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A B S T R A C T   

Genetic markers for acne are being studied to create personalized treatments based on an individual’s genes, and 
the field is benefiting from the application of artificial intelligence (AI) techniques. One such AI tool, the Q- 
learning algorithm, is increasingly being utilized by medical researchers to delve into the genetics of acne. In 
contrast to previous methods, our research introduces a Q-learning model that is adaptable to diverse sample 
groups. This innovative approach involves preprocessing data by identifying differentially expressed genes and 
constructing gene-gene connectivity networks. The key advantage of using the Q-learning model lies in its ability 
to transform acne gene data into Markovian domains, which are essential for selecting relevant genetic markers. 
Performance evaluations of our Q-learning model have shown high accuracy and specificity, although there may 
be some sensitivity variations. Notably, this research has identified specific genes, such as CD86, AGPAT3, 
TMPRSS11D, DSG3, TNFRSF1B, PI3, C5AR1, and KRT16, as being acne-related through biological verification 
and text data mining. These findings underscore the potential of AI-driven Q-learning models to revolutionize the 
study of acne genetics. In conclusion, our Q-learning model offers a promising approach for the selection of acne- 
related genetic markers, despite minor sensitivity fluctuations. This research highlights the transformative po-
tential of Q-learning in advancing our understanding of the genetics underlying acne, paving the way for more 
personalized and effective treatments in the future.   

1. Introduction 

Acne, a common skin problem affecting people of all ages, has 
emerged as a significant public health challenge. It boasts a global 
prevalence rate of 9.38 %, as reported by the Global Burden of Disease 
Study 2010 [33]. The comedones, papules, pustules, and, in severe 
cases, cysts and nodules characterize this multifaceted skin condition. 

The European Union (EU) has been actively engaged in developing 
regulations and guidelines to govern the implementation of AI in 
healthcare to ensure patient safety, data privacy, and ethical consider-
ations are upheld [31]. By adhering to these regulations and ethical 
guidelines, stakeholders in the medical field can harness the potential of 

AI technology while upholding legal and ethical standards. AI has had a 
significant impact on the field of dermatology, particularly in addressing 
acne and skin health concerns. By utilizing AI-powered image recogni-
tion and analysis tools, dermatologists can efficiently identify various 
acne lesions, assess their severity, and monitor their progression over 
time [11]. These AI systems process extensive visual data from patient 
images and clinical studies, aiding in early diagnosis and personalized 
treatment planning for individuals affected by acne. 

Genetics has emerged as a crucial factor in determining an in-
dividual’s predisposition to acne [1,37,10,29]. AI and machine learning 
algorithms are instrumental in analyzing large-scale genetic data to 
identify potential genetic markers associated with acne susceptibility. 
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Through the use of AI, researchers can navigate through vast genomic 
information more effectively, revealing valuable insights into the ge-
netic foundations of acne. 

Discovering these genetic markers through AI-driven research can 
enhance our understanding of acne’s origins and open doors to 
personalized treatment approaches. With AI’s assistance, dermatologists 
can potentially tailor acne treatment plans based on an individual’s 
genetic predisposition, optimizing therapeutic outcomes, and mini-
mizing adverse effects. This intersection of dermatology, genetics, and 
AI holds promise for advancing our ability to manage and treat skin 
conditions like acne effectively. 

Scientists studying acne have looked for genetic markers, without 
considering how diverse people can be. In the past, more studies focused 
on identifying genetic markers related to acne by examining DEGs via 
the weighted gene co-expression network analysis (WGCNA) [5,18]. 
However, these methods have limitations because they rely on co- 
expression for gene functional inference. Genes with similar expres-
sion profiles have different functions or inconsistencies that arise from 
regulation and post-transcription, so this approach may not be useful. 

The core issue lies in the rigidity of these methods, which approach 
genetic marker identification and may overlook significant heteroge-
neity. To address this, some researchers have proposed a more dynamic 
approach by leveraging reinforcement learning models, such as Q- 
learning. This dynamic approach considers the sequential nature of 

Markov Decision Processes (MDPs) to optimise active feature selection 
policies [13,14,30]. 

This research confronts the primary challenge of elucidating the 
interaction between genes and the actions of reinforcement learning 
agents without biological traits. These traits encompass various aspects, 
such as acne progression, mutations, copy number variations, and 
mRNA levels. The reinforcement learning model aims to optimise pol-
icies based on states reflecting action quality. Since a Markov decision 
process involves sequential actions with consequences unfolding over 
subsequent steps, immediate outcomes remain elusive. Moreover, gene 
expression data comprises numerous genes, including irrelevant ones 
that can negatively impact classification accuracy. The demand for 
biomarker testing, especially in cancer treatment and drug discovery, is 
increasing. Unfortunately, methodologies for processing acne gene 
expression data for reinforcement learning models remain limited. 
Therefore, this research addresses the lack of standardised data pre-
processing when applying the Q-learning model to acne gene expression 
data. This method aims the model to learn from gene expression data 
and select informative genetic markers linked to acne. Furthermore, the 
ethical considerations surrounding medical AI emphasise the need for 
transparency in AI algorithms, accountability for decision-making pro-
cesses, and the importance of human oversight in healthcare settings 
[31]. Ethical guidelines such as those outlined in the EU’s Ethics 
Guidelines for Trustworthy AI are essential for ensuring that AI in 

Fig. 1. Framework of the proposed method.  
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medicine upholds fundamental rights and values. 
This study aims to show how Q-learning can improve the selection of 

genetic markers linked to acne. By harnessing the adaptability of this 
algorithm, the research aims to enhance the precision and specificity of 
marker identification while considering the subtle variations among 
different patient groups. This research aims to improve acne treatment 
by personalising it, leading to a breakthrough in acne genetics research. 

2. Materials and methods 

Fig. 1 presents the framework of the proposed method including data 
pre-processing and Q-learning. 

2.1. Data collection and pre-processing 

In our quest for knowledge about acne genetics, we delve into 
GSE108110, GSE53795, and GSE6475 as input data sourced from gene 
expression datasets through the Gene Expression Omnibus (GEO) [19]. 
It’s worth noting that GSE53795 and GSE6475 have been instrumental 
in prior investigations [18]. However, their usage in these previous 
studies involved a comprehensive analysis of datasets and pathways via 
weighted gene co-expression network analysis (WGCNA). GSE108110 
and GSE53795 are investigated by Yang et al. [38] for the inflammatory 
acne-related key biomarkers, signalling pathways, and immune infil-
tration in the acne lesion. These datasets are built upon gene expression 
data and securely stored in quantified Affymetrix image (CEL) files. 
Thus, the data undergoes rigorous preprocessing, a vital step to ensure 
accuracy and reliability, as the missing or redundant data can signifi-
cantly sway survival analysis and the interpretation of pivotal factors 
like diagnosis stages [25,21,24]. Hence, the datasets were profiled into 
probe set as the raw data. Then, the raw data was carried out the 
background correction and quantile normalization of the probe level for 
gene expression data by using the robust multichip average (RAM) al-
gorithm [24]. Next, the gene Entrez IDs were extracted to be the row 
name for the gene expression data by using the R software package of 
hgu133plus2.db. Therefore, the conversion of the row from the probe 
identifiers to Gene Entrez IDs has been performed. Furthermore, the 
values of the columns for the data have been converted into the gene 
expression value for the Gene Entrez ID [34–35]. Nevertheless, the 
missing data and repeated data can cause the ineffective on the analysis 
result [25]. Based on the previous studies, the record of the missing gene 
Entrez IDs were removed, whereas the repeated record with the same 

Gene Entrez IDs were took the average gene expression value from all 
sample [24,21]. Table 1 summarises the details of the data before and 
after data preprocessing. All the datasets that have been cleaning the 
data rows with missing values and the repeated value of the Gene Entrez 
ID are further carried out for the identification of the differentially 
expressed genes, which is summarized in Fig. 2. 

2.2. Q-learning reinforcement model 

Fig. 3 shows how Q-learning model to learn about the gene expres-
sion data. We denote the gene expression matrix as X =

[x1, x2, ⋯ , xm]
T
∈ Rm × k, where m is the number of samples; k is the 

number of differentially expressed genes. Nevertheless, the differentially 
expressed gene data is further processed by generating the weighted co- 
expression network to obtain a gene-gene connectivity matrix [6]. 
Furthermore, the differentially expressed gene data is correlated to the 
acne trait by using Pearson correlation in order to obtain a gene list with 
high gene significance. Hence, the Q-learning agent is learning from the 
acne sample, and the Q-learning agent’s reward function corresponds to 
the valid connection between genes based on the sample, and provides 
the rewards based on the gene-gene connectivity matrix. 

The Q-learning reinforcement model consists of an environment, 
agent, and Q-learning module. The role of the environment module is to 
provide a learnable gene co-expression environment for a Q-learning 
agent. Furthermore, in the environment module, the generated envi-
ronment is based on the gene expression of the expressed genes in the 
acne samples. Thus, for the environment module, there are eight 

Table 1 
Summary of the data on handling missing data and repeated rows for Gene 
Entrez ID.  

Characteristics of the Data GSE108110 GSE53795 GSE6475 

Number of Samples 54 
18: non-lesional, 
18: lesional 
(papules persisting 
for less than 48 h), 
18: lesional 
(papules for 21 
days) 

24 
12: 
lesional, 
12: non- 
lesional 

18 
6: lesional, 
6: non- 
lesional, 
6: normal 

Number of rows of Raw Data 
(probes) 

54,675 54,675 22,277 

Number of rows of data with 
missing values for Gene 
Entrez ID (genes) 

11,537 12,753 2466 

Number of rows of data 
BEFORE handling the 
duplicated Gene Entrez ID 
(genes) 

43,138 41,922 19,811 

Number of rows of data 
AFTER handling the 
duplicated Gene Entrez ID 
(genes) 

20,857 20,174 12,402  

Fig. 2. Data collection and pre-processing before identifying and filtering the 
differentially expressed genes. 
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variables and four functions. The first variable is “ggc”, which stores the 
gene-gene connectivity matrix. Besides, the “top_gene_list” variable 
stores the genes Entrez ID which have high gene significance, and the 
“index_top_genes” variable stores the index for the genes Entrez ID 
which have high gene significance. Furthermore, the “selection” vari-
able is to store the selected gene in an array. The “expression” variable is 
to store the actively expressed gene from the acne sample in an array. 
The “terminated” variable is a boolean variable for checking the 
terminated index has been selected. Nonetheless, the “gene_num” is the 
variable to stores the number of genes in the acne sample. The last 
variable of the “gene_id” is a list of gene Entrez ID that exists in the acne 
sample. Nevertheless, the function of the “reset()” is used to reset the 
environment when the agent has selected the terminated index as an 
action. The “play_step()” function is used to make the selection of genes, 
whereas the “get_index_top_genes()” function is to obtain the index for 

every gene Entrez ID that has high gene significance. The last function is 
“is_connective()”, which is used to check the selected genes whether the 
gene-gene connectivity is greater than a small threshold for an agent to 
distinguish the value of the state. 

Next, the role of the Q-learning module is to provide the Q-learning 
model to the agent for calculating and storing the Q-value for pairs of 
state and action, Q(s, a). Thus, the agent aims to identify the optimal 
action from the Q-value table and to choose the best action in a given 
state. In the Q-learning module, there are three variables and two 
functions. The first variable in the Q-learning module is the “Q” variable 
in array form, which is used to behave as a Q-value table for storing the 
Q-value for the states and actions. Besides, the “gamma” variable is used 
as the discount factor, whereas the “learning_rate” variable is used as the 
learning rate for updating the Q-value table with the Bellman equation. 
The values of “gamma” and “learning_rate” variables set to 0.9, due to 
the convergence speed of which is much faster than that of other values 
[39]. Since when the value of the discount factor is low, the agents are 
more eager for the short-term benefits than future return, resulting 
eventually in getting stuck in a local optimum and following a long-path 
strategy. Moreover, the area of variance for different values of discount 
factor is presented with a huge difference: the larger the value of the 
discount factor, the smaller the variance area. The two functions of the 
Q-learning module are “update_Q_value()” and “get_Q_table()”. The 
function of “update_Q_value()” is used to update the Q-value table by 
using the Bellman equation, while the function of “get_Q_table()” is used 
to retrieve the Q-value table. 

Lastly, the agent module is to behave as a decision-maker. Hence, the 
agent retrieves a state from the environment and responds with an ac-
tion which is the gene to be selected based on the exploration and 
exploitation approach, with a probability of the execution of a random 
action. The objective of the agent is to select the genes based on the gene 
co-expression pattern for a list of the potential genetic markers that have 
high gene significance value among the genes. Nevertheless, an agent 
with the Q-learning aims to maximize the expected rewards. Hence, the 
penalty-reward function for the gene correlation is applied to the gene 
expression environment to provide a reward for the agent in order to 
identify genetic markers from the correlation pattern by referring to a 
list of potential genetic markers [9,26]. Therefore, the agent module 
consists of 9 variables and 6 functions. In the agent module, the 
“epsilon” variable is used as the probability of the agent executing the 
random action or executing the action based on the Q-value table. The 
“model” variable is the variable used to initiate the Q-learning model in 
the agent class. Furthermore, the “num_action” indicates the size of the 
space in which random action can be executed. The “selected_gene” 
variable is used to store the selected gene index when the selection of the 
gene is executed. Besides, the “previous_selected_gene” variable is used 
to store the selected gene index for the previous round of the gene se-
lection. The “state” variable is initiated as an array for storing the state 
extracted from the environment. Next, the variable “state_index” is used 
to store the index of the state for the particular state and used to update 
the Q-value table. The “action” variable is used to store the gene index 
which decides the action from the agent and is also used to update the 
Q_value table. The last variable in the agent module is the “reward”, it is 
used to store the value of the reward which has been calculated from the 
function of “get_rewards()” and also used to update the Q-value table. 
Nevertheless, the “get_action()” function is used to obtain the gene index 
which represents the action for the agent based on the probability of the 
agent executing the random action or executing the action based on the 
Q-value table. The “get_state()” function is used to obtain the state value 
from the environment, whereas the “get_state_index()” function is to 
convert the given state into an index for storing in and retrieving from 
the Q-value table. The function of “get_rewards()” is to calculate the 
gene-gene connectivity as a reward for the particular state and action 
with the application of the reward-penalty function. The “get_se-
lected_gene()” function is used to obtain the selected gene while the 
selection of the gene. The last function of the agent module is the 

Fig. 3. How Q-learning works in the proposed method.  
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“update_Q_table()” function, which is used to call the “update_Q_value 
()” function from the Q-learning module. 

2.3. Markov decision process 

Markov Decision Process is a control process for modeling sequential 
decision-making in a stochastic situation with a discrete stage [36]. In 
this process, a set of states, S, actions, A, and rewards, R, will be involved 
with the interaction between agent and environment. Thus, in this Q- 
learning model, the agent retrieves a state from the environment and 
uses a Q-value table to determine the action that will be executed for the 
current state. After executing an action, the agent will gain a reward as 
feedback from the environment and move on to the next state to carry 
out the learning process again. Therefore, an optimal Q-value table will 
be obtained, and the Q-value table will provide the optimal solution for 
discrete stages. The Q-value table consists of a set of states, S, actions, A, 
and the accumulated value of rewards, R. 

The Q-learning agent conducts the selection of the different genes 
across different samples. Hence, the state of the agent represents the 
degree of the gene-gene connectivity of the selected genes with the genes 
that have high gene significance, considering the gene-gene connectivity 
is greater than a threshold. This can help the agent to distinguish which 
genes in the list of high gene significance genes are connective to the 
selected gene. The state, si is indicated by the gene-gene connectivity of 
selected genes and genes in the list of high gene significance genes, if it is 
greater than the threshold used, then the indicator vector ei is set to one, 
otherwise is set to be zero. Hence, this shows that state, si =

ei ∈ {0,1}m × 1, where i is the time step, and m is the size of the list of 
high gene significance genes. In this research, the threshold used is 0.1, 
whereas the m used is 10. 

For the selection of genes for identifying genetic markers, the action 
space consists of all the possible actions which are the differentially 
expressed genes. In the Q-learning agent, the action space includes the 
index of differentially expressed genes, A ∈ {a1, a2, ... ,aL}, where A is 
the action space, a is the index of differentially expressed genes and L is 
the number of differentially expressed genes. In this research, the value 
of action, a consists of {0, 1, …, L, L + 1}, where L + 1 represents the 
stop action. 

Reward, R

{
− w⋅

∑
Cjk,Cjk < ∊

∑
Cjk , otherwise

,wherej ∈ J , k ∈ K, J⊂K (1) 

From the function above, j is the genes in the list of high gene sig-
nificance genes, whereas J is the list of genes that have high gene sig-
nificance. Furthermore, the k is the selected gene and K is the list of 
differentially expressed genes. Nonetheless, Cjk is the gene-gene con-
nectivity of j and k. Hence, the reward-penalty function above shows 
that the reward depends on the gene-gene connectivity between the 
gene selected and the gene in the list of high gene significance genes. 
This is because gene significance value can be used to identify potential 
genetic markers, as gene significance is a measurement of the correlation 
for the gene expression with an external trait [17]. Furthermore, in this 
reward-penalty function, the used value of w is 1.5 and the purpose of 
the w in this reward-penalty function is to enlarge the sparsity of the 
penalty for the genes that have the gene-gene connectivity is less the ∊ 
value [26]. For this reward-penalty function, the value of ∊ used is 0.01, 
to quantify the contribution of the gene as a genetic marker by consid-
ering the gene-gene connectivity is greater than a small threshold [26]. 

Qnew(st, at) = Q(st, at) + α(R + γ⋅max Q(st+1, a) − Q(st, at) (2) 

The Q-value function above shows that Q(st, at) is the Q-value for the 
current state, st and action was taken for the current state, at; α is the 
learning rate; R is the reward for the current state, st and action was 
taken for the current state, at; γ is the discounted factor; max Q(st+1, a) is 
the maximum Q-value for the new state from all the possible actions. 
Lastly, the Q-value function which is based on the Bellman equation is 

used to update the Q-value table. 
The objective of the agent is to select the genes based on the gene co- 

expression pattern for a list of the potential genetic markers that have 
high gene significance value among the genes. Nevertheless, an agent 
with the Q-learning aims to maximize the expected rewards. Hence, the 
penalty-reward function for the gene correlation is applied to the gene 
expression environment to provide a reward for the agent in order to 
identify genetic markers from the correlation pattern by referring to a 
list of potential genetic markers [26]. 

2.4. Differentially expressed genes 

The genetic markers are defined from the differentially expressed 
genes [26]. Hence, the differentially expressed genes are identified, and 
removed the no or low changes in expression in different samples for the 
datasets [12,3,34–35]. Firstly, the information of the sample is obtained 
by using the library of “GEOquery” [7]. Next, the boxplot and hierar-
chical tree are used to check the distribution of the gene expression data 
and detect the sample outliers respectively. Furthermore, in the process 
of identification of differentially expressed genes, the value of the me-
dian of gene expression level is used for filtering the low expressed genes 
across samples when the particular gene is not being expressed by at 
least 2 samples. Next, the gene expression data is compared by two 
conditions, such as in non-acne condition and acne condition, for 
identifying the differentially expressed genes by using the function of 
“makeContrasts()” in the limma library [27]. Lastly, the differentially 
expressed genes are identified from the conditions, such as adjusted P 
value <0.05 and absolute value of log 2 based on the fold change >1.5 
[4,15]. Eventually, all the differentially expressed genes which included 
up-regulated genes and down-regulated genes are filtered out for further 
analysis. Thus, the data of differentially expressed gene expression level 
is passed to the Q-learning agent to obtain the differentially expressed 
genes as the action for the Q-learning agent. Nevertheless, the data of 
differentially expressed gene expression levels is also used for generating 
the gene-gene connectivity matrix and gene list of high genes for the Q- 
learning model. 

2.5. Gene-gene connectivity matrix 

Furthermore, in order to represent the dependency between genes, a 
gene-gene connectivity matrix is generated by using the function of 
“TOMsimilarity()” [12,17]. In this process, the Pearson correlation 
matrix is calculated from the differentially expressed genes and gives a 
high topological overlap for two genes that have common neighbor-
hoods with a soft threshold. Hence, a weighted gene co-expression 
network is constructed, representing the gene-gene connectivity [12]. 

Fig. 4 shows the scale independence and the mean connectivity for 
the list of soft threshold for the dataset of GSE108110. Thus, 20th power 
is picked as the soft threshold for generating the cluster for the differ-
entially expressed genes. This is because the soft threshold is selected 
when it have the scale-free fit index is higher and the mean connectivity 
is remained lower. After picking the soft threshold, a topological overlap 
network construction and module detection in the approach of average 
linkage hierarchical clustering are performed for the differentially 
expressed genes by using the function of blockwiseModules() with the 
picked soft threshold and Pearson correlation. 

Fig. 5 illustrates a list of soft thresholds into two plots which are 
according by the scale independence and the mean connectivity for the 
dataset of GSE53795. Hence, the 20th of the soft threshold was picked 
for the construction of the topology overlap network for the dataset of 
GSE53795. This is because the 20th soft threshold has a high scale in-
dependence power which is nearly to 0.8 and a low mean connectivity. 
Then, the differentially expressed genes are performed top-
ological overlap network construction and average linkage hierarchical 
clustering for gene module clustering by using the function of block-
wiseModules() with the picked soft threshold and Pearson correlation. 
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Fig. 4. The selection of soft threshold of GSE108110.  

Fig. 5. The selection of soft threshold of GSE53795.  

Fig. 6. The selection of soft threshold of GSE6475.  
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Fig. 6 shows the soft thresholds of GSE6475 dataset by their scale 
independence and the mean connectivity. Thus, the 20th power was 
selected as the soft threshold for the differentially expressed genes to 
generate a topology overlap network. The selection for the picked soft 
threshold is due to the soft threshold selected soft threshold has a nearly 
to 0.8, high scale independence power and a low mean connectivity. 
After the selection of the soft threshold, the network construction and 
module detection are performed by using blockwiseModules() with the 
picked soft threshold and Pearson correlation. In this process, a topo-
logical overlap network is constructed and gene module is identified in 
the approach of average linkage hierarchical clustering. 

Nevertheless, the differentially expressed genes data is correlated 
with acne trait in order to generate the correlation for genes and acne 
trait. Then, the correlation of the differentially expressed genes and acne 
trait is further processed with the function of “corPvalueStudent()” for 
generating the gene significance for the differentially expressed genes 
[17]. In this process, the P-value for correlation is calculated for the 
differentially expressed genes and acne traits. In order to obtain a gene 
list of high gene significance, the values of the P-value for correlation of 
the differentially expressed genes and acne trait are sorted in acceding 
order and the top 10 genes which have the lowest value of P-value are 
extracted. Hence, the gene list of high gene significance is passed and 
used for the reward-penalty function in the Q-learning agent. 

For the GSE108110 dataset, the gene list of the high gene signifi-
cance used included the genes with the gene Entrez ID of 4321, 55509, 
1000506776, 4826, 4329, 158830, 64761, 555619, 355, and 1200. 
Nevertheless, the high gene significance genes used for the GSE53795 
dataset are the genes with the gene Entrez ID of 1786, 7264, 2769, 6283, 
387695, 57016, 5266, 79155, 7378, and 338324. Furthermore, for the 
GSE6475 dataset, the gene list of the high gene significance consists of 
the genes that have the gene Entrez ID of 2210, 4312, 10288, 3002, 
5552, 57016, 5265, 1890, 3868, and 6702. 

The higher the topological overlap for two genes, the higher the 
similarity for two particular genes as they have common neighborhoods. 
Therefore, the data pre-processing reduces the redundancy of the 
dataset and prepares the data for configuring and inputting to the Q- 
learning algorithm. 

2.6. Q-learning algorithm 

Firstly, the differentially expressed genes matrix is passed into the 
environment module to generate a learnable environment for the Q- 
learning agent. The differentially expressed genes matrix has been 
converted into the “actively expressed” pattern with the value of the 
median of the gene expression level. In other words, the genes in the 
matrix are expressed in active, “1”, when the expression level is over the 
value of median of expression level, otherwise the gene is not expressed, 
“0”. In the Q-learning, the data have to be Markovian domain in order to 
learn the data as the Markov Decision Process. Therefore, the data input 
needs to be configured as a Markovian domain. Hence, this configura-
tion process includes the configuration of data to the environment for 
the Q-learning agent to retrieve a learnable state from the environment 
and the configuration of action for the Q-learning agent to be able to 
execute an action in the environment. Furthermore, the actively 
expressed gene expression data is then configured as an environment. 
Then, the agent retrieves the state from the environment by comparing 
the gene-gene connectivity of the selected gene and the gene in the high 
gene significance gene list with a value of ∊ used. If the value of the gene- 
gene connectivity of the selected and the gene in the high gene signifi-
cance gene list is greater than the value of ∊ used, then the value of the 
digit returns as 1. Hence, the number of digits for the state is 10 due to 
there are 10 genes in the high gene significance gene list. Nevertheless, 
the configuration of the action also is carried out. In this process, the 
number of genes is calculated from the gene list that has been read from 
the gene expression data. Then, the agent generates an action space that 
contains the gene to be selected and evaluated by the Q-learning agent. 

Next, the agent executed an action with epsilon to generate a probability 
for an agent to execute the random action or execute the action based on 
the Q-value table. In this process, the agent carries out an exploration, if 
the agent executes a random action; otherwise agent carries out 
exploitation for the execution of an action that has the highest Q-value 
from the Q-value table. 

After that, the agent calculates the reward based on the action taken, 
which means the gene-gene connectivity of the gene selected and genes 
from the gene list of the high gene signature is calculated as a reward for 
an agent by the reward-penalty function that has been applied in an 
agent. Then, the next state is retrieved from the environment based on 
the action taken. Next, the agent updates the Q-value table. In this 
research, for the Q-learning agent, the number of learning episodes for 
every sample is 200. 

The Q-function will be updated with an optimized Q-value until the 
iteration of the learning is stopped. Hence, the output of the model is the 
genes selected with its frequency of selected. Then, the top 10 genes 
selected are considered as the genetic markers. 

2.7. Performance evaluation 

For the evaluation of the performance of the Q-learning model, the 
genetic markers obtained from the Q-learning model have carried out 
performance evaluation by classification with the model of logistic 
regression and stratified five-fold cross-validation. In the classification, 
the ratio of 0.8: 0.2 is used for splitting the data into the training set and 
test set. The used ratio follows the ratio used in the literature review in 
the research of using reinforcement learning to select the active gene 
signatures for identification in renal cell carcinoma [12]. Moreover, 
when the ratio is closer to 0.8, it provides empirically best splitting for 
the training set and test set [8]. Thus, the genetic marker is evaluated by 
classification using the genetic marker as features for accuracy, sensi-
tivity, specificity, and AUC. K-fold cross-validation divides the data into 
k groups and carries out the validation by using one of the folds as a test 
fold, the rest are train folds [16,23]. In this evaluation, the datasets are 
split into five-fold and the stratified five-fold cross-validation. In the 
stratified five-fold cross-validation, the different datasets use different 
ratios five-fold for the group of acne. For dataset, GSE108110, the ratio 
used for the acne sample to the non-acne sample is 0.33:0.67, because 
there are 18 acne-lesional samples and 36 non-acne lesional samples. 
For dataset GSE53795, there are 12 ance-lesional samples and 12 non- 
acne-lesional samples, hence, the ratio used for acne sample to non- 
acne sample is 0.5:0.5. Lastly, for the dataset GSE6475, the ratio used 
for acne sample to non-acne sample is 0.33:0.67 because there are 6 
acne-lesional samples and 18 non-acne lesional samples. 

Nevertheless, PubMed text data mining is used to provide the bio-
logical context verification of the gene selected by the Q-learning agent. 
In the PubMed text data mining, the gene symbol of the gene selected by 
the Q-learning agent, which has been converted from the gene Entrez ID, 
is used to find the relationship of the particular gene symbol with acne. 
Furthermore, This process is carried out by the function of get_pubme-
d_ids() to find out whether the particular gene symbol has been involved 
in the publication from PubMed. In this process, the keyword used for 
finding the genetic markers that have a relationship with acne from the 
publication in PubMed is “acne”. Thus, the result of the PubMed text 
data mining shows the direct relationship between the genetic markers 
to acne. 

3. Results 

Table 2 shows the gene Entrez ID of the gene selected with its fre-
quency of being selected for three datasets, which are GSE108110, 
GSE53795, and GSE6475. In this process, all the genes are recorded in 
their gene Entrez ID. For the dataset of GSE108110, the top 10 genes 
selected are “21”, “100506779”, “942”, “5160”, “199”, “54440”, 
“56894”, “91010”, “3109” and “128346”, and the gene with gene Entrez 

Y.C. Chua et al.                                                                                                                                                                                                                                 



Egyptian Informatics Journal 26 (2024) 100484

8

ID of “21” is selected with the highest frequency which is 1274. 
Nevertheless, The top 10 genes selected for the dataset of GSE53795 are 
“12”, “3587”, “9407”, “7029”, “5495”, “1830”, “6372”, “2237”, “2752” 
and “7133”. The gene with the gene Entrez ID of “12” has the highest 
frequency which is 1364. Nonetheless, for the dataset of GSE6475, the 
top 10 of the genes selected are the genes with the gene Entrez ID of 
“120”, “5266”, “728”, “3868”, “5552”, “6699”, “10261”, “11151”, 
“224” and “5320”. The gene with the gene Entrez ID of 120 has the 
highest frequency of selection which is 523. Lastly, the genes selected 
which have been listed above are used for performance validation by 
using as the features for the classification of the acne samples and non- 
acne samples. 

Table 3 illustrates the accuracy, sensitivity, and specificity of the 
stratified 5-fold cross-validation. Gene set variation analysis (GSVA) has 
been identified genetic markers in acne vulgaris that are validated to-
ward personalized diagnostic and therapeutic strategies [20]. The 
GSE108110 achieved 81.80 % accuracy, specificity is 100 %, and 
sensitivity is reached 75 %. For GSE53795 and GSE6475, both datasets 
achieved 100 % accuracy, specificity, and sensitivity. However, this 
research has been outperformed than GSVA in GSE53795 and GSE6475. 

Table 4 presents the comparative analysis of Q-learning and GSVA 
for the GSE108110, GSE53795, and GSE6475 datasets. The tables also 
state the differences in AUC values between the methods in term of 
percentages. There were statistically significant differences between the 
methods, as supported by p-values and the 95 % confidence interval. 
Additionally, the Q-learning demonstrated consistent and significant 
improvement over other methods with a minimum average difference of 
0.70 %. 

For biological verification, the genes Entrez ID of the high selected 
frequency of the genes selected by the Q-learning model are converted 
into a gene symbol. Table 5 shows the gene symbol for the high fre-
quency of genes selected. In the biological validation, the gene symbols 
are used in PubMed text data mining to find which gene is related to 
acne. Table 6 shows the gene symbols with the acne publication record 
on PubMed. Therefore, 8 gene symbols show the relationship with acne, 
as 8 gene symbols have publication records about acne on PubMed. 
Hence, for the GSE108110, the gene symbols CD86 and AGPAT3 have a 
relationship with acne. For the dataset of GSE53795, gene symbols of 
TMPRSS11D, DSG3, and TNFRSF1B are the genes that have a relation-
ship with acne. For the GSE6475 dataset, the gene symbols PI3, C5AR1, 

and KRT16 have a relationship with acne. 

4. Discussion 

The limitation of the proposed method is that the features that have 
been used to identify the differentially expressed genes for the datasets 
are “patient_id” and “sample_type”. This is because the datasets used, 
which are GSE108110, GSE53795, and GSE6475 do not include more 
features such as the age of the patient, and background of the patient. 
Due to the lack of more information for the patient, factors other than 
“type of sample” are lacking to consider for analysis on identifying 
differentially expressed genes. For example, acne is a symptom of many 
endocrine disorders [22]. Furthermore, the side effects of medication 
treatment such as intake the medicine that contains lithium also is a 
factor that causes the acne problem [2]. Hence, it is hard to distinguish 
the patients who have acne problems due to endocrine disorders and the 
patients who have acne problems due to the side effects of medication 
treatment by only using the gene expression level data. Therefore, a lack 
of more information about the patient may lead to a limited analysis of 
it. 

The proposed method can select the genes that are associated with 
acne from an action space that consists of plenty of genes. For instance, 
the action space for GSE108110 consists of 749 gene candidates, the 
action space for GSE53795 consists of 1482 gene candidates and the 

Table 2 
The frequency of the genes selected.  

GSE108110 GSE53795 GSE6475 

Gene Entrez 
ID 

Frequency Gene 
Entrez 
ID 

Frequency Gene 
Entrez 
ID 

Frequency 

21 1274 12 1364 120 523 
100,506,779 181 3587 196 5266 389 
942 148 9407 196 728 210 
5160 147 7029 171 3868 193 
199 139 5495 167 5552 165 
54,440 113 1830 163 6699 158 
56,894 85 6372 120 10,261 156 
91,010 76 2237 114 11,151 135 
3109 69 2752 98 224 128 
128,346 59 7133 91 5320 115  

Table 3 
Summary of the accuracy, specificity, and sensitivity of the datasets.  

Datasets Q-Learning GSVA [20] 

Accuracy Specificity Sensitivity AUC AUC 

GSE108110 81.80 % 100 % 75 % 75 %  94.35 % 
GSE53795 100 % 100 % 100 % 100 %  96.68 % 
GSE6475 100 % 100 % 100 % 100 %  99.30 %  

Table 4 
Comparative analysis of Q-learning and GSVA for the studied datasets in terms of 
AUC.   

p-values 95 % Confidence Interval Differences 

GSE108110 4.06 × 10-8 (18.14, 20.56)  19.35 
GSE53795 0.04 (− 0.62, 5.94)  3.32 
GSE6475 0.36 (− 0.99, 2.11)  0.70  

Table 5 
Table of the conversion of Gene Entrez ID to Gene Symbol.  

GSE108110 GSE53795 GSE6475 

Gene Entrez 
ID 

Gene 
Symbol 

Gene 
Entrez 
ID 

Gene 
Symbol 

Gene 
Entrez 
ID 

Gene 
Symbol 

21 ABCA3 12 SERPINA3 120 ADD3 
100,506,779 BZRAP1- 

AS1 
3587 IL10RA 5266 PI3 

942 CD86 9407 TMPRSS11D 728 C5AR1 
5160 PDHA1 7029 TFDP2 3868 KRT16 
199 AIF1 5495 PPM1B 5552 SRGN 
54,440 SASH3 1830 DSG3 6699 SPRR1B 
56,894 AGPAT3 6372 CXCL6 10,261 IGSF6 
91,010 FMNL3 2237 FEN1 11,151 CORO1A 
3109 HLA-DMB 2752 GLUL 224 ALDH3A2 
128,346 C1orf162 7133 TNFRSF1B 5320 PLA2G2A  

Table 6 
Table of the gene symbols related to the acne publication record.  

Datasets Gene Symbol PubMed Publication record ID 

GSE108110 CD86 26495013 
AGPAT3 32031713  

GSE53795 TMPRSS11D 31838778 
DSG3 31337387 
TNFRSF1B 20556591  

GSE6475 PI3 31838778 
C5AR1 31688984 
KRT16 36291580  
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action space for GSE6475 consists of 370 genes. The gene symbol of the 
gene selected for the GSE108110 are ABCA3, BZRAP1-AS1, CD86, 
PDHA1, AIF1, SASH3, AGPAT3, FMNL3, HLA-DMB and C1orf162. For 
the GSE53795, the genes selected are SERPINA3, IL10RA, TMPRSS11D, 
TFDP2, PPM1B, DSG3, CXCL6, FEN1, GLUL, and TNFRSF1B. Further-
more, for the GSE6475, the genes selected are ADD3, PI3, C5AR1, 
KRT16, SRGN, SPRR1B, IGSF6, CORO1A, ALDH3A2 and PLA2G2A. For 
the dataset of GSE108110, the genes that have been biologically verified 
for having a relationship with acne are CD86 and AGPAT3. Besides, for 
the GSE53795, the genes that have biologically verified for having a 
relationship with acne are TMPRSS11D, DSG3, and TNFRSF1B, whereas 
for the dataset of GSE6475, the genes that have biologically verified for 
having a relationship with acne are PI3, C5AR1, and KRT16. 

According to the list of genes validated by PubMed text data mining, 
type-1 macrophage marker (Gene Symbol: CD86) with PubMed ID: 
26495013, shows that it is highly phagocytic and play critical roles in 
infections and cancers to protect the host [28]. Hence, liquiritigenin and 
isoliquiritin activated human monocytes by increasing CD86 expression 
and phagocytosis. By enhancing macrophage functions, it may be 
beneficial in a therapeutic strategy for skin inflammation disorders 
including acne. TNF receptor superfamily member 1B (Gene Symbol: 
TNFRSF1B) with PubMed ID: 20556591, has been presented with the 
high frequency of 196R allele in the functional M196R polymorphism of 
TNFR2 is a risk factor for acne vulgaris in Han Chinese [32]. Trans-
membrane serine protease 11D and peptidase inhibitor 3 (Gene Sym-
bols: TMPRSS11D and PI3) with PubMed ID: 31838778, shows these 
two genes and KRT16 (keratin 16) were found to characterize hidra-
denitis suppurativa/acne inversa (HS) from a molecular standpoint [40]. 
TMPRSS11D is released in the host defence system from the submucosal 
serous glands onto mucous membrane. PI3 was detected to be differ-
entially regulated in HS perfomed by Quantitative real-time PCR. PI3 
functions as an antimicrobial peptide against Gram-positive and Gram- 
negative bacteria and fungal pathogens. It modulates a wide range of 
parameters that are critical for the inflammation process, such as NFκB 
pathway modulation, cytokine secretion and cell recruitment. 

Fig. 7 shows the cumulative rewards by the number of episodes for 
the Q-learning agent. The purpose of the graph of the cumulative reward 
and number of episodes is to show the learning trend of the Q-learning 
model. The inclining trend shows the Q-learning model is gaining pos-
itive feedback as a reward for selecting genes that are more connective 
to the high gene significance gene list; whereas the declining trend 
shows the Q-learning model is experiencing negative feedback as a 
penalty for selecting genes that are less connective to the high gene 
significance gene list. Therefore, reinforcement learning for selecting 
genes that are associated with acne is being carried out. 

The proposed Q-learning model has a high accuracy, and high 
specificity but is unstable for sensitivity. Hence, the proposed method is 
a model with high accuracy and specificity. Therefore, the proposed 
method can correctly classify the non-acne sample as the non-acne 
sample and is less likely to predict the non-acne sample as an acne 
sample. However, the proposed method performed unstable for the 

sensitivity, because the proposed method has a low sensitivity for 
GSE108110 but remained a high sensitivity for the other two datasets. 
Therefore, the proposed method is unstable for correctly classifying acne 
samples as acne samples and may produce false negative predictions. 

5. Conclusion 

The introduction of a Q-learning model for the selection of genetic 
markers associated with acne represents a significant advancement in 
the field of medical research. Q-learning, an AI-driven approach, allows 
the system to autonomously identify and select genes that play a crucial 
role in the development of acne. To achieve this, various data pre-
processing techniques are applied, including handling missing data, 
deduplication of Gene Entrez IDs, and identification of differentially 
expressed genes. These processes help streamline the input data for the 
Q-learning model, making it more effective in identifying relevant ge-
netic markers. 

One of the key innovations in this research is the construction of a 
gene-gene connectivity matrix, which measures the relationships be-
tween different genes. This matrix, coupled with gene significance cal-
culations, transforms the raw acne gene expression data into a format 
suitable for the Q-learning model to understand and learn from. 
Consequently, the Q-learning agent can efficiently pinpoint genetic 
markers associated with acne after this data preprocessing. 

The study incorporates three different acne gene expression datasets 
from Gene Expression Omnibus (GEO), providing a comprehensive 
analysis. Notably, the results reveal specific genes associated with acne 
for each dataset, shedding light on the genetic factors contributing to 
this skin condition. For instance, genes like CD86 and AGPAT3 are 
linked to acne in one dataset, while TMPRSS11D, DSG3, and TNFRSF1B 
are implicated in another. These findings demonstrate the power of the 
proposed Q-learning model in uncovering genetic markers associated 
with acne across diverse datasets. 

Moreover, the study employs logistic regression with five-fold cross- 
validation to classify the datasets, showcasing the practicality and 
robustness of the proposed model. It achieves high accuracy and speci-
ficity in identifying genetic markers selected by the Q-learning agent. 
However, it’s important to note that the model exhibits some variability 
in sensitivity, indicating an area for potential improvement. 

In summary, this research leverages AI-driven Q-learning to effec-
tively identify genetic markers associated with acne. The model’s ability 
to autonomously select relevant genes, its innovative data preprocessing 
techniques, and its success in classifying acne gene expression datasets 
highlight its potential in advancing genetic marker identification not 
only for acne but potentially for other diseases as well. This work rep-
resents a significant step toward personalized treatments and a deeper 
understanding of the genetic basis of skin conditions. 
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