Optimization and Harmony Search to Estimate Kinetic Parameters in Arabidopsis thalianaen_US
dc.typeInternationalen_US
dc.identifier.doi10.3390/PR8080921-
dc.description.researchareaEngineeringen_US
dc.volume8 (8)en_US
dc.description.articleno921en_US
dc.description.typeArticleen_US
dc.description.impactfactor2.753en_US
dc.description.quartileQ2en_US
item.languageiso639-1en-
item.openairetypeInternational-
item.grantfulltextopen-
item.fulltextWith Fulltext-
crisitem.author.deptUniversiti Malaysia Kelantan-
Appears in Collections:Faculty of Bioengineering and Technology - Journal (Scopus/WOS)
Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.