Relationship between common air pollutants with risk of cardio-respiratory hospitalization in urbanized areas in Kelantan

Nurul Najwa Mat Sahar¹, Siti Hajar Ya'acob^{1*}, Wong Hie Ling¹, Siti Aisyah Nawawi¹, and Norrimi Rosaida Awang¹

¹Environmental Sustainable Science Program, Department of Natural Resources and Sustainability, Faculty of Earth Science, Universiti Malaysia Kelantan, 17600 Jeli, Malaysia

Abstract. A high concentration of air pollution can lead to health problems which are the cardiovascular and respiratory systems (WHO, 2014). A study has been conducted to know the relationship between five criteria air pollutants with hospitalization related to cardiovascular and respiratory diseases in two cities in Kelantan. The secondary data from 2000 until 2015 analyzed in the study were obtained from DOE and MOH for the air pollutants concentration and hospitalization, respectively. This study shows that the mean concentration of all pollutants in the study area is below the RMAAQS. Significant Relative Risk (RR) values were found for cardiovascular hospitalization associated with SO² (RR = 1.537, 95% CI = 2.970, 7.956), NO² (RR = 1.212, 95% CI = 1.156, 1.272), and O³ (RR = 4.873, 95% CI = 2.768, 8.578). In contrast, significant RR for respiratory hospitalization was found to be associated with SO² (RR = 1.952, 95% CI = 1.013, 3.762), NO² (RR = 2.021, 95% CI = 6.170, 6.620), O³ (RR = 1.128, 95% CI = 4.427, 2.874), and PM¹⁰ (RR = 1.008, 95% CI = 1.007, 1.008). The highest value of Relative Risk is O³ and NO² for hospitalization related to cardiovascular and respiratory diseases, respectively. In conclusion, the value of RR associated with air pollutants proves that air pollutants are associated with cardiovascular and respiratory related hospitalization risk.

1 Introduction

Air pollution issues lead to scholarly debate and public concern as they potentially degrade human health. Most of the air pollution is being created by humans themselves. The sources of air pollution by man-made are burning fossil fuels, transportation, industry, agriculture, open burning, and bushfire [1]. Whereas ash, sulfur dioxide, combustion gases, volcanic, radon, and smog are air pollutants mainly released from natural sources such as forest fires and volcanic eruptions [2]. Apart from the type of emission sources, the meteorological condition also influences the air pollution concentration level. The air pollution movement governed by meteorological parameters such as wind speed and direction also affects the fate of air pollutants. If the air is calm and contaminants cannot disperse, then the concentration of the air pollutants will increase [3].

Air pollution can harm human health, such as its effects on the cardiovascular and respiratory systems. For instance, particulate matter may affect the heart and impair the other function. When the poisonous tiny particles break through the lung, the toxic compound can go deeper into the lung and cause cancer which slides straight into the bloodstream in the body [4]. It also can affect heart disease, which can happen to everyone, especially adults, due to coal combustion that releases pro-inflammatory air pollutants. When the concentration of coal-burning derived air pollutants increases, hospital admissions potentially increase for cardiovascular-related diseases such as acute myocardial infarction, disturbances of heart rhythm, ischemic heart diseases due to insufficient blood supply because of the blocked artery, and congestive heart failure [5]. Thus, this study aims to predict the association of five criteria air pollutants with increased respiratory hospitalization.

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (https://creativecommons.org/licenses/by/4.0/).

^{*} Corresponding author: hajar.y@umk.edu.my

2 Methodology

2.1 Study area and data acquisition

Two study areas were chosen to represent the urbanized area in Kelantan, namely Kota Bharu and Kelantan, based on the locations of three continuous Air Quality Monitoring (CAQM) stations that hourly monitored five criteria air pollutants from 2000 to 2015. The acquired air pollutants and meteorological parameters, namely particulate matter 10 (PM₁₀), carbon monoxide (CO), sulfur dioxide (SO₂), nitrogen dioxide (NO₂), ozone (O₃), relative humidity, temperature, and wind speed, were provided by the Department of Environment (DOE). The secondary data on hospitalization was acquired from the Ministry of Health (MOH), specifically for cardiovascular and respiratory-related diseases using National Medical Research Register (NMRR). Cardiovascular and respiratory cases were selected based on the International Classification of Disease, Tenth Revision (ICD-10), coded as I00-I99 and J00-J99, respectively. Detailed study areas and data acquisition were previously published by [6].

2.2 Data processing and analysis

The analysis was conducted to determine the association between air pollutants, which are Particulate Matter 10 (PM_{10}), Sulphur Dioxide (SO₂), Carbon Monoxide (CO), Ozone (O₃), and Nitrogen Dioxide (NO₂), and data from patients suffering from cardiovascular and respiratory related diseases. The acquired data was arranged monthly and yearly for each pollutant concentration, meteorological parameter, and patient demographic information before further data analysis, namely descriptive, Pearson correlation, and Poisson regression using SPSS version 23. Poisson regression was executed to identify the Relative Risk of respective morbidity prevalence against the five air pollutants.

3 Results and Discussion

3.1 Descriptive statistics of air pollutants and hospitalization (in yearly arrangement)

Table 1 shows the descriptive statistics of five air pollutants from the Kota Bharu monitoring station from 2000 to 2015 (data for Tanah Merah is not shown). The mean concentration for SO₂, NO₂, O₃, CO and PM₁₀ ranged from 0.000 – 0.001 μ g/m³, 0.00 – 0.01 μ g/m³, 0.01 – 0.02 μ g/m³, 0.42 – 0.82 mg/m³, and 39.64 – 67.55 μ g/m³, respectively. The concentrations of the air pollutants were found to be lower than the Malaysian Ambient Air Quality Standard (MAAQS, IT-1 2015) except for PM₁₀ in the year 2015. Among all the air pollutants, PM₁₀ was found to dominate the trend followed by CO. This could be due to the location of Kota Bharu, the major city in Kelantan that increasingly receives a high number of vehicles. Many particles are released during the traffic due to the combustion of fossil fuels, which makes the concentration of PM₁₀ higher than other pollutants [6]. The high motor vehicles emission also can increase the concentration of CO. [7] stated that the composition of particulate matter is from carbonaceous particles with associated adsorbed organic chemicals and also under oxidation reaction of precursor gaseous such as nitrates, sulfates, and polycyclic aromatic hydrocarbons.

Table 1.	Average co	ncentration	of air polluta	ants recorde	a for the per	100 2000 -20	JIJ al Kola	bharu an	monitoring	station.
	SO ₂ (µ	ug/m³)	NO ₂ (ug/m ³)	Ο3 (μ	.g/m ³)	CO (mg	g/m ³)	PM ₁₀ (µ	ug/m ³)
	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD
2000	0.002	0.001	0.01	0.002	0.01	0.002	0.82	0.1	39.64	8.6
2001	0.002	0.001	0.01	0.002	0.01	0.002	0.79	0.1	42.72	9.0
2002	0.001	0.000	0.01	0.001	0.01	0.002	0.76	0.1	41.42	7.8
2003	0.001	0.001	0.01	0.001	0.01	0.003	0.78	0.1	40.78	7.5
2004	0.001	0.001	0.01	0.002	0.01	0.003	0.80	0.1	46.29	9.9
2005	0.001	0.001	0.01	0.001	0.01	0.003	0.74	0.1	41.17	6.3
2006	0.001	0.000	0.01	0.001	0.02	0.002	0.67	0.1	40.34	7.7
2007	0.001	0.000	0.01	0.001	0.02	0.001	0.67	0.1	44.97	6.8

Table 1. Average concentration of air pollutants recorded for the period 2000 -2015 at Kota Bharu air monitoring station.

2008	0.001	0.000	0.01	0.002	0.01	0.003	0.66	0.1	43.53	8.2
2009	0.000	0.000	0.01	0.001	0.01	0.001	0.61	0.1	42.99	6.5
2010	0.001	0.001	0.01	0.001	0.01	0.003	0.59	0.1	41.68	3.6
2011	0.000	0.000	0.01	0.001	0.02	0.003	0.59	0.1	45.93	6.8
2012	0.000	0.000	0.00	0.001	0.01	0.002	0.42	0.0	39.64	7.4
2013	0.000	0.001	0.00	0.001	0.01	0.004	0.46	0.1	41.40	5.5
2014	0.000	0.000	0.00	0.001	0.02	0.002	0.53	0.1	40.93	7.8
2015	0.000	0.001	0.00	0.001	0.02	0.004	0.60	0.1	67.55	15.2

In addition, demographic characteristics for cardiovascular and respiratory-related disease patients are shown in Table 2 and Table 3, respectively. Most cardiovascular-related disease patients were between 40 - 64 years old in both study locations. In contrast, the highest count of respiratory-related disease patients was aged below 19 years old. Males dominated the patient number for cardiovascular or respiratory-related disease, except Tanah Merah recorded that women were slightly higher than males from 2001 to 2005. Malay patients of the cardio-respiratory cases were the highest compared to other races for both locations.

				Tal	ble 2. Der	nographic	characte	ristics of	cardiov	ascular-	related o	lisease p	atients in	both stuc	ly locatic	ons.				
Year					Kota E	haru									Tanah N	1erah				
		Age,	(%) u		Gender	; n (%)		Ethnicity	(%) u			Age, 1	1 (%) 1		Gender	; n (%)		Ethnicity	, n (%)	
	≤19	20-39	40-64	≥65	Male	Female	Μ	С	Ι	Other	≤19	20-39	40-64	≥65	Male	Female	Μ	С	Ι	Other
2000	68 (3.6)	167 (8.8)	1001	669	1185	720	1816 (95 3)	64 (3.7)	3	22	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1000	(o.c.) 96	(0.0) 313	1146	754	1317	(97.0) 992	2194	(1.c)	12	27	25	74	264	185	265	283	535	13	c	c
1007	(4.2)	(13.6)	(49.6)	(32.7)	(57)	(43)	(95)	(3.3)	(0.5)	(1.2)	(4.6)	(13.5)	(48.2)	(33.8)	(48.4)	(51.6)	(9.7.6)	(2.4)	0	0
2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	20	76	252 (10.1)	152	245	255	483	10	0	7
	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	(4.0) 23	(15.2) 68	(50.4) 256	(30.4) 185	(49.0) 244	(51.0) 288	(96.6) 519	11 (2.0)	1	(1.4)
2003											(4.3)	(12.8)	(48.1)	(34.8)	(45.9)	(54.1)	(9.7.6)	(2.1)	(0.2)	(0.2)
1004	85	195	1404	1072	1640	1116	2582	122	6	43	16	63	234	127	211	229	423	14	0	3
1007	(3.1)	(7.1)	(50.9)	(38.9)	(59.5)	(40.5)	(93.7)	(4.4)	(0.3)	(1.6)	(3.6)	(14.3)	(53.2)	(28.9)	(48.0)	(52.0)	(96.1)	(3.2)	0	(0.7)
2005	67	158	1490	1094	1616	1193	2676	102	7	24	17	56	222	172	233	234	446	17	7	2
C007	(2.4)	(5.6)	(53)	(38.9)	(57.5)	(42.5)	(95.3)	(3.6)	(0.2)	(0.9)	(3.6)	(12.0)	(47.5)	(36.8)	(49.9)	(50.1)	(95.5)	(3.6)	(0.4)	(0.4)
2006	87	185	1461	1082	1682	1133	2654	117	6	35	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
0007	(3.1)	(6.6)	(51.9)	(38.4)	(59.8)	(40.2)	(94.3)	(4.2)	(0.3)	(1.2)										
2007	81	198	1477	1095	1801	1050	2699	103	4	45	15	50	252	183	285	215	478	14	1	7
1007	(2.8)	(6.9)	(51.8)	(38.4)	(63.2)	(36.8)	(94.7)	(3.6)	(0.1)	(1.6)	(3.0)	(10.0)	(50.4)	(36.6)	(57.0)	(43.0)	(92.6)	(2.8)	(0.2)	(1.4)
2006	77	208	1162	987	1535	899	2338	70	2	24	71	275	1229	1169	1407	1337	2641	72	9	25
0007	(3.2)	(8.5)	(47.7)	(40.6)	(63.1)	(36.9)	(96.1)	(2.9)	(0.1)	(1.0)	(2.6)	(10.0)	(44.8)	(42.6)	(51.3)	(48.7)	(96.2)	(2.6)	(0.2)	(0.9)
0000	78	196	1396	956	1675	951	2482	104	(0)0	40	76	298	1490	1419	1725	1558	3159	91	7	26
6007	(3.0)	(7.5)	(53.2)	(36.4)	(63.8)	(36.2)	(94.5)	(4.0)	(0) 0	(1.5)	(2.3)	(9.1)	(45.4)	(43.2)	(52.5)	(47.5)	(96.2)	(2.8)	(0.2)	(0.8)
2010	85	321	1786	1116	2056	1252	3116	138	8	46	14	17	285	174	279	211	472	14	ŝ	1
0107	(2.6)	(9.7)	(54.0)	(33.7)	(62.2)	(37.8)	(94.2)	(4.2)	(0.2)	(1.4)	(2.9)	(3.5)	(58.2)	(35.5)	(56.9)	(43.1)	(96.3)	(2.9)	(0.6)	(0.2)
2011	84	354	2281	1247	2420	1546	3750	166	12	38	8	29	342	313	390	302	674	13	1	4
1107	(2.1)	(8.9)	(57.5)	(31.4)	(61.0)	(39.0)	(94.6)	(4.2)	(0.3)	(1.0)	(1.2)	(4.2)	(49.4)	(45.2)	(56.4)	(43.6)	(97.4)	(1.9)	(0.1)	(0.6)
2012	286	228	1528	834	1778	1098	2745	98	5	28	8	29	327	241	352	253	588	8	0	6
7107	(6.9)	(6.7)	(53.1)	(29.0)	(61.8)	(38.2)	(95.4)	(3.4)	(0.2)	(1.0)	(1.3)	(4.8)	(54.0)	(39.8)	(58.2)	(41.8)	(97.2)	(1.3)	0	(1.5)
2013	87	268	1966	1067	2188	1200	3260	106	2	20	17	33	264	194	329	179	478	17	7	11
CT07	(2.6)	(7.9)	(58.0)	(31.5)	(64.6)	(35.4)	(96.2)	(3.1)	(0.1)	(0.6)	(3.3)	(6.5)	(52.0)	(38.2)	(64.8)	(35.2)	(94.1)	(3.3)	(0.4)	(2.2)
2014	80	187	1452	824	1646	897	2434	78	5	26	13	20	204	119	240	116	334	7	1	14
1107	(3.1)	(7.4)	(57.1)	(32.4)	(64.7)	(35.3)	(95.7)	(3.1)	(0.2)	(1.0)	(3.7)	(5.6)	(57.3)	(33.4)	(67.4)	(32.6)	(93.8)	(2.0)	(0.3)	(3.9)
2015	73	218	1462	881	1748	886	2522	73	5	34	19	39	227	215	304	196	456	5	7	37
C107	(2.8)	(8.3)	(55.5)	(33.4)	(66.4)	(33.6)	(95.7)	(2.8)	(0.2)	(1.3)	(3.8)	(7.8)	(45.4)	(43.0)	(60.8)	(39.2)	(91.2)	(1.0)	(0.4)	(7.4)
M = Ma	lay, C =	= Chinese	, I = Indi	an, NA =	= data not	available														

				Ë	able 3. D	emograpi	hic charac	steristics	of respi	ratory-re	lated dise	ease patie	ents in bc	oth study	locations					
Year					Kota E	3haru									Tanah N.	lerah				
-		Age,	u (%)		Gendei	r, n (%)		Ethnicit	y, n (%)			Age, n	(%)		Gender	; n (%)		Ethnicity	', n (%)	
	≤ 19	20-39	40-64	≥65	Male	Female	М	C	I	Other	≤19	20-39	40-64	≥65	Male	Female	М	C	Ι	Other
0000	626	181	358	336	902	594	1452	33	5	11	N IN	NIX.	ATA	114		N N	A LA	ATA	A IX	
7000	(41.7)	(12.1)	(23.9)	(22.4)	(60.1)	(39.6)	(96.7)	(2.2)	(0.3)	(0.7)	NA	NA	NA	NA	NA	NA	NA	M	NA	NA
1000	818	275	486	435	1126	888	1916	64	11	23	250	94	156	100	293	307	591	5	2	2
1007	(40.6)	(13.7)	(24.1)	(21.6)	(55.9)	(44.1)	(95.1)	(3.2)	(0.5)	(1.1)	(41.7)	(15.7)	(26.0)	(16.7)	(48.8)	(51.2)	(98.5)	(0.8)	(0.3)	(0.3)
0000											295	88	148	104	335	300	625	9	1	ю
7007	ΡA	AN	NA	AN	NA	NA	AN	NA	AN	NA	(46.5)	(13.9)	(23.3)	(16.4)	(52.8)	(47.2)	(98.4)	(0.9)	(0.2)	(0.5)
000	N IN	NTA.	ATA	MIA	ATA	VIV	MIN	V I V	NI N	VIV.	387	101	158	196	432	410	830	7	1	4
5002	ΝA	AN	NA	NA	NA	NA	AN	NA	AN	NA	(46.0)	(12.0)	(18.8)	(23.3)	(51.3)	(48.7)	(98.6)	(0.8)	(0.1)	(0.5)
1000	974	320	629	573	1427	1069	2403	52	7	34	268	06	179	180	414	303	700	14	2	1
2004	(39.0)	(12.8)	(25.2)	(23.0)	(57.2)	(42.8)	(96.3)	(2.1)	(0.3)	(1.4)	(37.4)	(12.6)	(25.0)	(25.1)	(57.7)	(42.3)	(97.6)	(2.0)	(0.3)	(0.1)
2000	1107	380	743	621	1625	1226	2759	58	4	30	422	85	146	150	449	354	789	10	2	2
CUU2	(38.8)	(13.3)	(26.1)	(21.8)	(57.0)	(43.0)	(96.8)	(2.0)	(0.1)	(1.1)	(52.6)	(10.6)	(18.2)	(18.7)	(55.9)	(44.1)	(98.3)	(1.2)	(0.2)	(0.2)
2000	1155	388	799	677	1704	1315	2878	84	8	49										
0007	(38.3)	(12.9)	(26.5)	(22.4)	(56.4)	(43.6)	(95.3)	(2.8)	(0.3)	(1.6)	NA	NA	NA	AN	AN	ΡN	ΡA	NA	NA	NA
2000	1293	333	761	767	1858	1296	3028	68	4	54	342	72	156	146	376	340	686	14	13	3
7007	(41.0)	(10.6)	(24.1)	(24.3)	(58.9)	(41.1)	(0.96)	(2.2)	(0.1)	(1.7)	(47.8)	(10.1)	(21.8)	(20.4)	(52.5)	(47.5)	(95.8)	(2.0)	(1.8)	(0.4)
0000	1536	380	753	965	2083	1551	3502	LL	9	49	1979	529	606	1120	2479	2058	4417	70	31	19
2002	(42.3)	(10.5)	(20.7)	(26.6)	(57.3)	(42.7)	(96.4)	(2.1)	(0.2)	(1.3)	(43.6)	(11.7)	(20.0)	(24.7)	(54.6)	(45.4)	(97.4)	(1.5)	(0.7)	(0.4)
0000	1547	449	726	848	1929	1641	3444	64	8	54	2302	610	1086	1374	2907	2465	5227	80	38	27
6007	(43.3)	(12.6)	(20.3)	(23.8)	(54.0)	(46.0)	(96.5)	(1.8)	(0.2)	(1.5)	(42.9)	(11.4)	(20.2)	(25.6)	(54.1)	(45.9)	(97.3)	(1.5)	(0.7)	(0.5)
0100	1494	405	814	753	1895	1571	3332	80	1	53	449	130	225	244	543	505	1021	14	5	8
0107	(43.1)	(11.7)	(23.5)	(21.7)	(54.7)	(45.3)	(96.1)	(2.3)	(0.03)	(1.5)	(42.8)	(12.4)	(21.5)	(23.3)	(51.8)	(48.2)	(97.4)	(1.3)	(0.5)	(0.8)
1100	1511	362	775	853	1903	1598	3368	88	1	44	485	112	231	300	622	506	Ш	7	2	8
1107	(43.2)	(10.3)	(22.1)	(24.4)	(54.4)	(45.6)	(96.2)	(2.5)	(0.03)	(1.3)	(43.0)	(6.9)	(20.5)	(26.6)	(55.1)	(44.9)	(98.5)	(0.6)	(0.2)	(0.7)
0100	1371	287	627	734	1679	1340	2920	64	4	31	500	87	222	324	613	520	1113	14	1	5
7107	(45.4)	(9.5)	(20.8)	(24.3)	(55.6)	(44.4)	(96.7)	(2.1)	(0.1)	(1.0)	(44.1)	(7.7)	(19.6)	(28.6)	(54.1)	(45.9)	(98.2)	(1.2)	(0.1)	(0.4)
2013	1925	459	983	1099	2522	1944	4337	84	9	39	622	63	191	212	652	436	1058	12	1	17
C107	(43.1)	(10.3)	(22.0)	(24.6)	(50.5)	(43.5)	(97.1)	(1.9)	(0.1)	(0.9)	(57.2)	(5.8)	(17.6)	(19.5)	(59.9)	(40.1)	(97.2)	(1.1)	(0.1)	(1.6)
100	2244	526	1019	1007	2610	2186	4559	66	7	131	560	45	223	198	554	472	985	14	7	25
7014	(46.8)	(11.0)	(21.2)	(21.0)	(54.4)	(45.6)	(95.1)	(2.1)	(0.1)	(2.7)	(54.6)	(4.4)	(21.7)	(19.3)	(54.0)	(46.0)	(0.96)	(1.4)	(0.2)	(2.4)
3016	2435	623	1144	1163	2778	2587	5085	88	9	186	794	97	217	270	755	622	1226	10	1	141
C107	(45.4)	(11.6)	(21.3)	(21.7)	(51.8)	(48.2)	(94.8)	(1.6)	(0.1)	(3.5)	(57.6)	(1.0)	(15.7)	(19.6)	(54.8)	(45.1)	(89.0)	(0.7)	(0.1)	(10.2)

3.2 Correlation between air pollutants and meteorological

A bivariate Pearson's product-moment correlation coefficient (r) was calculated to assess the size and direction of the linear relationship between the concentration of every air pollutant and meteorological factor. Pearson's correlation coefficient between air pollutants and meteorological parameters is presented in Table 4. The average daily concentration of five pollutants and meteorological parameters showed significant positive and negative correlations. Among the contaminants that exhibit a strong correlation (>0.6) are NO2 and CO had a significantly positive association (r =0.623, p<0.01), followed by SO₂ with CO (r =0.463, p<0.01). The study from [8] also offers the highest correlation between NO₂ and CO. The positive correlation may be supported by the reaction of CO entering the oxidation cycle and nitrogen monoxide (NO) being oxidized to NO₂ [8]. SO₂ showed a significantly low positive correlation with temperature (r = 0.144, p < 0.01). In addition, a significant negative correlation was found between temperature and relative humidity (r = -0.450, p<0.01) and relative humidity with wind speed (r = -0.139, p<0.05). The significance of the negative correlation between temperature and relative humidity means that the increase in ambient air temperature will reduce the moisture content (water vapor) in the area. A similar finding was observed in cities like Putrajaya [9]. There were also significant negative correlations between O_3 and relative humidity (r = -0.260, p<0.01). Relative humidity corresponds to the wet condition of the area. Wet conditions or high relative humidity will reduce O_3 formation because insufficient sunlight drives O₃ formation [10]. The correlation between trace gases shows significant positive correlations between primary gases such as CO, NO2, and SO2.

	SO ₂	O ₃	СО	NO ₂	PM_{10}	WS	Т	RH
SO ₂	1							
O ₃	-0.145*	1						
CO	0.463**	-0.068	1					
NO ₂	0.154**	0.073	0.623**	1				
PM_{10}	0.088	0.394**	0.042	-0.028	1			
WS	-0.058	0.062	0.047	-0.085	0.070	1		
Т	0.144**	-0.061	-0.058	-0.031	0.063	0.068	1	
RH	-0.013	-0.260**	0.148	0.096	-0.027	-0.139*	-0.450**	1

Table 4. Correlation of air pollutants and climatic parameters.

WS = Wind Speed, T = Temperature, RH = Relative Humidity. *Correlation is significant at the 0.05 level (2-tailed). **Correlation is significant at the 0.01 (2-tailed)

3.3 Poisson regression between air pollutants and cardio-respiratory hospitalization

Table 5 provides both the coefficient estimates (B) of the Poisson regression and the exponentiated values of the coefficient [Exp (B)]. The average from two places (Pengkalan Chepa and Kota Bharu) was used to represent the data for Kota Bharu. Poisson regression was run to predict the association of five criteria air pollutants with increased in cardio-respiratory hospitalization. The RR value has been estimated using the overall pollutant and hospitalization data.

The dependent variables of these tables are cardiovascular and respiratory diseases. The independent variable is PM_{10} , SO_2 , NO_2 , CO, and O_3 . The five pollutions are statistically

significant with cardiovascular and respiratory diseases except for CO. The RR for cardiovascular diseases shows the strongest association with O_3 , SO_2 , and NO_2 (4.873, 1.537, and 1.212), respectively. The highest RR estimate is O_3 (RR=4.873) (95% CI 2.768-8.578). This result was supported by [8], whereas O_3 had the highest RR in cardiovascular hospitalization [8]. According to [11], O_3 exposure in humans has been associated with increased hospital admissions related to cardiovascular complications, as O_3 mediates an inflammation response and increased oxidative stress in the cardiovascular system [11].

After that, the highest RR for respiratory is NO₂ (RR= 2.021) (95% CI 6.170, 6.620), which is different from cardiovascular. People suffering from respiratory diseases such as asthma are susceptible to NO₂ at high concentrations. According to [12], patients with asthma and chronic obstructive pulmonary disease (COPD) have been associated with an increased risk of respiratory hospitalization after exposure to NO₂ [12]. This might happen due to the traffic vehicles at Kota Bharu, which increased the concentration of NO₂.

Table 5. Relative Risk	(RR) and CI for	cardiovascular and re	spiratory hospitalization.
------------------------	-----------------	-----------------------	----------------------------

Model	(Cardiovascular		Respiratory
	RR	95% CI	RR	95% CI
Intercept	609.691	(594.009, 625.787)	980.682	(960.670,1001.110)
SO_2	1.537	(2.970, 7.956)	1.952	(1.013, 3.762)
NO ₂	1.212	(1.156, 1.272)	2.021	(6.170, 6.620)
CO	0.040	(0.034, 0.047)	0.064	(0.056, 0.074)
O_3	4.873	(2.768, 8.578)	1.128	(4.427, 2.874)
PM_{10}	0.991	(0.990, 0.992)	1.008	(1.007, 1.008)

4 Conclusion

The air concentration of air pollutants and meteorological value can differ in different study areas. This research shows that there is a relationship between air pollutants (SO₂, NO₂, CO, O₃, PM₁₀) with meteorological parameters (wind speed, temperature, relative humidity) and air pollutants with hospitalization (cardiovascular and respiratory). A positive correlation between NO2 and CO may be supported by the reaction of CO entering the oxidation cycle and nitrogen monoxide (NO) being oxidized to NO₂. There were also negative correlations between O₃ and relative humidity. According to [10], relative humidity wet conditions or high relative humidity will reduce O₃ formation due to insufficient sunlight to drive O₃ formation. This study shows that the concentration of all pollutants during 2000-2015 in the study area is below the MAAQS.

These studies focused on a few factors, such as wind speed, temperature, and relative humidity, all of which influence air pollutants. The changes in weather patterns in Malaysia also contribute to the changes in meteorological parameter concentration, and the meteorological parameters play a role in increasing and decreasing pollutants. Air pollutants also contribute to cardiovascular and respiratory hospitalization. The most influential factors are O_3 (cardiovascular diseases) and NO₂ (respiratory diseases). The value of RR for both concentrations is higher than other pollutants and proves that the air pollutants factors can impact cardiovascular and respiratory hospitalization.

References

^{1.} A. Alvanchi, M. Rahimi, M. Mousavi, H. Alikhani, J. Clean. Prod. 255, 120222 (2020)

- 2. WHO, Air pollution-ambient World Health Organization (2021)
- 3. Queensland, Meteorological factors Queensland Government (2017)
- 4. S. Goyal, What is PM 2.5 and PM_{10} and how they affect health? (2018)
- H.L. Alan, W.H. Kristen, R. Molly, G. Barbara, Physicians for Social Responsibility (PSR). How Air Pollution Contributes to Heart Disease. Coal's Assault on Human Health (2009)
- M.S. Nurul Najwa, Y. Siti Hajar, A. Norrimi Rosaida, H.L. Wong, N. Siti Aisyah, IOP Conf. Ser.: Earth Environ. Sci. 1102 012076 doi:10.1088/1755-1315/1102/1/012076 (2022)
- R.B. Hamanaka, G.M. Mutlu, Front. Endocrinol. 9, 680. Doi 10.3389/fendo.2018. 00680 (2018)
- M.A.B.A. Tajudin, M.F. Khan, W.R.W. Mahiyuddin, R. Hod, M.T. Latif, A.H. Hamid, M. Sahani, Ecotoxicol. Environ. Saf. 171, 290-300 (2019)
- S.K.S.O. Thani, N.H.N. Mohamad, S.M.S. Abdullah, Asian Journal of Behavioural Studies, 2(7), 31-41 (2017)
- 10. N.S. Zainordin, N.A. Ramli, M. Elbayoumi, Sains Malays. 46(2), 197-207 (2017)
- V. Srebot, E.A. Gianicolo, G. Rainaldi, M.G. Trivella, R. Sicari, Cardiovasc. Ultrasound 7, 30 (2009)
- G.P. Bălă, R.M. Râjnoveanu, E. Tudorache, R. Motişan, C. Oancea, Environ. Sci. Pollut. Res. 28, 19615-19628 (2021)