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Abstract1

Group LASSO (gLASSO) estimator has been recently proposed to estimate thresholds2

for the self-exciting threshold autoregressive model, and a group least angle regres-3

sion (gLAR) algorithm has been applied to obtain an approximate solution to the4

optimization problem. Although gLAR algorithm is computationally fast, it has been 15

reported that the algorithm tends to estimate too many irrelevant thresholds along with6

the relevant ones. This paper develops an active-set based block coordinate descent7

(aBCD) algorithm as an exact optimization method for gLASSO to improve the per-8

formance of estimating relevant thresholds. Methods and strategy for choosing the9

appropriate values of shrinkage parameter for gLASSO are also discussed. To consis-10

tently estimate relevant thresholds from the threshold set obtained by the gLASSO, the 211

backward elimination algorithm (BEA) is utilized. We evaluate numerical efficiency12

of the proposed algorithms, along with the Single-Line-Search (SLS) and the gLAR13
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algorithms through simulated data and real data sets. Simulation studies show that the14

SLS and aBCD algorithms have similar performance in estimating thresholds although15

the latter method is much faster. In addition, the aBCD-BEA can sometimes outper-16

form gLAR-BEA in terms of estimating the correct number of thresholds under certain17

conditions. The results from case studies have also shown that aBCD-BEA performs18

better in identifying important thresholds.19

Keywords Karush–Kuhn–Tucker · Group LASSO · SETAR · aBCD algorithm ·20

BEA · Sparsity conditions21

1 Introduction22

The (m+ 1)-regime threshold autoregressive (TAR) model of order p, or TAR(p) for23

the time series {yt , t = 1, · · · , n}, is defined as24

yt =
m+1∑

j=1

(
φ

( j)
0 +

p∑

i=1

φ
( j)
i yt−i

)
IR j (st ) =

m+1∑

j=1

xT
t φ j IR j (st )+ εt , (1)25

εt = σηt , ηt
i id∼ D(0, 1), t = p + 1, · · · , n, (2)26

where xT
t = (1, yt−1, yt−2, · · · , yt−p), φ j = (φ

( j)
0 , φ

( j)
1 , · · ·φ( j)

p )T is the set of27

parameters for regime j , R j = (r j−1, r j ] are the threshold intervals with conventions28

of r0 = −∞, rm+1 = ∞ and Rm+1 = (rm,∞), the indicator function IR j (st ) = 1,29

if st ∈ R j , zero otherwise and D(0, 1) is a distribution with zero mean and unit30

variance. Here, {st , t = p + 1, · · · , n} is the threshold process (sometimes referred to31

as a switching variable), which controls the switching or jump between the regimes.32

It follows that the error term εt , t = p + 1, · · · , n, are independent and identically33

distributed with E(εt ) = 0 and a constant variance Var(εt ) = σ 2. In this paper, we34

assume st = yt−d , where the integer 0 < d ≤ p is called a delay parameter, and this35

subclass is called a self-exciting TAR (or SETAR) model.36

The TAR model was initially proposed by Tong (1978) and several of the TAR37

sub-classes, including the self-exciting are discussed by Tong and Lim (1980) and38

Tong (1990). The TAR is an AR(p) model in each of several regimes. As such, it is a39

piecewise model which is linear in each regime, but the overall time series process is40

non-linear. The piecewise nature of the TAR model is able to capture some important41

non-linear phenomena, such as sudden jumps, asymmetric limit cycles and chaos,42

sub and higher harmonics, and amplitude dependent frequency (Tong and Lim 1980;43

Tong 1990). Since TAR is a piecewise linear extension of a linear AR model, its44

interpretation is simple and similar to the interpretation of linear models (Li and Ling45

2012).46

Estimation of SETAR model involves the determination of the number of regimes,47

thresholds, delay parameter and model order (Chen et al. 2011). The estimation48

procedure is usually complicated and can be computational costly, despite the well-49

established asymptotic theory of the SETAR model estimation via least-squares (LS)50
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and maximum likelihood (ML) estimators; for examples, see Chan (1993), Qian (1998)51

and Li and Ling (2012).52

Since the LS and ML functions are discontinuous in d and r j , j = 1, · · · , m,53

obtaining global minimum for the LS and global maximum for the ML require a multi-54

parameter grid search over all possible values of the r j s and d, which is computationally55

cumbersome, if not impossible, for large m (Li and Ling 2012; Chan et al. 2017). If d56

is assumed to be known, then the computational cost to estimate all m thresholds via57

the grid search is O(nm) (Bai and Perron 2003; Li and Ling 2012).58

Some alternative techniques have been proposed to speed-up the thresholds esti-59

mation time. For m = 1, Li and Tong (2016) developed the nested sub-sample search60

(NeSS), which drastically reduces the computational cost of one-dimensional grid61

search algorithm for two-regime threshold models, from O(n) to O(log n). For the62

case of unknown m, Gonzalo and Pitarakis (2002) proposed sequential estimation pro-63

cedure to estimate multiple thresholds, which has linear computational cost O(mn)64

and requires only a one-dimensional grid-search algorithm for estimating each thresh-65

old one at a time. Recently, Chan et al. (2015) proposed a fast approximation algorithm66

called group least angle regression (gLAR) for the group least absolute shrinkage and67

selection operator (gLASSO) estimator to locate and estimate relevant change-points68

for a reformulated SETAR model, which then used as a proxy for estimating thresholds.69

However, it was reported in Chan et al. (2017) that the gLAR suffers from estimat-70

ing excessive irrelevant change-points/thresholds even after performing the additional71

step of threshold filtration procedure.72

gLASSO is a type of regularization method which is a natural extension of the73

standard LASSO (Yuan and Lin 2006; Nardi and Rinaldo 2008). Unlike the standard74

LASSO which penalizes individual parameters, gLASSO imposes a penalty on the �2-75

norm of the set of model parameters, in order to obtain a group-wise sparse parameter76

estimate. Furthermore, gLASSO penalizes all sets of parameters at the same rate77

without evaluating the importance of each of them. Thus, it tends to overpenalize78

large coefficients. Despite being able to perform parameter estimation and model79

selection simultaneously, gLASSO has notable drawback of estimation inefficiency80

and selection inconsistency similar to that of the standard LASSO, if certain sparsity81

conditions are not met (Wang and Leng 2008; Bach 2008; Nardi and Rinaldo 2008).82

Some differences between gLAR and the gLASSO are described as follows. First,83

gLASSO uses a set of values of shrinkage parameter λn along the solution path while84

gLAR computes the entire path of solutions without evaluating each value of λn .85

Second, if the design matrix of a model is not orthonormal or there is more than86

one covariate in a group, the path solution of gLASSO is not piecewise-linear while87

the path solution of gLAR is a piecewise-linear. Third, gLAR uses the average squared88

correlation between a group of covariates and the current residual for adding covariates89

into a model while gLASSO evaluates Karush–Kuhn–Tucker (KKT) conditions for90

the same purpose. Fourth, gLAR lacks a covariate removal procedure while gLASSO91

might remove some of covariates during the evaluation of KKT conditions (Yuan and92

Lin 2006; Roth and Fischer 2008; Yau and Hui 2017).93

In this paper, we propose an exact optimization algorithm for the gLASSO, called94

the active-set based block coordinate descent (aBCD) as an alternative to gLAR95

algorithm in order to improve the estimation performance of change-points for the96
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reformulated SETAR model. A similar algorithm known as the Single-Line-Search97

(SLS) has been applied by Foygel and Drton (2010) for linear regression without the98

use of the active-set strategy developed by Roth and Fischer (2008). However, they99

indicated that including an active-set strategy in the algorithm is a possible extension100

and could improve the computational time. In our change-point problem, the SLS101

algorithm is ineffective in controlling the estimation number of change-points due to102

the high-dimensionality and its behavior of cycling through all groups of parameters103

for each iteration causing higher computational time. On the other hand, the active-104

set strategy in our aBCD algorithm enables us to monitor and assert control over the105

estimation of the number of change-points up to a predetermined upper bound.106

In addition, our gLASSO criteria for the change-point model in this study is a107

modified version of one given in Foygel and Drton (2010) and Chan et al. (2015), and108

we implemented a non-derivative approach of bisection method in our algorithm as109

an alternative to Newton’s method suggested by Foygel and Drton (2010) for the root110

search approximation in gLASSO. Methods and strategy for choosing the appropriate111

values of shrinkage parameter for gLASSO are also discussed. Monte Carlo simulation112

and case studies compare the estimation performance between the aBCD and gLAR113

approaches.114

Throughout this paper, we denote the true parameters with a superscript 0 and their115

estimates parameter with circumflex “hat” symbol on top. In particular, r0
j and r̂ j116

denote the true and estimated j th thresholds, respectively; t0
j and t̂ j denote the true117

and estimated j th change-points, or the location of j th thresholds, respectively; m0
118

and m̂ denote the true and estimated number of thresholds, respectively; φ0
j ′ and φ̂ j119

denote the respective true and estimated set of parameters, for j
′ = 1, 2, · · · , m0 and120

j = 1, 2, · · · , m̂; T0 and T̂ denote the respective set of true and estimated change-121

points; and R0 and R̂ denote the respective set of true and estimated thresholds. The122

notations ⊗ and Ip denote respectively, the Kronecker product operator and (p × p)123

identity matrix.124

This paper is organized as follows. The transformation of SETAR model into a125

change-point model is detailed in Sect. 2. In Sect. 3, we formulate the group LASSO126

for the reformulated SETAR model. Discussion on main assumptions and theoreti-127

cal results are given in Sect. 4. In Sect. 5, computational algorithms and post-analysis128

procedures are given to estimate the SETAR model. Performance of exact and approx-129

imation gLASSO algorithms is evaluated through empirical studies in Sects. 6 and 7.130

Final remarks are given in Sect. 8.131

2 SETAR as change-point model132

As stated by Hansen (2000), a threshold model is very similar to a change-point model,133

except the structural change of data occurs along the observation of the threshold134

process instead of sampling index. Thus, the threshold variable st plays the role of135

the time index t . If the threshold variable takes a set of discrete values, the TAR136

parameters can be estimated by first sorting the observations in ascending order of the137
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observations of the threshold process, and subsequently applying well-known methods138

for change-point model.139

Tsay (1989, 1998) and Bai and Perron (2003) proposed an algorithm to convert140

threshold model estimation into a change-point estimation problem using a particular141

sorting procedure known as arranged autoregression, which is commonly applied in142

both frequentist (Coakley et al. 2003; Chan et al. 2004) and Bayesian (Chen 1995; Pan143

et al. 2017) analyses. Under this procedure, the structure of threshold model remains144

unaffected despite the arrangement of threshold observations (Tsay 1998; Bai and145

Perron 2003). The main benefits of performing arranged autoregression is it simplifies146

the process of estimating thresholds by arranging and constraining possible positions147

of the thresholds so that observations can be appropriately grouped and separated into148

their respective regimes (Li and Ling 2012).149

For the SETAR model, let y = (yp+1, yp+2, · · · , yn)T and yd = (yp+1−d ,150

yp+2−d , · · · , yn−d)T . Let (yπ1 , yπ2 , · · · , yπN )T be the order statistics of the obser-151

vations in yd , where πi is the original index of the i th smallest observations in152

yd and N := n − p is called an effective sample size. Then the vector yπ :=153

(yπ1+d , yπ2+d , · · · , yπN+d)T is the column vector of rearranged elements of y, with154

yπ1 ≤ yπ2 ≤ · · · ≤ yπN . Note that this procedure also works well for observations155

with tied values. The arranged autoregression data can also be expressed in a matrix156

form (Coakley et al. 2003) and a spread sheet form (Chan et al. 2004), which are157

quite useful for the estimation procedure (see Section 2.1.1 in Nasir (2020) for more158

details).159

To understand how a SETAR can be reformulated into a change-point model, con-160

sider the following linear regression framework (Bai and Perron 2003; Qian and Su161

2016),162

yπt+d = ω0,πt +
p∑

i=1

ωi,πt yπt+d−i + επt+d = xT
πt

ωπt + επt+d , t = 1, · · · , N , (3)163

where ωπt = (ω0,πt , ω1,πt , · · · , ωp,πt )
T is a vector of unknown parameters and xT

πt
=164

(1, yπt+d−1, yπt+d−2, · · · , yπt+d−p). For linking SETAR with (3), set165

ωπt = φ j = (φ
( j)
0 , φ

( j)
1 , · · · , φ( j)

p )T ∈ R
p+1

166

for t = t j−1, · · · , t j − 1 and j = 1, 2, · · · , m + 1, with the conventions t0 = 1167

and tm+1 = N + 1, where t j ∈ (2, · · · , N ), for j = 1, · · · , m, is the j th change or168

change-point parameter in (3), satisfying yπt j−1 ≤ r j < yπt j
. Under these settings,169

(3) is referred to as a partial change-point model (Bai and Perron 2003). In this setup,170

one need to estimate the set of change-points T = {t1, t2, · · · , tm}, the number of171

thresholds m, and the regression coefficients ωπt , for t ∈ T.172

By the definition of ωπt , the set of vectors {ωT
π1

, (ωπ2 − ωπ1)
T , · · · , (ωπN −173

ωπN−1)
T }T exhibits a groupwise sparse characteristic in the sense that it contains174

only (m + 1) nonzero vectors, corresponding to the number of regimes in the SETAR175

model. From the sparse characteristic, one can easily locate the change-points by iden-176
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tifying the non-zero vectors in the set. Indeed, if ωπi − ωπi−1 �= 0, for some i ≥ 2,177

then i is a change-point.178

Let θ N := (θT
π1

, θT
π2

, · · · , θT
πN

)T = (ωT
π1

, (ωπ2 −ωπ1)
T , · · · , (ωπN −ωπN−1)

T )T
179

be the transformed N (p + 1)-dimensional row vector of parameters, in which only180

(m + 1) of the vectors θπi are non-zero. Then, (3) can be expressed as181

yπt+d = xT
πt

t∑

k=1

θπk + επt+d , for t = 1, 2, · · · , N . (4)182

Since θ N is groupwise sparse, we express (4) as183

yπt+d = xT
πt

∑

k∈{i :θπi �=0,i≤t
}
θπk + επt+d (5)184

to highlight the benefit of lower computational cost.185

Define I
 = 1
 ⊗ Ip+1 as a N (p+ 1)× N (p+ 1) block triangular matrix, where186

1
 is an (N × N ) lower triangular matrix of ones. Then the design matrix,187

X =

⎡

⎢⎢⎢⎢⎢⎢⎣

xT
π1

0 0 · · · 0
xT
π2

xT
π2

0 · · · 0

xT
π3

xT
π3

xT
π3

. . .
...

...
...

...
. . . 0

xT
πN

xT
πN

xT
πN
· · · xT

πN

⎤

⎥⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎢⎣

xT
π1

0 0 · · · 0
0 xT

π2
0 · · · 0

0 0 xT
π3

. . .
...

...
...

. . .
. . . 0

0 0 · · · 0 xT
πN

⎤

⎥⎥⎥⎥⎥⎥⎦
I


:= [Xπ,1 Xπ,2 Xπ,3 · · · , Xπ,N
]

(6)188

is a N×N (p+1) block lower triangular matrix, where Xπ,k , is the kth block of covari-189

ates, for k = 1, · · · , N . Then (4) can be written in the following high-dimensional190

sparse regression form:191

yπ = Xθ N + επ . (7)192

The regression setting (7) is similar to the high-dimensional regression model for193

change-point problem in Chan et al. (2014) and Qian and Su (2016), except that194

the samples being considered here are the effective samples. Relations between the195

parameters in (1) and (7) can be expressed as196

θπi =

⎧
⎪⎨

⎪⎩

ωπ1 = φ1, for i = 1,

ωπi − ωπi−1 = φ j+1 − φ j �= 0, for i = t j ≥ 2 and j = 1, · · · , m,

ωπi − ωπi−1 = 0, for i ∈ {2, · · · , N } \ {t1, · · · , tm} .
(8)197

Note that
∑t j

i=1 θπi = φ j+1.198
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3 Penalized estimationmethods199

In this paper, we aim to estimate θ N by solving the following penalized LS objec-200

tive/loss function:201

θ̂
N = arg min

θ N
f (θ N )

:= arg min
θ N

⎛

⎝ 1

N

N∑

t=1

(
yπt+d − xT

πt

t∑

k=1

θπk

)2

+ λn

N∑

i=2

∥∥θπi

∥∥
2

⎞

⎠ .

(9)202

Note that (9) is a gLASSO optimization problem (Yuan and Lin 2006) for estimating203

multiple changes of parameter vectors such that θ̂π(i) �= 0, for i ≥ 2, given an204

appropriate selection of the shrinkage parameter λn . Furthermore, the optimization205

(9) is similar to Equation (2.4) in Qian and Su (2016) for regression models with206

multiple structural breaks. Due to the convexity of (9), any local minimizer for this207

function is also a global minimizer, and convex optimizations methods are feasible208

for minimizing (9). However, multiple solutions for θ̂
N

may exist as (9) may not be209

strictly convex when the least squares estimator is not uniquely defined (e.g., when X210

is linearly dependent) (Osborne et al. 2000; Huang et al. 2012; Tibshirani 2013).211

It is also worth mentioning that (9) differs from those proposed by Harchaoui212

and Lévy-Leduc (2010) and Chan et al. (2014) for change-point estimation, and also213

Chan et al. (2015) for threshold estimation, since the vector of parameters θπ1 is not214

penalized, as t0 = 1 is not a candidate for a change-point in our study.215

After obtaining θ̂
N

, the set of estimated change-points are given by T̂ := {t :216

θ̂πt �= 0, t ≥ 2} = {
t̂1, t̂2, · · · , t̂m̂

}
, where m̂ = card(T̂) is the estimated number217

of change-points. Subsequently, the set of the estimated thresholds are given as R̂ =218

{̂r1, r̂2, · · · , r̂m̂} := {yπ̂t∗1
, yπ̂t∗2

, · · · , yπ̂t ∗̂m
}, where t̂∗j := t̂ j − 1, for j = 1, 2, · · · , m̂.219

By the close relationship between (1) and (7), the estimated autoregressive parameters220

for all regimes can be retrieved as φ̂1 = θ̂π1 , and φ̂ j+1 =
∑t̂ j

i=1 θ̂πi , for j =221

1, · · · , m̂. Algorithm-wise, coordinate descent method is also feasible for optimizing222

(9) due to its convexity.223

For gLASSO to be consistent in selection of relevant groups, it is necessary for the224

design matrix X to satisfy the groupwise irrepresentable condition, which requires225

that any of relevant group of covariates is weakly correlated with any irrelevant group226

of covariates (Bach 2008). In the case of (7), observe that these following three con-227

secutive blocks of covariates Xπ,t0
j−1, Xπ,t0

j
and Xπ,t0

j+1 given in (6), differ only in228

one row. Thus, any block corresponding to the index t j has very high correlation229

with the adjacent irrelevant blocks. Furthermore, Harchaoui and Lévy-Leduc (2010)230

showed that similar design matrix to X with p = 0 does not satisfy the irrepresentable231

condition of Zhao and Yu (2006). In conclusion, a perfect estimation of number of232

thresholds, e.g., (m̂ = m0) is not possible under (9) for any λn under finite sample233

size. Since there is a possibility of overestimating m, a post-analysis is discussed in234

Sect. 5.3 to obtain a consistent estimator of it.235
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4 Assumptions and asymptotic properties236

In this section, some common assumptions and conditions are stated for the consistency237

of estimators for SETAR parameters using gLASSO.238

For j = 1, 2, · · · , m0 + 1, define dt
j = t0

j − t0
j−1 and dr

j = r0
j − r0

j−1. Let239

dt
min = min

1≤ j≤m0+1

∥∥∥dt
j

∥∥∥ , dr
min = min

1≤ j≤m0+1

∥∥∥dr
j

∥∥∥ and dφ
min = min

1≤ j≤m0

∥∥∥φ0
j+1 − φ0

j

∥∥∥
2
.240

Here, dt
min denotes the minimum interval length of the regime, dr

min denotes the241

minimum distance of two consecutive thresholds, and dφ
min denotes the minimum �2-242

distance between consecutive parameter vectors of SETAR.243

4.1 Assumptions244

To establish the asymptotic theory, we impose the following assumptions.245

HA1 {ηt } is a sequence of real valued independent and identically distributed ran-246

dom variables with bounded, continuous and positive density, E (ηt ) = 0 and247

E (|ηt |)2+τ <∞, for some τ > 0.248

HA2 {yt } is a α-mixing stationary process with geometric decaying rate with249

E (|yt |)2+τ <∞.250

HA3 {γn} is a positive and decreasing sequence converging to zero as n → 0, and251

satisfies γn ≥ c∗log(N )(2+τ)/τ /N for some c∗ > 0, Nγn(dφ
min)

2/(log N )→∞252

and dr
min/γn →∞.253

HA4 (a) dφ
min > υ∗, for some υ∗ > 0, and (b) m0 < mmax, an upper bound of the254

number of thresholds.255

HA5 The sequence of non-negative regularization parameter {λn} satisfies λn/256

dφ
minγn → 0, as n→∞.257

HA6 dt
min/Nγn →∞ as n→∞.258

HA1–HA4 are the standard assumptions for the stability and the estimation of259

threshold autoregressive models, similar to those in Chan et al. (1985), Chan (1993)260

and Li and Ling (2012). For example, HA2 is satisfied if HA1 holds and either all roots261

of the polynomial 1−∑p
i=1 φ

( j)
i zi are outside the unit circle or sup j

∑p
i=1

∣∣∣φ( j)
i

∣∣∣ < 1,262

for each j = 1, · · · , m0+1. For p = 1, the following conditions φ
(1)
1 < 1, φ

(m+1)
1 <263

1, φ
(1)
1 φ

(m+1)
1 < 1, or φ

(1)
0 > 0, φ

(1)
1 = 1, φ

(m+1)
1 < 1, or φ

(1)
0 < 0, φ

(1)
1 <264

1, φ
(m+1)
1 = 1 implies that the time series is stationary and ergodic. Furthermore,265

strong mixing property such as α-mixing in HA2 implied that the past and distance266

future observations are asymptotically independent (Fan and Yao 2003; Tsay and Chen267

2018).268

The sequence {γn} in HA3 controls the rate at which r̂ j converges to r0
j when the269

number of thresholds is correctly estimated. For example, if m0 is known, and r0
j270

is fixed, then the threshold estimator r̂ j is found to be n-consistent (Qian 1998; Li271

and Ling 2012; Chan et al. 2015) and thus γn = O(1/n). However, if m0 and r j272

are unknown and they are estimated by gLASSO via the reformulated SETAR, then273

γn = (log N )(2+τ)/τ /N , a much slower rate (Harchaoui and Lévy-Leduc 2010; Chan274
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et al. 2015; Qian and Su 2016). Furthermore, HA3 requires that the minimum distance275

between two consecutive thresholds is bigger than γn (Chan et al. 2015).276

HA4 (a) is necessary to ensure that all thresholds are identified by considering277

the changes in AR parameters. Furthermore, it plays an important role in obtain-278

ing the n-convergence rate of thresholds and its limiting (asymptotic) distribution279

of the threshold estimator when the number of thresholds is correctly estimated or280

known (Qian 1998; Li and Ling 2012; Chan et al. 2015). HA4 (b) bounds the true281

number of thresholds m0 to its upper limit mmax for a consistent estimation of change-282

points/thresholds (Gonzalo and Pitarakis 2002; Qian and Su 2016; Yau et al. 2015).283

Note that m0 may be allowed to increase at the (slow) rate of O(log(n)) or at a much284

faster rate (Chan et al. 2015; Qian and Su 2016).285

HA5 provides condition for λn , which depends on dφ
min and γn . By choosing λn =286

(log N )/N and dφ
min ≥ (log N )1/4, the assumptions HA3, HA4 (a), HA5 and HA6 are287

satisfied, leading to the convergence rate of (log N )(2+τ )/τ

N in estimating r̂ j . With this288

choice, we can obtain an almost optimal rate of 1/n for the estimation of r̂ j up to the289

logarithmic factor (Chan 1993; Li and Ling 2012).290

Finally, HA6 is required to satisfy LASSO-type conditions such as incoherent291

design, or the restrictive eigenvalue condition (Nardi and Rinaldo 2008; Bickel et al.292

2009), so that
∥∥∥̂θ N − θ0N

∥∥∥
2
→p 0 as n → ∞. For example, Harchaoui and Lévy-293

Leduc (2010) proved that, if the distance between two consecutive non-zero parameters294

is equal to one, tk − tl = 1, for all k and l such that k − l = 1, then the incoherent295

design is not satisfied since lim inf
n→∞ φmin(sn log n) ≤ 1

n → 0. This assumption implies296

that the difference between two consecutive change-points cannot be too close, and the297

distance is at least larger than Nγn , and tends to infinity at different rates, as n→∞.298

Harchaoui and Lévy-Leduc (2010) assumed that dt
min ≥ Nγn .299

4.2 Asymptotic properties300

The consistency of gLASSO estimator in terms of prediction error, estimating thresh-301

olds and other model parameters are presented here. First, the following lemma302

provides the derivatives of f (θ N ) which is useful for proving theoretical results and303

developing exact optimization for gLASSO in Sect. 5.304

Lemma 4.1 Consider the gLASSO problem in (9). Let θ̂
N = (̂θ

T
π1

, θ̂
T
π2

, · · · , θ̂T
πN

)T
305

be a solution. Under HA1–HA6, the KKT conditions for the solution (9) are306

(i)
N∑

l=̂t j

xπl

(
yπl+d − xT

πl

l∑

i=1

θ̂πi

)
= Nλn

2

θ̂ π̂t j∥∥∥̂θ π̂t j

∥∥∥
2

,307

for j = 1, · · · , m̂, t̂ j ≥ 2, θ̂ π̂t j
�= 0, and308

(ii)

∥∥∥∥∥∥

N∑

l= j ′
xπl

(
yπl+d − xT

πl

l∑

i=1

θ̂πi

)∥∥∥∥∥∥
2

≤ Nλn

2
, for j

′ = 1, 2, · · · , N .309

Furthermore,
∑N

l=1 xπl

(
yπl+d − xT

πl
θ̂π1

) = 0.310
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For a proof of this lemma, see the proof of Lemma 3.1.2 in Nasir (2020).311

The following result establishes the consistency in prediction or prediction error of312

gLASSO.313

Theorem 4.1 Under HA1–HA2, if λn = 2(p + 1)c0
√

(log N )/N, then314

P

(
1

N

∥∥∥X
(
θ̂

N − θ0N
)∥∥∥

2

2
≤ bn

)
≥ 1− c/

(
4(p + 1)2c2

0 log N
)1+τ/2

, (10)315

where bn = 2λnm0max
j

∥∥∥φ0
j − φ0

j−1

∥∥∥
2
+ λn

∥∥φ̂1 − φ0
1

∥∥
2, for some c0 > 2

√
2, c > 0316

and τ > 0.317

Proof of this theorem is given as a proof of Theorem 3.1.1 in Nasir (2020). Note318

that this result differs from the result obtained by Harchaoui and Lévy-Leduc (2010)319

for the change-in mean model, and by Chan et al. (2015) for the reformulated SETAR320

in their Proposition 1 and Theorem 2.1, respectively, due to the fact that our gLASSO321

does not penalize θ̂π1 . The rationale is that the lowest index is not a candidate for a322

change-point. Consequently, the error bound obtained in our result is lower than those323

obtained by both of the aforementioned studies.324

The following theorem establishes the consistency of the estimated thresholds R̂325

when the number of the estimated thresholds is equal to the number of true thresholds326

(m̂ = m0).327

Theorem 4.2 Suppose that HA1–HA6 are satisfied. If m̂ = card(R̂) = m0, then328

P

(
max

1≤ j≤m0

∣∣∣̂r j − r0
j

∣∣∣ ≤ γn

)
→ 1 as n→∞.329

Proof of this theorem is given as a proof of Theorem 3.1.2 in Nasir (2020), where330

the author uses similar arguments as in the proofs of Proposition 3 in Harchaoui and331

Lévy-Leduc (2010), Theorem 2.2 in Chan et al. (2014, 2015) and Theorem 3.1 in332

Qian and Su (2016). In particular, compared to the proof of Theorem 2.2 in Chan333

et al. (2015) for SETAR model, Nasir (2020) provided a different proof and with more334

details, to show that P
(

max1≤ j≤m0

∣∣∣̂r j − r0
j

∣∣∣ > γn

)
→ 0 as n → ∞. The proof of335

this theorem relies heavily on the inspection of the KKT conditions in Lemma 4.1. It336

can be shown that if
∣∣∣̂r j − r0

j

∣∣∣ > γn , then gLASSO solutions do not satisfy the KKT337

conditions and the solutions are not optimal. This theorem also implies that when the338

sample size is large, the convergence rate of the estimated thresholds can be improved339

when m̂ = m0 (Qian and Su 2016).340

In practice, the true number of thresholds m0 is usually unknown and this requires341

different results for the consistency of R̂ (Chan et al. 2015). With that, it is shown in342

the following theorems that the number of estimated thresholds m̂ cannot be lower343

than the true thresholds m0, under the HA1–HA6. Moreover, there exist r̂i sufficiently344

close to r0
j ∈ R0, for some j , when m̂ ≥ m0.345
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Let346

dH (A, B) = sup
b∈B

inf
a∈A
|a − b| (11)347

be a one-sided Hausdorff’s distance (Boysen et al. 2009), from set B to set A, mea-348

suring the maximum distance from B to the nearest point in A.349

Theorem 4.3 If HA1–HA6 hold, then,350

P(m̂ ≥ m0)→ 1, as n→∞.351

Theorem 4.4 Suppose that HA1–HA6 hold. If m0 ≤ m̂ = card(R̂) ≤ mmax, where352

mmax is the upper bound of the number of thresholds, then353

P
(

dH
(
R̂,R0) ≤ γn

)
= P

(
max

r0
k ∈R0

min
r̂ j∈R̂

∥∥∥̂r j − r0
k

∥∥∥ ≤ γn

)
→ 1, as n→∞.354

Algorithm 1: Active Set - Block Coordinate Descent for Group LASSO of the
reformulated SETAR

Data: yπ ∈ R
N , xπ1 ∈ R

p+1, · · · , xπN ∈ R
p+1, λn ≥ 0 , 
∗ ≥ 0 and kmax ≥ 1.

Result: θ̂
N ← θ N satisfying (9), and B.

1 for j = 1, 2, · · · , N, do
2 Obtain U j and D j , from

∑N
l= j xπl xT

πl
using SVD, such that

∑N
l= j xπl xT

πl
= U T

j D j U j . Write

D j = diag
(
d j,1, d j ,2, · · · , d j ,p+1

)
.

3 Initialize: θ N = (θT
π1

, θT
π2

, · · · , θT
πN

)T ← 0, B = {1} and B∗ = {1, 2, · · · N } \ {1, · · · , 1+
∗}.
4 repeat
5 repeat
6 foreach j ∈ B do
7 if j = 1 then
8 Compute θπ1 = U T

1 D−1
1 U1 f 1(B).

9 else

10 if (2
∥∥∥ f j (B)

∥∥∥
2
/N ) > λn then

11 Compute U j f j (B) = (ν j ,1, ν j ,2, · · · , ν j,p+1)T , where f j (B) is given in
(27).

12 Find the unique u j > 0 satisfying (13). Then, compute

θπ j = U T
j

(
D j + Nλn

2u j
Ip+1

)−1
U j f j (B).

13 else
14 Set θπ j = 0.

15 until some convergence criterion of parameters is met.

16 Update B← B \
{

j ∈ B : θπ j = 0
}

.

17 Compute ũ = min(arg max
j ′ ∈B∗

∥∥∥ f
j ′ (B)

∥∥∥
2
).

18 if (2
∥∥ f ũ(B)

∥∥
2 /N ) > λn then

19 Update B← B ∪ ũ and B∗ ← B∗ \ {̃u −
∗, · · · , ũ +
∗}.
20 until (2

∥∥ f ũ(B)
∥∥

2 /N ) ≤ λn or card(B) = kmax.

355

356
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Proofs of these Theorems 4.3 and 4.4 are given as proof of Theorems 3.1.3 and357

3.1.4, respectively, in Nasir (2020). The KKT conditions in Lemma 4.1 are key to the358

proofs. The proof uses similar arguments as in the proof of Proposition 4 in Harchaoui359

and Lévy-Leduc (2010), proof of Theorem 2.3 in Chan et al. (2015) and proof of360

Theorem 3.2 in Qian and Su (2016). Both results are established by contradiction.361

These theorems imply that if the thresholds are being overestimated, then there will362

be a threshold which is close to the true threshold when m̂ ≥ m0.363

5 Algorithms and selection of shrinkage parameter364

Following the methods, assumptions and asymptotic properties in the previous sec-365

tions, we now provide two algorithms for parameter estimation. Firstly, the aBCD366

algorithm for the first-step estimation of group LASSO, and then the backward elim-367

ination algorithm (BEA) for the post-selection of thresholds.368

5.1 Optimization via aBCD369

Here, we implement the active-set strategy (Roth and Fischer 2008) to optimize370

(9). The main benefit of using this strategy, for the reformulated SETAR model, is371

that we can monitor and assert control over the estimation of the number of change-372

points/thresholds up to a upper bound, say kmax, since we assume that the true number373

of change-points/thresholds is fixed and much smaller than the sample size. Particu-374

larly, it is designed to discard values of λn for which the cardinality of the active-set375

exceeds kmax. Note that when λn decreases, the computation time for the aBCD algo-376

rithm increases, as an increasing number of non-zero group of parameters θπi need to377

be optimized one at a time.378

For the reformulated SETAR model (7), the derivative of penalized least square379

function f (θ N ), defined in (9), is given by380

N∑

l= j

xπl

(
yπl+d − xT

πl

l∑

i=1

θπi

)
= Nλn

2
ẽ j , (12)381

for j = 1, 2, · · · , N , where ẽ j is the sub-gradient. Let B and B∗ be two subsets382

of {1, 2, · · · , N } such that B = {i : θπi �= 0} and B∗ = {i : θπi = 0}. We383

call B and B∗ as the active and inactive sets, respectively. For j = 1, 2, · · · , N ,384

we then compute the singular value decomposition (SVD) of the Gram matrix385 ∑N
l= j xπl x

T
πl
= U T

j D jU j , where U j is a (p + 1) × (p + 1) orthonormal matrix386

and D j = diag
(
d j,1, d j,2, · · · , d j,p+1

)
is a (p + 1) × (p + 1) invertible diagonal387

matrix with d j,k as the eigenvalues of the Gram matrix for k = 1, 2, · · · , p + 1.388

Note that U T
j U j = Ip+1,

∥∥U j
∥∥

2 = μmax(U j ) = 1,
∥∥U j x

∥∥
2 = ‖x‖2, for x ∈ R

p+1,389

and
(∑N

l= j xπl x
T
πl

)−1 = U T
j D−1

j U j , where μmax(.) is a maximum eigenvalue of the390

matrix, and they require the Gram matrices to be well-behaved for the properties to391

hold. The computations of SVD is not expensive since the decomposition only involves392

123

Journal: 362 Article No.: 1472 TYPESET DISK LE CP Disp.:2023/11/23 Pages: 34 Layout: Small-Ex



un
co

rr
ec

te
d

pr
oo

f

Active-set based block coordinate descent...

the j th sum of (p+1)×(p+1) Gram matrices. In addition, these decomposed matrices393

can be pre-computed once and stored for later use.394

The step-by-step procedure to perform aBCD for gLASSO is summarized in Algo-395

rithm 1. It is worth mentioning that our algorithm differs from the one provided by Chan396

et al. (2014) in their supplementary material. In the initial estimation step, we set B =397

{1} and B∗ = {1, 2, · · · N } \ {1, · · · , 1+
∗} and θ N = (θT
π1

, θT
π2

, · · · , θT
πN

)T = 0,398

where 
∗ ≥ 0 be an integer which allows a gap between two estimated change-points399

(
∗ is discussed further in Remark 5.1).400

The next step is to evaluate the KKT conditions and estimating θT
π j
∈ θ N , for each401

j ∈ B until convergence. Given B, existence of solution for {θπ j ; j ∈ B} is given in402

Theorem 5.1. Once the parameters converge, we remove any index j ∈ B which satis-403

fies θπ j = 0. In the final step, we check for any violation of KKT for
∥∥∥ f j ′ (B)

∥∥∥
2
, j
′ ∈404

B∗. Specifically, we look for any j
′

that satisfies max(2
∥∥∥ f j ′ (B)

∥∥∥
2
/N ) > λn . Let405

ũ = min(arg max j ′ ∈B∗
∥∥∥ f j ′ (B)

∥∥∥
2
). If

(
2
∥∥ f ũ(B)

∥∥
2 /N

)
> λn , then we update406

B ← B ∪ ũ and B∗ ← B∗\ {̃u −
∗, · · · , ũ +
∗} and the previous steps of407

the optimization procedure are repeated. The algorithm halted when the conditions408

(2
∥∥ f ũ(B)

∥∥
2 /N ) ≤ λn or card(B) = kmax are met.409

Theorem 5.1 If
(

2
∥∥ f j (B)

∥∥
2
/N
)

> λn, then there exist u j > 0, for j ∈ B\ {1}410

satisfying the nonlinear equation411

g(u j ) =
p+1∑

k=1

ν2
j,k

(
d j,ku j + Nλn

2

)2 = 1, (13)412

where U j f j (B) = (ν j,1, ν j,2, · · · , ν j,p+1)
T and f j (B) = ∑N

l= j xπ(l)yπl+d − g j .413

Furthermore,414

θπ j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

U T
j

(
D j + Nλn

2u j
Ip+1

)−1
U j f j (B), for j ∈ B \ {1}

and
(

2
∥∥ f j (B)

∥∥
2
/N
)

> λn,

0, for j ∈ B \ {1}
and

(
2
∥∥ f j (B)

∥∥
2
/N
)
≤ λn,

U T
j D−1

j U j f j (B), for j = 1,

(14)415

where g j =
∑

i∈B
i �= j

{∑N
h=max(i, j) xπh xT

πh

}
θπi if card(B) > 1, otherwise g j = 0.416

The proof of Theorem 5.1 is given in the Appendix, and it implies that conditions417

(I) and (II) in Lemma 4.1 are satisfied for j ∈ B\ {1}. Since the minimizer of gLASSO418

(9) is convex, the objective function f (θ N ) will keep decreasing for every iteration419

and eventually the parameter set θπ j will converge to global minimum, as shown in420

Corollary 1 and Theorem 3 of Foygel and Drton (2010). Also, this theorem implies that 3421
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root search method, such as the Newton–Raphson or bisection, can be used to search422

u j . Note that Foygel and Drton (2010) and Nasir (2020) showed that the function423

g(u j ) is strictly decreasing. In our empirical studies, we used bisection approach to424

solve for the optimal u j . Further explanation on u j is given in Remark 5.2.425

Remark 5.1 The quantity 
∗ ≥ 0 is an integer for removing 2
∗ neighboring indices,426

i.e. ũ −
∗, · · · , ũ − 1, ũ + 1, · · · ũ +
∗ from the inactive-set B∗. The rational for427

this removal is that once an index is estimated, consecutive indices are not considered428

as candidates for change-points. By removing these indices points, fewer irrelevant429

points will be selected into the active-set B. Furthermore, the removal of the points430

may caused the aBCD algorithm to speed up as being observed in Sect. 6. The choice431

of 
∗ may depend on the length of the time series, where a sufficiently large 
∗ can432

be set if n is large. This strategy has been implemented by Chan et al. (2014) for433

the structural break autoregressive (SBAR) through their gLAR algorithm. However,434


∗ cannot be set too large as this might remove some of important change-points,435

especially when n is small.436

Remark 5.2 In our empirical study, the root u j of (13) is obtained using the bisection437

method, in which the property sign(g(a�)−1) �= sign(g(b�)−1) has to be satisfied for438

some a� and b� such that a� ≤ u j < b�. In the case of SETAR model, a� = 10−5 and439

b� = 105 are deemed to be adequate based on results of simulation studies in Nasir440

(2020). However, occasionally the sign property may not hold for some particular j441

when n ≤ 300, even when the initial interval is increased. The problem might be442

caused by unstable parameter convergence during the aBCD iterations under small443

sample size. To overcome this issue, the quantity u j is temporarily replaced with 1444

when this situation occurs.445

5.2 Selecting shrinkage parameter and full gLASSO algorithm446

For the reformulated SETAR model (7) with homoscedastic variance, we consider the447

following BIC (Wang et al. 2009):448

BIC(λ) = N log

(
RSSλ

N

)
+ card (Aλ) log(N )cn, (15)449

where450

RSSλ =
N∑

t=1

(
yπt+d − xT

πt

t∑

k=1

θ̂πk

)2

451

is the residual sum-of-squares (RSS), Aλ = {k : θ̂πk �= 0} is the set of indices452

corresponding to the set of non-zero estimated set of parameters and cn > 0 is some453

positive constant. The first and the second terms in the RHS of (15) are known as454

the goodness-of-fit and criterion penalty, respectively. Since θ̂
N

could be group-wise455

sparse, we can take an advantage of the sparse feature to reduce the computational time456

for the residual sum-of-squares by replacing
∑t

k=1 θ̂πk with
∑

k∈{i :̂θπi �=0,i≤t} θ̂πk .457
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In our simulation studies using SETAR models, we found that the change-458

points/thresholds are underestimated when cn ≥ 1. This issue is caused by the tendency459

of gLASSO to estimate an excessive amount of irrelevant change-points along with460

the important ones, causing the criterion penalty term of the RHS of (15) to become461

excessively large for cn ≥ 1. To circumvent this issue, we set cn to a very low value,462

e.g., cn ≤ 0.01, so that all of the important change-points are eventually selected at a463

particular range for λ. Furthermore, this strategy is equivalent to achieving prediction464

accuracy rather than consistent model selection.465

We now provide a strategy for choosing the appropriate values of λn . The main466

purpose of this strategy is to estimate only a small percentage of sets of non-zero467

parameters and the location of change-points. We choose grid of k0 values for λn :468

λ1 = λmax, λ2, · · · , λk0 = λmin, λ1 > λ2 > · · · > λk0 .469

Let B̃i be an active set corresponding to each λi ∈ {λn}, with convention B̃0 = ∅.470

For each λi , we compute B̃i := B and the corresponding BIC(λi ), where B is obtained471

from the aBCD algorithm and BIC(λi ) is given in (15). At the end, we choose a B̃i472

with the lowest BIC, denoted as B̂∗ = arg minB̃i
(vi ), where vi = BIC(λi ). Finally,473

the thresholds are estimated using indices in B̂∗, by R̂ = {yπl−1 : l ∈ B̂∗\ {1}}.474

The upper bound kmax is crucial to control how many change-points are estimated475

by the aBCD algorithm. Specifically, when the BCD iterations with a particular λi476

yields card(B) ≥ kmax, this indicates that the current λi has overestimated the number477

of change-points and we may ignore the corresponding output. The full procedure to478

run gLASSO for the reformulated SETAR model is given in Algorithm 2.479

Algorithm 2: Complete algorithm for the group LASSO of the reformulated
SETAR

Data: yπ ∈ R
N , xπ1 ∈ R

p+1, · · · , xπN ∈ R
p+1, k0, kmax ≥ 1 and cn > 0.

Result: The threshold set R̂.
1 Initialize: Set i = 1 and B̃0 = ∅. Setup a grid of shrinkage parameter :{

λ1 = λmax, λ2, · · · , λk0 = λmin
}
, such that λ1 > λ2 > · · · > λk0 .

2 while i ≤ k0, do

3 Apply Algorithm 1 with λi and kmax, and obtain θ̂
N

and B. Then set
B̃i := B.

4 if card(B̃i ) < kmax, then
5 Compute vi = BIC(λi ), where BIC(λi ) is given in (15).

6 Update i ← i + 1.

7 Compute B̂∗ = arg minB̃i
(vi ).

8 Generate R̂ = {yπl−1 : l ∈ B̂∗ \ {1}
} := {̂r1, · · · , r̂m̂}, where m̂ = card(R̂).

480

481

5.3 Post-analysis for SETAR482

We now focus on obtaining consistent estimators of thresholds for SETAR model.483

Given a set of the estimated thresholds R̂ = (̂r1, · · · , r̂m̂)T obtained from gLASSO484
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and m̂ = card(R̂), we define the information criterion similar to (15) as485

tBIC(m̂, R̂) = N log(s (̂r1, r̂2, · · · , r̂m̂)/N )+ m̂log(N )cE, (16)486

where cE ≥ 0 is the criterion constant (see Remark 5.3 for details regarding selection487

of cE) and s (̂r1, r̂2, · · · , r̂m̂) =∑m̂+1
j=1 s (̂r j−1, r̂ j ) is the joint residual sum-of-squares488

(jRSS) function, with489

s (̂r j−1, r̂ j ) =
n∑

t=p+1

(
yt − xT

t φ̂ j

)2
I(̂r j−1 ,̂r j ](yt−d), (17)490

the residual sum-of-squares function for j th regime. Recall that xt = (1, yt−1, yt−2,491

· · · yt−p)
T and492

φ̂ j =
n∑

t=p+1

[(
xt xT

t

)
I(̂r j−1 ,̂r j ](yt−d)

]−1 n∑

t=p+1

(xt yt )I(̂r j−1 ,̂r j ](yt−d) (18)493

as the parameter estimate for the j th regime.494

Let h =∑card(R̂)
i=0 card(R̂)!/(i !(card(R̂)− i)!) and P(R̂) := {R̂∗0, R̂∗1, · · · , R̂∗h}be495

the power set of thresholds where R̂∗0 = ∅, the empty set. One way to select the number496

of thresholds is by the minimization497

̂̂R = arg minR̂∗j⊆R̂ tBIC
(

card
(
R̂∗j
)
, R̂∗j

)
, j ∈ {0, 1, 2, · · · , h}. (19)498

We write ̂̂R = (̂̂r1, · · · ,̂̂r ̂̂m) with ̂̂m = card(̂̂R). The minimization (19) implies that499

all possible subsets in R̂ are accounted. Therefore, the computation of the criterion is500

of order of h, which can be prohibitive if R̂ is a large set.501

Chan et al. (2015) suggested an application of the backward elimination algorithm,502

or BEA to further improve the computational time for estimating thresholds. Note503

that this algorithm is part of well-known stepwise selection approach for regression504

(Weisberg 2005, p. 222). The algorithm iteratively removes a threshold from the set505

R̂ one at a time, to lower the tBIC given in (16), until no further reduction in tBIC is506

possible.507

Given ̂̂R, we can estimate all the parameters for each regime of SETAR model508

by (18). The steps for performing BEA and parameter estimation for SETAR are509

summarized in Algorithm 3.510

The following theorem given the consistency result in estimating threshold via BEA.511

512

Theorem 5.2 Under the conditions of HA1–HA4, and when card(R̂) ≥ m0, the BEA513

satisfies514

P
(
̂̂m = m0

)
→ 1515
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Algorithm 3: Backward Elimination Algorithm and parameter estimates for
SETAR.

Data: y ∈ R
N , x p+1 ∈ R

p+1, · · · , xn ∈ R
p+1, cE and R̂.

Result: ̂̂φ j s, ̂̂R and ̂̂m.

1 Initialize: k0 = card(R̂).
2 repeat
3 Compute v∗k0

= tBIC(k0, R̂), where tBIC() is given in (16).

4 for i = 1, · · · , k0, do
5 Compute vk0,i = tBIC(k0 − 1, R̂ \ {̂ri }), r̂i ∈ R̂.

6 Set v∗k0−1 = mini (vk0,i ).

7 if v∗k0−1 < v∗k0
then

8 Compute j = arg mini vk0,i .
9 Update R̂← R̂ \ {r̂k0, j

}
and k0 ← k0 − 1.

10 until v∗k0−1 ≥ v∗k0
or k0 = 0.

11 Set ̂̂R := R̂ and ̂̂m := card(R̂).
12 for j = 1, · · · , k0 + 1, do
13 Compute ̂̂φ j =

∑n
t=p+1

[(
xt xT

t

)
I(̂̂r j−1 ,̂̂r j ](yt−d)

]−1 ∑n
t=p+1(xt yt )I(̂̂r j−1 ,̂̂r j ](yt−d),̂̂r j ∈ ̂̂R

with conventions ̂̂r0 = −∞ and ̂̂rk0+1 = +∞.

516

517

and there exist a constant b > 0 such that518

P

(
max

1≤ j≤m0

∣∣∣̂̂r j − r0
j

∣∣∣ ≤ bm0γn

)
→ 1.519

Theorem 5.2 can be proved using similar lines as in the proof of Theorem 2.5 in Chan520

et al. (2014, 2015). The idea of the tBIC is simple. Assume that all relevant thresholds521

are in R̂ and Theorem 4.4 holds. If the estimated number of thresholds is lower than522

m0, then the goodness-of-fit dominates the criterion, which leads to P(̂̂m < m0)→ 0.523

Otherwise, if the estimated number of thresholds is higher than m0, then the criterion524

penalty dominates the criterion instead, which leads to P(̂̂m > m0)→ 0.525

Remark 5.3 As shown by Gonzalo and Pitarakis (2002) and Chan et al. (2015),526

cE = 2, 3 usually works better than cE = 1 in correctly estimating the number527

of thresholds via BIC provided that model coefficients for each regime are sufficiently528

large. Alternatively, one can consider replacing the default penalty term log(N )cE529

with N δ with δ ∈ (1/2, 3/4); refer to Remark 7 in Ciuperca (2011). The latter implies530

that as sample size increases, so does cE .531
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6 Simulation studies532

In this section, we compare the performance between the SLS (Algorithms A1 and 2)533

and aBCD (Algorithms 1 and 2) algorithms, along with the two ensemble algorithms534

of aBCD-BEA (Algorithms 1, 2 and 3) and gLAR-BEA (Algorithms A2 and 3). Both535

SLS (Algorithm A1) and gLAR (Algorithm A2) algorithms are given in the Supple-536

mentary Materials. These algorithms were coded using the R language in conjunction537

with the Cpp language through Rcpp package (Eddelbuettel and Francois 2011) to538

considerably speed up the run time of these algorithms in the R statistical environ-539

ment. Simulation studies were conducted on multiple personal computers without540

parallelization, each running on a four-core Intel i7 processor with base clock speed541

of at least 3.5 GHz. Discussion on the choice of λn , kmax and 
∗ for these studies is542

provided in Remark 6.1.543

Remark 6.1 The appropriate range of values for λn can be difficult to determine in544

practice. In this section, we determine that λmax = 0.5, λmin = 0.01 and 20 ≤ k0 ≤ 40545

are deemed to be appropriate for estimating a moderate number of relevant change-546

points/thresholds. Meanwhile, the best value for both kmax and 
∗ can be evaluated547

in practice using grid-search approach and BIC, e.g., through BEA algorithm, but was548

not considered here for the sake of comparison purposes and reducing computational549

costs. Some of these quantities used in our empirical studies may be different in some550

previous studies.551

6.1 Comparison study: SLS and aBCD algorithms552

First, we evaluate the performance of SLS (Algorithms A1 and 2) algorithm and aBCD553

algorithm (Algorithms 1 and 2) using datasets generated by the three models given554

below.555

Model 1 Three regime SETAR(1) with the non-zero intercepts is defined as556

yt =

⎧
⎪⎨

⎪⎩

1− 0.4yt−1 + εt , if yt−1 ∈ (−∞,−0.8],
0.6+ yt−1 + εt , if yt−1 ∈ (−0.8, 0.5],
−1− 0.2yt−1 + εt , if yt−1 ∈ (0.5,∞),

(20)557

t = 2, 3, · · · , n, where εt
i .i .d∼ N (0, 1). The model was introduced by Li and Ling558

(2012). Although the coefficient associated with the term yt−1 in the second regime559

of (20) is exactly one, the overall process {yt } is not a unit-root process since the560

stationarity of multiple regime SETAR with p = 1 depends on the first and the last561

regimes (Chan et al. 1985; Li and Ling 2012).562

Model 2 Three regime SETAR(2) with the zero intercepts is defined as563

yt =

⎧
⎪⎨

⎪⎩

0.8yt−1 − 0.2yt−2 + εt , if yt−1 ∈ (−∞,−2],
1.9yt−1 − 0.81yt−2 + εt , if yt−1 ∈ (−2, 2],
0.6yt−1 − yt−2 + εt , if yt−1 ∈ (2,∞),

(21)564
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t = 3, 4, · · · , n, where εt
i .i .d∼ N (0, 1). This model was considered by Chan et al.565

(2017). In TAR literature, the nonzero intercepts in at least one regime can provide566

different levels and variability in the series structure, as well as asymmetry and a mul-567

timodal distribution (Niglio and Vitale 2015). With the zero intercepts, identification568

of important thresholds might be challenging since both level and variability of the569

time series will be limited.570

Model 3 The nine regime SETAR(2) with the non-zero intercepts is defined as571

yt = (−4.5− 0.6yt−1) I(−∞,−3.5](yt−1)

+ (2.5+ 0.3yt−1 + 0.9yt−2) I(−3.5,−2.5](yt−1)

+ (−2.0− 0.9yt−1) I(−2.5,−1.5](yt−1)

+ (2.3+ 0.7yt−1 + 0.5yt−2) I(−1.5,−0.5](yt−1)

+ (1.0+ 0.1yt−1) I(−0.5,0.5](yt−1)+ (3.0− 0.9yt−1) I(0.5,1.5](yt−1)

+ (1.6+ 0.9yt−1) I(1.5,2.5](yt−1)+ (−0.5− 0.8yt−1 − 0.2yt−2) I(2.5,3.5](yt−1)

+ (1.5− 1.1yt−1) I(3.5,∞)(yt−1)+ εt

(22)572

t = 2, 3, · · · , n, where εt
i .i .d∼ N (0, 1). This model with the same parameters was573

considered in Chan et al. (2015) and Chan et al. (2017), with the exception that in574

Chan et al. (2017), one of coefficients in the sixth and seventh regimes had opposite575

signs to (22).576

Three different values were pre-set for λn for the three models. We ran 1000 repli-577

cation, where for each replication, all methods shared the same dataset for a fair578

comparison. For both methods, the convergence criterion is assumed to be met when579 ∥∥∥̂θ [l+1]
N − θ̂

[l]
N

∥∥∥
1

< 0.001, for l = 1, 2, · · · , where θ̂
[l]
N = (̂θ

[l]T
π1

, · · · , θ̂ [l]TπN
)T is the580

estimates of θ N after lth iteration. For the aBCD algorithm, we set kmax =10,000 to581

allow as many threshold estimates as possible.582

Table 1 shows the comparison between the algorithms’ performance of SLS, aBCD583

with 
 = 0 and aBCD with 
 = 10 for three different models. First, we observe584

that the results for SLS and aBCD with 
 = 0 are similar for all models, with a585

few exceptions that the aBCD gives equal or smaller average Hausdorff distance, one586

less change points estimate in average and much faster convergence compared to the587

former for Models 1 and 3. In the case of Model 2, both methods had issues with the588

convergence in the sense that both SLS and aBCD alternate indefinitely between a few589

sets of solutions. From this results, aBCD is preferable due to its computational speed590

while having comparable average Hausdorff distances with SLS.591

In the case of aBCD algorithm with 
 = 10, it has faster convergence although with592

a slightly higher average Hausdorff distance for Model 1, and having no convergence593

issue for Model 2 when compared to the same algorithm with 
 = 0. For Model 3,594

results of the aBCD algorithm with both 
 = 0 and 
 = 10 are the same.595
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Table 1 Results of comparison between SLS, aBCD with 
 = 0 and aBCD with 
 = 10 for three models
with n = 1200

SLS aBCD with 
 = 0 aBCD with 
 = 10

λ dH #(B̄) T̄ dH #(B̄) T̄ dH #(B̄) T̄

Model 1 0.1 0.016 8 3.000 0.016 7 0.119 0.019 6 0.036

Model 2 0.4 NA NA 0.033 5 0.047

Model 3 0.1 2.039 5 2.286 2.007 4 0.023 2.007 4 0.023

The acronym NA indicates that the method has convergence issue; #(B̄) is the average number of estimated
change-point/threshold candidates; dH is the Hausdorff distance equation from (11); T̄ is the average time
in minutes to complete 1000 simulations

Fig. 1 Plots of a realization of original series (left) and arranged series (right) generated from (20), with
n = 1200

6.2 Comparison study: aBCD-BEA and gLAR-BEA algorithms596

In this section, the performance of two ensemble algorithms, the aBCD-BEA and597

gLAR-BEA for a two-step threshold estimation procedure are compared through three598

simulation studies. The first-step estimation procedure for the ensemble algorithms599

involves the application of aBCD (Algorithms 1 and 2) and gLAR (Algorithm A1) to600

estimate threshold candidates through the estimation of change-points. The second-601

step estimation procedure uses the BEA (Algorithm 3) to exclude any irrelevant602

thresholds from the set of the threshold candidates obtained in the first step proce-603

dure. For each simulation study, we generate 1000 datasets from each model (Models604

1–3), where for every replication, each method shared the same dataset for a fair com-605

parison. For the gLASSO estimation via aBCD algorithm, we generate decreasing606

sequence of twenty points 0.5, 0.474, 0.448, · · · , 0.01 for the shrinkage parameter607

λn , and the BIC penalty constant cn in (15) is set to 0.01.608

First, we are comparing both ensemble methods using data generated from Model609

1. For this simulation study, we consider sample sizes n = 300, 750, and 1200. For610

all sample sizes, we set kmax = 5, 10, 15, 20 with 
∗ = 10 for both aBCD and gLAR611

algorithms. Further, we set cE = 3 in the BEA step.612

Figure 1 shows an example of plots of original (left) and the corresponding arranged613

time series (right) generated from (20). The original time series plot appears stationary614

while the plot of arranged series indicates abrupt switching patterns at two locations,615

as expected.616
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Fig. 2 The line plots of an original series (left) and the corresponding arranged series (right) generated
from (21), with n = 1200

From Table 2, we observe that when kmax = 5, the percentages of correctly estimat-617

ing the number of thresholds are significantly lower, having much higher rate for both618

average Hausdorff distances and underestimation issue is more severe for aBCD-BEA619

compared to gLAR-BEA regardless of sample size, indicating there are at least one or620

more relevant thresholds are regularly not estimated by the aBCD algorithm under the621

preset kmax.622

When kmax = 10, the percentages of correctly estimating the number of thresholds623

are comparable between both methods for each sample size. However, The average624

Hausdorff distances under aBCD-BEA are slighly higher then the ones generated by625

gLAR-BEA. The percentages are close to 100% when we increase the sample size626

to 1200 for both methods. When we increase the kmax to 15 and 20, we observe the627

percentages are lower for gLAR-BEA as compared to aBCD-BEA for all sample sizes,628

especially when n = 300. It is not surprising that aBCD is computationally slower629

than gLAR due to its behavior of estimating parameters until convergence.630

Comparing with Chan et al. (2015), for n = 300, we obtain a higher percentages of631

correctly estimated number of thresholds for both ensemble algorithms with kmax ≥632

10, compared to their result 78.1%. Note that this comparison might depend on the633

values of 
∗ and cE, which were not specified in their paper.634

Next, we evaluate both ensemble methods using data generated from Model 2.635

We considered the same settings as in the previous simulation study for the sample636

size n, kmax, 
 and cE. Figure 2 shows an example of plots of original (left) and the637

corresponding arranged time series (right) generated from (21).638

The plot of original time series in Fig. 2 shows that the series looks somehow639

stationary. From the plot of the arranged series in Fig. 2, structural changes in the series640

are difficult to identify due to vague switching patterns. Furthermore, the switching641

appears to be smooth rather than abrupt, unlike the previous model. Therefore, the642

threshold estimation for Model (21) might be challenging. We are interested to know643

whether both ensemble algorithms are able to identify correct thresholds for this model.644

From Table 3, we observe that when kmax = 5, the percentages of correct estimation645

of the number of thresholds are comparable for both methods when n = 300. The646

underestimation issue occurred by aBCD-BEA were more severe when the sample size647

increases to 750 and 1200 under the preset kmax = 5. Meanwhile, gLAR-BEA does648
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Fig. 3 The line plots of one realization of original series (left) and the corresponding arranged series (right)
generated from nine-regime SETAR(2) of (22), with n = 5000

not suffer any underestimation issue and able to retain the rate of correct estimation649

for more than 90% regardless of the sample size.650

When we increase kmax to 10, 15 and 20, we notice that the underestimation (< 2)651

rate for the aBCD-BEA has dropped significantly while having much higher percent-652

ages on the correct estimation of the number of thresholds compared to gLAR-BEA653

for all sample sizes. In addition, the gLAR-BEA suffered a more severe percentages654

decrease on the correct estimation of the number of thresholds (= 2) for all sample655

sizes compared to aBCD-BEA despite estimating more thresholds during the first step656

estimation procedure. Interestingly, the average Hausdorff distances under aBCD-BEA657

are lower than the ones generated by gLAR-BEA for all sample sizes and kmax despite658

the underestimation issue.659

Finally, we now evaluate both ensemble methods again using data generated from660

Model 3. Previously, Chan et al. (2015) applied their version of gLAR-BEA for661

n =10,000 with kmax = 40, but 
∗ and cE were not specified. Figure 3 shows an662

original and the corresponding arranged time series generated from this model. The663

original time series exhibit no obvious trend indicating stationarity of the series, but664

the plot of arranged series shows an abrupt switching pattern which corresponds to665

the multiple structural changes or breaks in the series.666

For this simulation study, we consider sample sizes n = 2500, 5000 and 7500, with667

1000 replications for each sample size. We fix 
∗ = 20 and choose kmax = 20 and668

40 for both aBCD and gLAR algorithms, with cE = 3 for BEA.669

The results in Table 4 show that for kmax = 20, the aBCD estimates 15–16 thresholds670

on average while gLAR always estimates exactly 20 thresholds for all sample sizes.671

Furthermore, aBCD-BEA struggles to achieve at least 90% of correct estimation for672

the number of thresholds for all sample sizes, and having much severe underestimation673

issue and larger average Hausdorff distances compared to the ones obtained by gLAR-674

BEA.675

As we increase kmax to 40, we observe that the percentages of correct estimation676

for the number of thresholds under aBCD-BEA are substantially increased and exceed677

96% for all sample sizes. Meanwhile, the performance of gLAR-BEA is comparable to678

aBCD-BEA especially for n = 5000 and 7500, with a few exceptions where the former679

having slightly lower average Hausdorff distances and much lower computational680

times.681
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Fig. 4 The plots of an original series (left) and the corresponding growth rate (right) of quarterly US GNP
time series, from 1947 to 2018

In conclusion, gLAR-BEA is definitely much faster than aBCD-BEA since gLAR682

algorithm does not estimate set of parameters in cyclical manner till convergence683

as compared to aBCD. However, we observe that the performance of gLAR-BEA in684

estimating correct number of thresholds tends to decrease especially for Models 1 and685

2 when kmax increases as too many irrelevant thresholds estimated by gLAR might686

cause the BEA to choose model with the overestimated thresholds.687

On the other hand, aBCD-BEA is somehow has a better robust and do not suffer688

much from the same issue. In addition, we observe aBCD-BEA has higher percentage689

of correct estimation number of thresholds compared to gLAR-BEA for sufficiently690

large kmax. The average Hausdorff distances obtained by both aBCD-BEA and gLAR-691

BEA are acceptable under sufficiently large kmax.692

7 Case studies693

In this section, the performance of two ensemble algorithms, the aBCD-BEA and694

gLAR-BEA for a two-step threshold estimation procedure are compared through two695

case studies. Both aBCD-BEA and gLAR-BEA are applied and several statistics, along696

with the estimated thresholds obtained by both aBCD and gLAR are reported. Similar697

setup from Sect. 6.2 is applied for the shrinkage parameter λn .698

7.1 Case study 1: US GNP data699

The quarterly growth series of United States (US) gross national product (GNP) was700

obtained from https://fred.stlouisfed.org/series/GDP. This data has previously been701

analyzed by Li and Ling (2012), Chan et al. (2015) and Chan et al. (2017) using702

different estimation methods and periods of time series. In this study, we select the703

series starting from the first quarter of 1947 to the first quarter of 2018, with a total of704

286 observations, and aim to compare and evaluate results of aBCD-BEA and gLAR-705

BEA.706
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Table 5 A summary of two-step threshold estimates using aBCD-BEA and gLAR-BEA with kmax = 10 and

∗ = 10 for the growth rate of US GNP time series (1947–2018); Bolded values indicate equal selection
of threshold for both aBCD and gLAR; Estimated threshold in the first step (ETH1), estimated thresholds
in the second step (ETH2), number of observation in each regime (#Obs.), Bayesian information criterion
(BIC), joint sum-of-squared error (jSSE), individual sum-of-squared error (SSE)

aBCD gLAR

ETH1 (1.361, 1.629, 1.940, 2.137, 2.514, 3.292) (−0.298, 0.373, 0.833, 1.023, 1.629, 1.840, 2.137, 2.377, 3.292)

aBCD-BEA gLAR-BEA

ETH2 (1.361, 1.940, 2.137, 2.514, 3.292) (1.629, 2.137)

#Obs (122, 68, 21, 19, 30, 14) (156, 55, 63)

BIC −108.24 −99.18

jSSE 110.6 155.45

SSE (55.58, 32.09, 8.02, 5.52, 7.21, 2.19) (82.52, 32.62, 40.30)

We compute the growth rate by the following operation:707

yt = 100(log(xt )− log(xt−1)), t = 2, · · · , 286,708

where xt is the original observation and yt is the growth rate, and the plots of these709

two series are shown in Fig. 4. Here, p = 11 is chosen similar to the setup in Chan710

et al. (2015). Using likelihood ratio test of Chan and Tong (1990) with p = 11, via711

tlrt function of TSA package in R, we determine that the delay parameter d is 6,712

based on the highest test statistic of the ratio. The selected value of the delay parameter713

coincides with the value used by the aforementioned studies.714

We utilize both ensemble algorithms, aBCD-BEA and gLAR-BEA. For both proce-715

dures, we set kmax = 10 and 
∗ = 10. For the BEA, we set the information criterion716

penalty cE = 5.717

Table 5 provides details on the comparison. Using change-points/thresholds esti-718

mated by aBCD, the BEA only removes one value from the threshold set. On the719

other hand, the BEA removes seven values from the gLAR threshold set. aBCD-BEA 4720

eventually retains five thresholds instead of two via gLAR-BEA, and the BIC and jRSS721

suggested that the five thresholds from the former method provide a better fit for the722

growth rate compared to the two thresholds from the latter method. This also indicates723

that five thresholds estimated by aBCD-BEA may provide better explanation for the724

non-linearity of the growth rate of US GNP compared to the two thresholds estimated725

by gLAR-BEA.726

It is worth mentioning that some of the estimated thresholds via aBCD-BEA are727

close to the values obtained in previous studies. For example, our estimated thresh-728

olds 1.361, 1.940, 2.137 are close to those obtained by Chan et al. (2017) which are729

1.23, 1.65, 2.23.730
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Fig. 5 The plots of original (left) and the logarithmically (base 10) transformed (right) Canadian lynx
trapping time series, from 1821 to 1934

7.2 Case study 2: lynx trapping data731

Next, we analyze the annual Canadian lynx trapping time series in the MacKenzie732

river, Canada for the period 1821–1934. The series contains 114 observations and733

it is obtained using the lynx command in R. The non-linearity of the series has734

been initially observed in Tong and Lim (1980). To explain the non-linearity, SETAR735

models with at most two thresholds had been previously applied and discussed and736

it is assumed that the number of thresholds is fixed (Tong and Lim 1980; Tsay 1989;737

Geweke and Terui 1993; Chen et al. 2011; Li and Tong 2001; Tong 1990; Lopes and738

Salazar 2006). We are not aware of any previous literature attempting to estimate739

SETAR model without fixing the number of thresholds a priori for this series.740

Prior to analyzing the time series, we follow the recommendation of Bulmer (1974)741

and Tong and Lim (1980) to logarithmically (base 10) transform the time series {xt }742

to {yt }:743

yt = log10(xt ), t = 1, 2, · · · , 114, (23)744

and the two series were plotted in Fig. 5. We observe that both plots exhibit strong745

cyclical pattern and the data transformation achieves stationarity.746

Next, the delay parameter d has to be specified. Previously, Tong and Lim (1980)747

set d = 2, justified by the pre-determined predator–prey cycles of approximately 2748

years between lynx and its prey (Bulmer 1974; Tong and Lim 1980). Tsay (1989)749

applied an F-test with two different AR orders and conclude that: if AR orders are750

9 and 11, then d = 2 and d = 3 give the highest F-values, respectively. In other751

studies, Geweke and Terui (1993) and Chen et al. (2011) concluded, via Bayesian752

inference, that d = 3 gives the highest probability of marginal posterior distribution,753

and Li and Tong (2001), via classical inference identify d = 3 using corrected Akaike754

information criterion (AICc).755

In our case, we run the likelihood ratio test of Chan and Tong (1990) via tlrt756

function in R (Cryer and Chan 2008) with different AR orders of p = 3, 8, 12 and 16.757

When AR order increases up to p = 16, the ratio gives the highest priority for d = 3.758

Based on this, we choose d = 3 for our SETAR model.759
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Table 6 A summary of two-step threshold estimates using aBCD-BEA and gLAR-BEA, with kmax = 7
and 
∗ = 10, for the transformed Canadian lynx trapping time series (1821–1934); Estimated threshold
in the first step (ETH1), estimated thresholds in the second step (ETH2), number of observation in each
regime (#Obs.), Bayesian information criterion (BIC), joint sum-of-squared error (jSSE), individual sum-
of-squared error (SSE)

aBCD gLAR

ETH1 (2.538, 2.894, 3.340, 3.490, 3.629) (2.033, 2.556, 2.719, 3.111, 3.359, 3.533, 3.800)

aBCD-BEA gLAR-BEA

ETH2 (2.894, 3.340, 3.490, 3.629) (3.359)

#Obs (55, 23, 11, 11, 6) (76, 30)

BIC −348.12 −337.81

jSSE 1.648 3.513

SSE (0.890, 0.359, 0.260, 0.139, 0.000) (1.978, 1.535)

We set autoregressive order p = 8 for our SETAR model, as in Tong and Lim760

(1980). We then applied aBCD-BEA and gLAR-BEA with kmax = 7 and 
∗ = 10. For761

BEA, the criterion penalty is set at cE = 5.762

The results of the two-step estimation methods are given in Table 6. From the763

results, we observe that the aBCD and gLAR estimate five and seven change-points,764

respectively. However, none of these change-points are commonly estimated by both765

methods and this is might be due to gLAR’s tendency to estimate way more irrelevant766

thresholds compared to aBCD. In the final threshold estimate, the aBCD-BEA and767

gLAR-BEA retain four and one thresholds, respectively. The BIC results indicate that768

four thresholds estimated by aBCD-BEA yield lower jSSE and BIC, indicating better769

fit.770

The estimated threshold 2.894, via aBCD-BEA, is very close to the one obtained771

by Li and Tong (2001) (2.946) via classical inference, and by both Geweke and Terui772

(1993) and Chen et al. (2011) via Bayesian inference (3.00 and 2.94, respectively).773

Note that Li and Tong (2001), Geweke and Terui (1993) and Chen et al. (2011) only774

consider two-regime SETAR models with d = 3. The remaining three thresholds775

that we have estimated earlier may provide important information for the additional776

non-linear behavior of the transformed lynx time series.777

Lopes and Salazar (2006) reported several root mean squared errors (RMSE)778

for four different nonlinear models, where their two-regime smooth logistic tran-779

sition autoregressive model with d = 3 and p = 11 or LSTAR(11) had the780

lowest RMSE (0.153) among all those four models. Our computed RMSE, using781 √∑n
t=p+1(ŷt − yt )2/N , for our five-regime SETAR(8) is 0.136, which is lower than782

the RMSE of LSTAR(11) model obtained by Lopes and Salazar (2006), indicating783

our five-regime model fits better than their two-regime LSTAR(11) model.784
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8 Final remarks785

In this paper, we have developed an active-set based block coordinate descent to exactly786

optimize the group LASSO for the threshold model without orthogonalizing the design787

matrix. Furthermore, the backward elimination algorithm is utilized to consistently788

estimate relevant thresholds from the threshold set obtained by the group LASSO.789

Empirical studies using this univariate model shows that the aBCD algorithm estimates790

less irrelevant thresholds compared to the approximation group LASSO algorithms of791

gLAR. Furthermore, the aBCD-BEA performs better in terms of correctly estimating792

the number of thresholds in simulation studies, and in identifying important thresholds793

in case studies compared to the gLAR-BEA. Codes for the datasets and algorithms are794

available in https://github.com/jaffrinasir/Algorithms. Note that the aBCD algorithm795

can be extended for multivariate SETAR model and the details are given in Nasir796

(2020).797

It is possible to further improve the performance of estimating relevant thresholds798

in the first-step procedure by introducing appropriate adaptive weights for gLASSO799

(Wang and Leng 2008), or non-convex penalization approaches such as the group800

smooth clipped absolute deviation (SCAD) and the group minimax concave penalty801

(MCP) suggested by Huang et al. (2012). In addition, it maybe possible to speed up the802

computation of aBCD using parallel computing or majorization-minimization (MM)803

techniques (Bradley et al. 2011; Yang and Zou 2014a, b; Jiang and Huang 2014)804

and also study the predictive performance of gLASSO for change-point/threshold805

estimation. We leave these extensions to future work.806
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Appendix812

Proof of Theorem 5.1 Since the vector of parameters θ N might be groupwise-sparse5 813

and X in (7) is a block lower triangular matrix, (12) can be simplified as814

N∑

l= j

xπ(l)yπl+d −
∑

i∈B

⎛

⎝
N∑

h=max(i, j)

xπh xT
πh

⎞

⎠ θπi =
Nλn

2
ẽ j . (24)815

By splitting the second term in the L.H.S of (24), we write816

∑

i∈B

⎛

⎝
N∑

h=max(i, j)

xπh xT
πh

⎞

⎠ θπi := g j (B)+
N∑

l= j

(
xπl x

T
πl

)
θπ j ,817
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where818

g j (B) =
⎧
⎨

⎩
0, card(B) ≤ 1,
∑

i∈B
i �= j

(∑N
h=max(i, j) xπh xT

πh

)
θπi , card(B) > 1,

819

Since ẽ j = θπ j /
∥∥θπ j

∥∥
2
, for all j ∈ B\ {1}, (24) can be written as820

N∑

l= j

xπ(l)yπl+d −

⎡

⎢⎢⎣
∑

i∈B
i �= j

⎛

⎝
N∑

h=max(i, j)

xπh xT
πh

⎞

⎠ θπi +
N∑

l= j

(
xπl x

T
πl

)
θπ j

⎤

⎥⎥⎦ =
Nλn

2

θπ j∥∥∥θπ j

∥∥∥
2

.821

(25)822

The above equation can be rewritten as823

θπ j =
⎛

⎝
N∑

l= j

xπl x
T
πl
+ Nλn

2
∥∥θπ j

∥∥
2

Ip+1

⎞

⎠
−1

f j (B), (26)824

where825

f j (B) =
N∑

l= j

xπ(l)yπl+d − g j (B). (27)826

While (26) gives an explicit expression for θπ j ,
∥∥θπ j

∥∥
2

is part of LHS for j ∈ B\ {1}.827

When
(

2
∥∥ f j (B)

∥∥
2
/N
)

> λn , the Eq. (26) with u j =
∥∥θπ( j)

∥∥
2 > 0 can be828

written as829

θπ j = U T
j

(
D j + Nλn

2u j
Ip+1

)−1

U j f j (B),830

and observe that831

u2
j =

∥∥θπ( j)
∥∥2

2832

=
∥∥∥∥∥U T

j

(
D j + Nλn

2u j
Ip+1

)−1

U j f j (B)

∥∥∥∥∥

2

2

=
∥∥∥∥∥

(
D j + Nλn

2u j
Ip+1

)−1

U j f j (B)

∥∥∥∥∥

2

2

833

=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
d j,1 + Nλn

2u j

)−1
0 · · · 0

0
(

d j,2 + Nλn
2u j

)−1 . . .
.
.
.

.

.

.
. . .

. . . 0

0 · · · 0
(

d j,p+1 + Nλn
2u j

)−1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

ν1

ν2
.
.
.

ν j,p+1

⎞

⎟⎟⎟⎠

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

2

834
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=

∥∥∥∥∥∥∥∥∥∥∥∥∥

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

ν j,1

(
d j,1 + Nλn

2u j

)−1

ν j,2

(
d j,2 + Nλn

2u j

)−1

.

.

.

ν j,p+1

(
d j,p+1 + Nλn

2u j

)−1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

∥∥∥∥∥∥∥∥∥∥∥∥∥

2

2

=
p+1∑

k=1

ν2
j,k

(
d j,k + Nλn

2u j

)2 =
p+1∑

k=1

u2
j

ν2
j,k

(
d j,ku j + Nλn

2

)2 ,835

that is836

1 =
p+1∑

k=1

ν2
j,k

(
d j,ku j + Nλn

2

)2 .837

When
(

2
∥∥ f j (B)

∥∥
2
/N
)
≤ λn , θπ j = 0 due to the condition (II) in Lemma 4.1.838

For j = 1, the solution in (26) to the non-penalized θπ1 is simply839

θπ1 = U T
1 D−1

1 U1 f j (B) =
(

N∑

l=1

xπl x
T
πl

)−1

f j (B), (28)840

where f j (B) =∑N
l=1 xπ(l)yπl+d−g1(B), g1(B) =∑i∈B

i �=1

{∑N
h=max(i,1) xπh xT

πh

}
θπi841

if card(B) > 1, otherwise g1(B) = 0. Hence the proof. ��842
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