Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/6311
DC FieldValueLanguage
dc.contributor.authorJastaniah, Samyah D.en_US
dc.contributor.authorMansour, Ahd A.en_US
dc.contributor.authorAl-Tarawni, Ayat H.en_US
dc.contributor.authorEl-Haroun, Ehaben_US
dc.contributor.authorMunir, Mohammad Bodrulen_US
dc.contributor.authorSaghir, Sultan Ayesh Men_US
dc.contributor.authorKari, Z.A.en_US
dc.contributor.authorTéllez-Isaías, Guillermoen_US
dc.contributor.authorBottje, Walter G.en_US
dc.contributor.authorAL-Farga, Ammaren_US
dc.contributor.authorEissa, El-Sayed Hemdanen_US
dc.date.accessioned2024-08-14T02:44:39Z-
dc.date.available2024-08-14T02:44:39Z-
dc.date.issued2024-06-
dc.identifier.issn23525134-
dc.identifier.urihttp://hdl.handle.net/123456789/6311-
dc.descriptionWeb of Science / Scopusen_US
dc.description.abstractPhytochemicals are used in fish farming to reduce stress and combat diseases during intensification. Recently, nanotechnology has represented a paradigm shift in the aquatic feed industry to improve the solubility, availability, and efficacy of phytochemicals. The purpose of this research was to investigate the effects of dietary supplementation with nano-curcumin (CUNE) on the growth, feed utilization, body composition, blood biochemistry, antioxidant status, disease resistance to Vibrio parahaemolyticus (V. parahaemolyticus), and the expression of insulin-like growth factor 1 (IGF-1), growth hormone (GH), interleukin-10 (IL-10), and interlukin-1β (IL-1β) genes in European Seabass (Dicentrarchus labrax) fingerlings. Fish (6.02±0.01) were randomly divided into four equal groups and fed varying levels of CUNE: 0 (CUNE0), 50 (CUNE1), 60 (CUNE2), and 70 mg/kg (CUNE3) of nano-curcumin for 56 days, respectively. The inclusion of dietary CUNE significantly improved the growth indices (final body weight and weight gain, and specific growth rate) and feed utilization (improved feed intake and lower FCR) of European seabass fingerlings (p<0.05). However, CUNE inclusion had no significant effect on body composition including the percentages of dry mater, crude protein, crude lipid, and ash (p>0.05). All CUNE groups established an enhancement in blood hematology in a dose-dependent manner, with CUNE3 demonstrating the highest values. CUNE supplementation (70 mg/kg diet) produced the highest levels of total protein, albumin, globulin, and triglycerides, as well as the lowest levels of glucose, and hepatic enzymes (ALT, AST, and ALP; p<0.05) compared to other groups. Furthermore, the CUNE-supplemented groups showed significant improvements in superoxide dismutase, catalase, and glutathione peroxidase, while reducing malondialdehyde (p<0.05). Additionally, the consumption of CUNE increased the expression of IGF-1, GH, and IL-10 genes in a dose-dependent manner (p<0.05). Interestingly, fish fed 70 mg of CUNE in their diets had lower expression of the IL-1β gene compared to the other groups (p<0.05). When the fish were challenged with V. parahaemolyticus, the addition of CUNE in their diets resulted in reduced mortality rates. Therefore, nano-curcumin could be considered as a natural feed additive to promote growth, feed utilization, and bacteria resistance via supporting antioxidant status, serum metabolites, and the regulation of GH, IL-10, and IGF-1 in the hepatic tissues of European seabass fingerlings.en_US
dc.publisherElsevier B.V.en_US
dc.relation.ispartofAquaculture Reportsen_US
dc.subjectEuropean Seabass (Dicentrarchus labrax)en_US
dc.subjectGene expressionen_US
dc.subjectGrowthen_US
dc.titleThe effects of nano-curcumin on growth performance, feed utilization, blood biochemistry, disease resistance, and gene expression in European seabass ( Dicentrarchus labrax ) fingerlingsen_US
dc.typeInternationalen_US
dc.identifier.doi10.1016/j.aqrep.2024.102034-
dc.volume36en_US
dc.description.articleno102034en_US
dc.description.typeArticleen_US
dc.contributor.correspondingauthorzulhisyam.a@umk.edu.myen_US
item.grantfulltextnone-
item.openairetypeInternational-
item.fulltextNo Fulltext-
crisitem.author.deptUniversiti Malaysia Kelantan-
Appears in Collections:Faculty of Agro Based Industry - Journal (Scopus/WOS)
Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.