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Abstract
Tuberculosis (TB) is a chronic inflammatory and zoonotic disease caused by Mycobacterium tuberculosis complex (MTBC) 
members, which affects various domestic animals, wildlife, and humans. Some wild animals serve as reservoir hosts in 
the transmission and epidemiology of the disease. Therefore, the monitoring and surveillance of both wild and domestic 
hosts are critical for prevention and control strategies. For TB diagnosis, the single intradermal tuberculin test or the single 
comparative intradermal tuberculin test, and the gamma-interferon test, which is regarded as an ancillary test, are used. 
Postmortem examination can identify granulomatous lesions compatible with a diagnosis of TB . In contrast, smears of the 
lesions can be stained for acid-fast bacilli, and samples of the affected organs can be subjected to histopathological analyses. 
Culture is the gold standard test for isolating mycobacterial bacilli because it has high sensitivity and specificity compared 
with other methods. Serology for antibody detection allows the testing of many samples simply, rapidly, and inexpensively, 
and the protocol can be standardized in different laboratories. Molecular biological analyses are also applicable to trace the 
epidemiology of the disease. In conclusion, reviewing the various techniques used in MTBC diagnosis can help establish 
guidelines for researchers when choosing a particular diagnostic method depending on the situation at hand, be it disease 
outbreaks in wildlife or for epidemiological studies. This is because a good understanding of various diagnostic techniques 
will aid in monitoring and managing emerging pandemic threats of infectious diseases from wildlife and also preventing the 
potential spread of zoonotic TB to livestock and humans.  This review aimed to provide up-to-date information on different 
techniques used for diagnosing TB at the interfaces between wildlife, livestock, and humans.

Keywords: culture, ELISA, gamma interferon test, genotyping, histopathology, Mycobacterium tuberculosis complex, 
polymerase chain reaction, wildlife.

Introduction

Tuberculosis (TB) is a reemerging and chronic 
infectious disease caused by Mycobacterium tubercu-
losis complex (MTBC); it affects livestock, wildlife, 
and humans [1]. The disease has a major economic 
impact on livestock production, due to costs associ-
ated with testing and slaughtering affected livestock. 
As such, bovine TB is subjected to control and erad-
ication programs in some developing countries [1-4]. 
Studies have shown that one in every three people 
living today is infected with Mycobacterium tuber-
culosis, inducing increased morbidity and mortality 
in developing countries [5-9]. It was estimated that 

1.2 million deaths from TB due to MTBC species 
and 143,000 new cases of zoonotic TB caused by 
Mycobacterium bovis occurred globally in the year 
2018. However, only 16 countries reported the detec-
tion of M. bovis among pulmonary or extrapulmonary 
TB patients in 2018. Since 2007, TB has been the 
10th leading cause of death worldwide from a single 
infectious agent, ranking above HIV. Most cases in 
2018 occurred in South East Asia (44%), followed by 
Africa (24%), the Western Pacific (18%), the Eastern 
Mediterranean (8.1%), the Americas (2.9%), and then 
Europe (2.6%) [10].

This review is intended to provide an up-to-date 
information of the antemortem and postmortem diag-
nostic techniques for TB at the interfaces between 
wildlife, livestock, and humans, that could help 
researchers and decision-makers to choose the most 
appropriate diagnostic protocol and to obtain a better 
understanding of their performance for effective TB 
surveillance and control strategies under different epi-
demiological situations in wild animals. 
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MTBC

The members of MTBC are M. tuberculosis, 
M. bovis, M. bovis BCG (Bacillus, Calmette, and 
Guérin), M. africanum, M. microti, M. mungi, M. canetti, 
M. caprae, and M. pinnipedii [11-18]. Other members 
are Oryx bacillus [19], known as M. orygis [20], and 
the dassie bacillus [21]. The MTBC is recognized by 
99.9% similarity at the nucleotide level, which resem-
bles the 16S rRNA sequences [22].
MTBC in Wildlife

Over 40 free-ranging wild animal species are 
known to be infected with MTBC bacterial species, 
causing the disease. Host species may be “mainte-
nance hosts” (infection persists without input from 
other sources) or “spillover hosts” (infection persists 
as long as there is input from an external source) [23]. 
Tuberculosis has been isolated from different types of 
wildlife, such as badgers, coyotes, raccoons, hares, rab-
bits, hedgehogs, brushtail possums, coatis, capybaras, 
lions, deer, elk, wild boars, foxes, primates and pinni-
ped (gray seal) [24-26]. The Eurasian wild boar acts 
as a reservoir for TB in the Iberian Peninsula [27-31]. 
In addition, spillover transmission of MTBC to other 
wildlife species and domestic livestock has been 
reported in South African buffalo [32], leopards, hye-
nas, large-spotted genets, warthogs, bushpigs, eland, 
wildebeest, common duiker, honey badger, impala, 
lechwe, lions, cheetahs, chacma baboons, and greater 
kudu [32-36].

Reports of TB in wildlife, mainly in Asian ele-
phants from various countries in Southeast Asia, 
have been published. For example in Thailand, 
M. tuberculosis was isolated from four Asian ele-
phants by bacterial isolation and sequencing [25,37]. 
The MTBC has also been reported in an Asian ele-
phant in Malaysia [38,39]. Reports have also been 
published from Thailand in 2010 of a captive Malayan 
tapir with disseminated TB caused by M. tuberculo-
sis and confirmed by molecular methods [40]. In the 
British Isles, the European badger is the dominant res-
ervoir host of TB [41]; in Australia, feral pigs, fallow 
deer, and water buffalo are the reservoir hosts, causing 
spillover transmission to domestic goats and cattle; 
while in North America (Michigan, Mexico), the hosts 
are white-tailed deer, but in Canada, they are white-
tailed deer, wood bison, and elk. In New Zealand, 
the brushtail possum is causing the transmission to 
deer, ferrets, and cattle [28]. Studies showed that the 
lesions in wild animals appeared to be similar to those 
in domestic animals. However, there are variations in 
terms of the location and size of lesions in different 
affected animals [42,43].
Transmission

Several factors influence the transmission of TB, 
including the number of infected animals, suscepti-
ble animals, routes of infection, anatomical location 
and lesions of disease, the structure of tuberculous 

lesions, pathogen shedding, and the infective dose in 
each infection route [44]. Environmental contamina-
tion is important for MTBC transmission [45]. Direct 
oral/nasal transmission is the major infection route, 
while indirect transmission routes are considered to be 
less important [46]. The thoracic and abdominal lesions 
suggest that MTBC is transmitted directly oro-nasally 
and indirectly through the environment through shared 
watering and feeding areas [47-49]. T hough the indi-
rect route of transmission is important for interspecies 
transmission through shared resources [50] is making 
the TB transmission within same species of animals 
becomes significance [51,52]. Drinking water points 
are critical risk areas for MTBC transmission, espe-
cially in semi-arid areas where there is a scarcity of 
water, which leads to the daily gathering of animals 
at water points [53]. Following excretion, the bacteria 
must withstand the environmental conditions for them 
to be fully pathogenic before they can infect suscepti-
ble hosts by indirect transmission [54].
Antemortem Diagnosis of MTBC 
(Cell-mediated Immune [CMI] Response)

For antemortem diagnosis, single intradermal 
tuberculin test (SITT), single comparative intradermal 
tuberculin test (SCITT), and gamma interferon test 
(IFN-ɣ), which is regarded as a subsidiary test, are 
used [55-58]. These different analyses have their own 
shortcomings with regard to the results produced [59], 
but it is well accepted that they complement one 
another, especially when used synergistically; SCITT 
is regarded as a better diagnostic tool with the high 
specificity and moderate sensitivity, whereas the 
IFN-ɣ test has higher sensitivity with the lower speci-
ficity [59-62]. Therefore, the two tests may not recog-
nize a certain proportion of actually affected animals, 
leading to infection remaining in the animals [62-65]. 
The intradermal tuberculin test calculates dermal 
swelling basically due to CMI response 72 h after the 
introduction of purified protein derivative (PPD) in 
the skin of the neck or the caudal fold. The surface 
of the neck is more sensitive than the surface of the 
caudal fold; for this reason, more doses of PPD are 
required in the caudal fold region to increase it’s sen-
sitivity like that of neck region [66]. At the same time, 
the SCITT test correlates with the response against 
bPPD and is applied in the cervical region to increase 
the specificity [55].

The in vitro IFN-γ assay involves two steps. In 
the first step, fresh blood samples are incubated to ini-
tiate the release of IFN-γ by sensitized T lymphocytes. 
The second stage requires separating the plasma from 
the blood and observing the IFN-γ in the plasma by 
an ELISA assay. A benefit of the IFN-γ assay is that 
the interpretation criteria are adjusted to fit local sit-
uations, such as the epidemiological conditions, TB 
prevalence, and the extent of the local bovine TB con-
trol program. The IFN-γ test has higher sensitivity than 
the skin test because the former detects TB disease in 
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livestock as early as 14 days after infection [67] and 
60-120 days faster than the SCITT test [68]. The most 
essential antigens used complementary to PPDs are the 
early secretory antigens (ESAT-6), culture filtrate pro-
tein 10 (CFP-10), and Rv3615c [69-73]. Moreover, the 
inclusion of Rv3020c increases the diagnostic sensitiv-
ity without affecting the specificity [74].
Postmortem Diagnosis of MTBC
Direct smears

For the rapid identification of MTBC infec-
tions, a direct smear is required for the detection of 
TB organisms from tissue samples with suspected 
infection followed by Ziehl–Neelsen (ZN) stain.. The 
basic principle of the stain is that MTBC available in 
the smear can take up an aryl methane dye, for exam-
ple, carbol fuchsin, into the cell, resulting in acid-fast 
staining reaction, after treatment with a weak acid-al-
cohol solution. This is attributable to the mycolic acids 
that are present in the thick bacterial cell wall [75,76]. 
The detection of bacterial organisms from the tissues, 
feces, or other biological substances by this method is 
reduced because of few MTBC and possible contam-
ination with other related organisms. Direct staining 
could not shed light on the members of the MTBC, 
producing the infection or show variation among via-
ble and non-viable cells [76,77].
Histopathology

In free-ranging wildlife, the diagnosis of 
Mycobacterium spp. relies on gross findings and his-
topathological analyses. One reliable method is his-
topathological analysis with hematoxylin and eosin 
staining [77]. This technique has high specificity and 
the additional advantage of producing results within 
a few days. A correlation of 94% was found between 
the results obtained using histopathological analysis 
and culture methods, regarding an agreement on the 
diagnosis of M. bovis infection in cattle [78].
Bacterial culture

Culture is regarded as the gold standard tech-
nique for diagnosing MTBC, as described previ-
ously [79,80], given its high specificity. However, it 
can occasionally produce false-negative results, and 
its sensitivity has reach only as high as 80% [81,82]. 
Pre-treatment and processing procedures such as 
homogenization, decontamination, and concentration, 
as well as culture media that prevent the growth of 
contaminating bacteria, are required for the success-
ful isolation of MTBC bacteria [83]. Critical factors 
for successful culture growth are the decontamination 
methods employed in the process, the type of decon-
taminant, and the concentration of decontaminant [84]. 
Decontaminants that are commonly used for this pur-
pose are cetylpyridinium chloride and benzalkonium 
chloride [85], oxalic acid [86,87], sulfuric acid [88], 
and sodium hydroxide [85].

For the isolation of mycobacteria, three types of 
media are typically used. The first is egg-based media, 

such as Stonebrink’s medium and Lowenstein–Jensen, 
with either glycerol or pyruvate. The second is agar-
based media, such as Middlebrook 7H10 and 7H11, 
and tuberculosis blood agar medium, B83. The third 
type is liquid media, such as Middlebrook 7H9. The 
use of solid and liquid media together should max-
imize the sensitivity, an approach that has been 
approved for the isolation of mycobacteria in labora-
tories for human TB diagnosis globally [89-92]. There 
are limitations in the use of solid media for the screen-
ing of mycobacteria, although improvements have 
been made regarding the detection time and recovery 
rate through the use of broth-based culture systems, 
such as BACTEC 460, the Mycobacteria Growth 
Indicator Tube (BACTEC MGIT 960), and the Versa 
TREK system [90].
Serology or antibody detection test (humoral 
immune response)

Diagnosis based on an antibody is the most 
widely used approach for detecting TB in wild boar and 
pigs because of the maintenance of antibodies during 
transportation, storage, and handling, and the fact 
that the protocol can be standardized in different lab-
oratories [93-97]. A widely used antigen is the isolated 
PPD from M. bovis (bovine PPD) [95,98,99]. However, 
new research has focused on improving its specific-
ity through the use of different antigens, for example, 
MPB83, as described by García-Bocanegra [100,101], 
MPB70 [102], or CFP10/ESAT-6 [103,104]. 
Responses to MPB83 were identified at an earlier 
stage during experimental infections, with antibody 
responses arising 3-4 weeks after infection [105-108]. 
Moreover, antibodies directed at ESAT-6 and MPB70 
were observed at 12 weeks [109] and 20 months after 
experimental infection, respectively, as reported by 
Fifis [110]. Hence, the highest and more rapid response 
to MPB83 protein proves that it is a better protein for 
use in producing diagnostic antigens for serological 
tests [55]. Several novel diagnostic tests explicitly 
designed to detect MTBC infection in wildlife have 
been established, such as the DPP (dual-path platform) 
WTB (MPB83, MPB70), DPP VetTB (MPB83, ESAT-
6, CFP-10) [99], TB ELISA-VK®kit test (bPPD) [111], 
INgezim TB CROM Ab, INgezim Tuberculosis DR 
(based on MPB83), INgezim TB Porcine (based on 
MPB83 and MPB70) [112], and P22 ELISA (MPB70, 
MPB83, ESAT-6, CFP-10) [104,113].
Molecular Diagnosis
Multiplex PCR in the diagnosis of MTBC

Multiplex PCR methods produce a higher 
rate of the detection of MTBC. These techniques 
amplify two or more target genes in a reaction simul-
taneously [114,115]. A single target could end in a 
false-negative result, as a number of the targeted genes 
are not present in some MTBC strains [115,116]. 
The most efficient approach is one based on primers 
that amplify segments of the IS6110 element, espe-
cially targeting the 123 bp and 245 bp fragments. 
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Insertion sequences (IS) are mobile genetic elements 
that constitute a form of repetitive DNA in bacterial 
genomes. Insertion IS6110 is an IS of 1361 bp that is 
not present in mycobacteria other than members of the 
MTBC [117]. Another PCR that produces excellent rec-
ognition of M. bovis isolates relies on the amplification 
of a 500 bp DNA segment, especially targeted for the 
123 bp and 245 bp fragments inside the RvD 1Rv2031c 
genomic sequence [118,119]. Multiplex PCR has the 
advantage of being fast and accurate and can differenti-
ate M. bovis from other members of MTBC by amplifi-
cation of two DNA fragments [115,116,120].
Digital PCR (dPCR) in the diagnosis of MTBC

Digital PCR (dPCR) was more accurate  [121] 
while some reported that it was not susceptible to inhib-
itors  [122] compared with real-time quantitative PCR 
(qPCR) and does not require a calibration curve needed 
to produce a qPCR copy number [123]. The high preci-
sion of PCR and theoretical accuracy have led to its use 
to measure reference materials [124,125] and to enable 
other molecular methods to be optimized [126]. Because 
of the lipid-rich cell wall and large GC-rich bacterial 
genome (4.4 MB) of MTBC members, makes diagno-
sis using other molecular methods difficult [127]. The 
dPCR was chosen to analyze this problematic genome 
and to quantify plasmid and MTBC gDNA with differ-
ent PCR master-mixes, pairs of primers, and platforms 
of dPCR [128].
DNA markers for the detection of MTBC

Some important DNA markers used in differ-
entiating MTBC from non-tuberculous mycobacte-
ria (NTM) in the diagnosis of TB include rrs (16S 
rRNA), ITS (16S-23S rRNA), IS6110, groEL2 (hsp65), 
dnaJ, fbpA (32 kDa protein), MPT64 (MPB64), devR, 
PPE24 (KS4), and lepA [129].

rrs (16S rRNA)
Studies have revealed that the 16S rRNA 

sequence can be used for the detection of mycobac-
teria, requiring fewer than 10,000 bacteria [130]. 
For species that are not easily characterized using 
normal biochemical methods, 16S rRNA can be 
used for identification, leading to the recognition of 
new species [131]. Nucleic acid amplification meth-
ods such as PCR, real-time PCR, and reverse cross-
blot hybridization PCR of the 16S rRNA gene can 
be used to distinguish between MTBC and NTM 
members [132]. However, the use of the 16S rRNA 
gene alone is insufficient to differentiate MTBC and 
NTM groups because members of MTBC have 99.9% 
nucleotide resemblance and contain similar 16S rRNA 
sequences, and there is little difference genetically 
among NTM species [133,134].

ITS (16S-23S rRNA)
PCR amplification of the 16S-23S rRNA inter-

nal transcribed spacer (ITS) is used to recognize 
the genus Mycobacterium, which is applied to dis-
tinguish between MTBC and NTM based on the 

specific primer sequence [135]. This b iomarker ITS 
16S-23S rRNA is a spacer that distinguishes 16S and 
23S rRNA genes. Its size ranges from 270 to 360 bp 
among species, with greater sequence variation than 
the 16S rRNA [136]. ITS sequencing has a better 
ability to detect variation in species [137]. When the 
IS6110 gene is lacking, sequence analysis of ITS helps 
in identifying MTBC members [138]. Slow growers 
have shorter ITS than fast growers, with its length 
correlating with the growth rate. The ITS sequence is 
found among MTBC, with the same sequence exist-
ing among M. tuberculosis, M. bovis, M. bovis BCG, 
M. africanum, and M. microti [139].

IS6110
Insertion sequences (ISs) are short mobile 

genetic DNA elements encoding proteins responsible 
for the transposition activity, which permit them to 
spread within the genome. In the bacterial genome, 
the insertion sequence causes deletions, duplications, 
and rearrangements due to changes in the genomic 
plasticity of mycobacterial species [140]. IS6110 is 
the most available and easily characterized insertion 
element, which is found mainly in MTBC; it is used to 
distinguish MTBC from other mycobacteria. Several 
copies of this element are available at different posi-
tions in the genome, which facilitates better strain 
genotyping [141]. IS6110-restriction fragment length 
polymorphism (RFLP) has been widely used for epi-
demiological research on TB and has high discrimi-
natory power, but is not suitable for species with less 
number of IS6110 copies [141]. IS6110 PCR and real-
time PCR have shown high sensitivity (71-87.9%) and 
specificity (95-98%) compared with culture and acid-
fast bacilli [142].

GroEL2 (hsp65)
The identification of all mycobacterial strains is 

achieved using the hsp65 gene, which encodes a heat 
shock protein [143]. hsp65-PCR-RFLP can distinguish 
between mycobacteria and NTM [144], with a sensi-
tivity of 100% and specificity of 93.1%, in contrast to 
culture and microscopy methods [145]. hsp65 can be 
applied for specific recognition of NTM and can iden-
tify M. avium complex and M. intracellulare [146]. 
hsp65 sequencing analysis is more accurate (88.9%) 
for identifying NTM than 16S rRNA (75.9%) [134].

dnaj
The dnaj gene encodes a cold-shock protein, 

which is a genus-specific gene that is amplified from 
almost all mycobacteria [147]. MTBC has similar 
dnaj sequences, while NTM has nucleotide substitu-
tions at positions 1415 (A-C), 1417b (G-T/A/C), and 
1442 (C-A), which are distinguished by the applica-
tion of dnaj-PCR-RFLP [148] GENECUBE (Toyobo, 
Japan). This is an automated gene analyzer based on 
real-time PCR that targets the dnaj gene to detect the 
presence of MTBC and MAC [149]. When 56 species 
of mycobacteria were sequenced for dnaj, 16S rRNA, 
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and hsp65 genes, mean sequence similarity levels 
were 80.4%, 96.6%, and 91.1%, respectively. This 
proved that dnaj has higher discriminatory power than 
16S rRNA and hsp 65 genes and is useful for differen-
tiating NTM [150].

fbpA (32 kDa protein)
fbpA is a secreted protein that is present in most 

MTBC strains but absent in non-MTBC strains [151]. 
Sequencing analysis has revealed that the fbpA gene 
is similar between MTBC groups, but has distinct 
sequences within MTBC species, such as M. kansasii, 
M. gastri, M. gardone, and M. malmoense [152]. This 
fbpA gene has better discriminatory power than the 
hsp65 gene for identifying different NTM species [153].

MPT64 (MPB64)
The MPB64 gene is generally found in members 

of the MTBC and is used as an indicator in the diag-
nosis of paratuberculosis (PTB), TB meningitis, and 
extrapulmonary TB [154]. PCR using MPB64, has 
been shown to have sensitivity of 88% and specificity 
of 100% [155]. It can be used to diagnose TB in spu-
tum, cerebrospinal fluid (CSF), ascitic fluid, and urine 
samples, but tends to give false-positive results in 
blood samples [156]. Studies have shown that MPB64 
is complementary to IS6110 PCR and has the capac-
ity to decrease false-negative results in strains lacking 
the IS6110 element [157]. Gene mutation is the major 
cause of false-negative results [158].

DevR
devR encodes the cytoplasmic response reg-

ulator DevR, which works together with the mem-
brane-bound sensor kinase DevS to form DevRS. 
During latent infection in the host, DevRS is respon-
sible for adaptation and dormancy [159]. Despite 
reports that shorter fragments of the devR gene signifi-
cantly increased the sensitivity of TB diagnosis [160], 
the sensitivity of devR PCR assay is lower than that of 
MPB64 and IS6110 [161].

PPE24 (KS4)
Some MTBC genes that have been less used for 

biomarker include the KS4 fragment of the Rv1753c 
gene, encoding the protein PPE. It has sensitivity of 
98% and specificity of 98% in identifying MTBC, and 
cross-reacts with M. fortuitum and M. xenopi [129].

LepA
The Rv2404c gene encodes an elongation factor 

that is required for protein synthesis in MTBC mem-
bers, but not in NTM [162]. It has been used as a target 
for internal amplification control to develop a real-
time PCR assay detecting MTBC [163].
Genotyping Techniques used in MTBC 
Diagnosis

Molecular typing uses genetic markers to search 
for sources of outbreaks, to detect the epidemic or 

pandemic spread of particular strains, or to reconstruct 
the evolutionary trends of a specific group of bacteria. 
The majority of the genotyping methods were devel-
oped in the 1990s. At this time, efforts were made 
toward standardizing typing protocols to increase the 
quality of epidemiological research [164]. Genotyping 
is divided into two methods: The whole-genome tech-
niques and partial-genome typing of MTBC [165]. 
The whole-genome techniques have the benefits of 
using all of the organism’s available genetic infor-
mation. Knowledge of the mutation rate is a criti-
cal factor determining the effectiveness of different 
genotyping methods. The mutation rate describes the 
frequency at which molecular fingerprint patterns 
change and is important for appropriate analysis of 
molecular data for epidemiological or phylogenetic 
research [166,167]. A higher mutation rate could result 
in the high estimation of epidemiologically unrelated 
MTBC, which occurs at hypervariable loci [90,168].
Whole-genome Typing of MTBC
Restriction endonuclease analysis (REA)

This technique uses three restriction enzymes, 
namely, BstEII, PvuII, and BclI, for typing M. bovis 
isolates [169] and the joining of DNA strands of 
whole-genome DNA at specific nucleotide sequences. 
These restriction endonucleases digest their targets 
into several smaller segments, which are then differ-
entiated by standard agarose gel electrophoresis. The 
developed segment patterns are visualized and com-
pared with other isolates, enabling the differentiation 
of strains. The development of REA enables us to con-
firm whether domestic animals have become infected 
on farms or whether the infection was the result of 
the purchase of an initially diseased animal [170,171]. 
In some countries, this technique is used for epide-
miological evaluation [172], but is yet to gain wide 
acceptance for this because of technical problems 
and difficulties in interpreting patterns. However, it is 
applicable to MTBC prevention and control programs.
Pulsed-field gel electrophoresis

The technique of pulsed-field gel electropho-
resis (PFGE) was initiated to bypass the problem of 
analysis of excessive smaller number of DNA seg-
ments produced by REA. The PFGE process utilizes 
restriction enzymes that provide a smaller number of 
sections, which are very large, to be differentiated by 
standard agarose gel electrophoresis; but it is easily 
resolved using a pulsed electrical field. Initially, this 
approach was developed for M. tuberculosis isolates 
[173], but it was later employed for M. bovis and M. 
bovis BCG [174,175].
Whole-genome sequencing (WGS)

Publication of the whole-genome sequences of 
M. tuberculosis, M. bovis and M. bovis BCG [176-178] 
is among the major scientific achievements in molecu-
lar tuberculosis research. Since its introduction,  WGS 
has been used and has brought changes in genotyping 
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by enabling the highest level of discrimination. WGS 
is a reliable method for forensic transmission and 
characterization analysis, allowing the assessment of 
genetic differences over time and the identification of 
transmission patterns at the individual level [179]. At 
present, WGS cannot be applied for regular diagnosis 
because of its cost and the need for a bioinformatic 
method. However, this ongoing progress is expected 
to increase our understanding of M. bovis infection 
and its effect on local epidemics.
Whole-genome microarray

The introduction of whole-genome sequence 
data for different species of the MTBC has made it 
possible to apply microarray technology to compare 
strains, which has been particularly used to sequence 
reference strains [180]. The major objective of this 
technique is to perform comparative genomic hybrid-
ization, referred to as comparative genomics (DNA 
microarray), and for the comparison of gene expres-
sion, known as transcriptomics or expression profil-
ing (RNA microarray). The designs for these differ-
ent approaches are the same and do not depend on 
the initial products (DNA or RNA). PCR products 
that are open reading frame (ORF) genes of refer-
ence strains are applied on a solid material (e.g., glass 
slides), then the amplification of PCR products for 
DNA and reverse transcriptase for RNA is performed, 
followed by the application of fluorescent dyes that 
are then hybridized on the slides [181]. Subsequently, 
the spots produced are visualized with a fluorescence 
reader and analyzed using the software. Comparative 
genomics clarifies discrepancies among groups of 
MTBC, and the application of whole genomes has 
shed light on the pathogenesis, host adaptation [182], 
and virulence of different M. bovis strains [183]. It 
also helps to identify chromosomal polymorphisms 
as genetic markers for clonal complexes [184-186]. 
However, this method can be used only for research 
studies, rather than for regular diagnosis.
Partial-genome Typing of MTBC
Restriction fragment length polymorphism

Restriction fragment length polymorphism 
(RFLP) analysis utilizes the restriction enzyme PvuII 
or AluI, followed by southern blotting and gel electro-
phoresis of the fragmented isolated DNA onto a nitro-
cellulose or nylon filter [115]. RFLP based on IS6110 
is the genotyping method commonly applied for 
M. tuberculosis strains, which contain up to 20 copies 
of this IS [187]. However, this method is not easy to 
apply in different laboratories [188]. This technique 
also lacks discrimination for low-copy-number strains 
such as M. bovis; it is not frequently used for typing or 
routine diagnosis [164,189-191].
Spoligotyping

Spoligotyping, also known as spacer oligonu-
cleotide typing, is a rapid and robust technique that 
enables MTBC isolates to be typed at high throughput, 

with no need for DNA purification [192]. In a previous 
study [193], researchers were able to identify a 
clustered regularly interspaced palindromic repeat 
(CRISPR) region peculiar to the MTBC known as the 
direct repeat (DR) region. It is composed of multiple 
36 bp DRs interspersed by unique sequences referred 
to as spacers, of 25-41 bp in length [194]; a DR and its 
adjacent spacer are called a direct variant repeat (DVR). 
The strains differ in terms of the number of DVRs; the 
presence or absence of the spacers is used for strain 
typing. While 104 spacer sequences are found in the 
DR region, not all exhibit sufficient polymorphisms 
that are important for strain typing [194,195].  The 
appropriate spoligotyping mehods involved the use 
of 43 spacers [192]. Two primers are utilized to target 
individual DRs and amplify the entire DR region with 
subsequent hybridization of fragments on a blotting 
membrane, which is joined by covalent binding to oli-
gonucleotides and visualized through chemilumines-
cence. The membranes are prepared in the laboratory 
or obtained commercially from Ocimum Biosolution 
Ltd. (Hyderabad, India). This reverse line blot hybrid-
ization analysis provides results that are simple to save 
due to translation of the patterns into a binary code 
(0, absence of spacer; and 1, presence of spacers), and 
globally approved names for the spoligotype patterns, 
which are copied from spoligotype websites (http://
www.Mbovis.org; http://www.pasteur-guadeloupe.fr/
tb/bd_myco.html) [196,197].
Variable number tandem repeats

Variable number tandem repeat (VNTR) typing 
has focused on genetic loci that are found in the entire 
genome; these loci contain an enormous amount of 
data of repeated sequences. Due to various polymor-
phisms in the copy number of the repeats, the tandem 
repeats were successfully used to fingerprint bacterial 
genomes [198]. VNTR typing, also called multilocus 
variable number tandem repeat analysis (MLVA), has 
several benefits, such as relatively low cost, simplic-
ity in terms of use, and the production of unambig-
uous results [199]. VNTR typing relies on the PCR 
amplification of targeted loci with a particular primer 
pair and then gel electrophoresis. The application of 
automatic sequencers to check the correct size of the 
amplified fragments has been optimized in several 
research and diagnostic laboratories, enabling auto-
mated high-impact genotyping [200]. For the inter-
pretation of results, the application of an allele calling 
table related to several band sizes that are equivalent 
to the number of repeats in each locus is indispens-
able. The earlier VNTR locus found in the M. tuber-
culosis genome contains about 75 bp tandem repeats 
situated in the large ORF [201]. It was previously 
reported [202] that some loci are found in ORFs, for 
example, QUB11a, QUB18, QUB23, and QUB26. 
Many loci found within coding regions have repeat 
sizes that are multiples of three. Several scattered 
repeats are found in intergenic regions and are known 
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to play an important role in the bacterial genome. In 
a previous study [203], these loci were called myco-
bacterial interspersed repetitive units (MIRUs), with a 
size range from 46 to 101 bp. VNTR typing of MTBC 
is also called MIRU-VNTR typing. The number of 
MIRUs per genome is around 40-50. VNTR typing is 
useful for epidemiological studies and can be used to 
recognize multiple infections [204,205].
IS6110 ample printing

Ample printing uses a polymorphic tandem 
repeat (MPTR) sequence [206], which is similar to the 
DR region comprising 10 bp direct repeats separated 
by 5 bp unique spacers. MPTR was found in atypical 
mycobacteria and possessed few polymorphisms in 
the MTBC. Nonetheless, for M. tuberculosis, excellent 
results have been obtained by applying this approach 
in combination with IS6110, referred to as IS6110-
ample printing, which makes use of the gap between 
IS6110 and copies of MPTR sequences. Because the 
results of ample printing differ significantly in terms 
of discrimination and reproducibility, it is not regu-
larly used as a diagnostic technique [207-209].
Random amplified polymorphic deoxyribonucleic 
acid (RAPD) analysis

Because of its simplicity, RAPD is usually used 
for genotyping organisms, as a PCR-based fingerprint-
ing method [210]. It was initially established for the 
typing of M. tuberculosis isolates, as described pre-
viously [211]. However, it is rarely used for M. bovis 
because of poor results in terms of discrimination 
ability [207,212]. Problems associated with reproduc-
ibility have made this method unpopular for the geno-
typing of mycobacterial species.
Multilocus sequence typing (MLST)

The primary purpose of MLST is to categorize 
organisms in terms of the level of neutral sequence 
diversity [213]. It has been applied to the characteri-
zation of organisms of bacterial origin by a technique 
of sequencing internal fragments of about 450-500 bp 
of approximately seven housekeeping genes. For each 
individual gene, different sequences are allocated spe-
cific alleles, with the aim that an isolate with allelic 
data or sequence type (ST) is gained by joining the 
alleles at each locus.  Housekeeping gene produce 
differences slowly, which makes them selectively 
neutral. In contrast with other bacterial organisms 
with variation in housekeeping genes, members of 
MTBC are monomorphic with reduced discrimination 
levels [214] to improve discrimination, characteriza-
tion of housekeeping genes such as encoding antigens 
and antibiotic-resistance genes, and genes targeting 
the region of insertion is necessary [215].
RD typing

Region of Deletion (RD) typing is used for 
the differentiation of species that are members of 
MTBC. RD9 is used to differentiate M. tuberculosis 
from other members of the MTBC and RD4 which 
is not found in all of M. bovis isolates. As a result, 

RDs were used as PCR targets as a rapid method of 
species identification; more recently, additional RDs 
were discovered, namely, RD2seal [216], RD1mic 
[217], RD1das [218], RD1 mun RD12oryx, and RD1 
BCG, to distinguish M. pinnipedii, M. microti, M. das-
sie bacillus, M. mungi, M. orygis, and M. bovis BCG, 
respectively, from other species [18,20,219]. For PCR 
application, different methods are used, such as using 
three primers, involving two flanking and one inter-
nal primer [220,221], or four primers, involving two 
flanking and two internal primer pairs [137], to locate 
the presence or absence of the RDs. Several applica-
tions of PCR to find different RDs have been approved 
for species differentiation [222,223]. Because of the 
one-directional evolution of the RDs [224], these mark-
ers are beneficial for the emergence of MTBC and to 
find clonal complexes within the MTBC host-adapted 
members [185,186].
Single-nucleotide polymorphism (SNP)

SNP typing is an essential form of genotyping 
analysis that enables differentiation among mem-
bers of MTBC, for example, M. bovis [16] and 
M. caprae [225]. A previous study [163] described a 
unique M. caprae-specific SNP in the M. tuberculosis 
H37Rv lepA (Rv2404c) gene, which is particular to 
bovine and cervidae isolates [162]. Genotyping using 
SNP serves as an excellent technique for the recogni-
tion of specific lineages in M. tuberculosis [226,227] 
and M. bovis [228,229]. A commercial DNA strip uses 
the RD1 deletion for the identification of M. bovis 
BCG and differentiation of MTBC species [230], 
which makes it a useful tool for the diagnosis of tuber-
culosis in different wild animals [34-36].
Conclusio n

Tuberculosis remains a global threat at the live-
stock – wildlife – human interface which require dif-
ferent diagnostic approach in the disease detection, 
prevention and control strategies. Each of these diag-
nostic methods has its own merits and demerits in 
terms of application and efficiency. The antemortem 
diagnosis detected CMI responses using the SITT, 
SCITT, and gamma interferon test (IFN-ɣ). The skin 
test requires animals to be handled twice, which is 
dangerous, especially for some wildlife, and the test 
cannot be repeated for about 90 days due to immuno-
logical sensitization to the PPD antigens. The higher 
sensitivity of the IFN-γ test relative to the skin test is 
because the IFN-γ test detects TB disease in animals as 
early as 14 days after infection and 60-120 days faster 
than the SCITT test. For postmortem diagnosis, direct 
smears are the fastest, cheapest, and simplest way to 
detect acid-fast MTBC. For this reason, a direct smear 
of tissue samples can be stained following the Ziehl–
Neelsen technique to provide a presumptive identifi-
cation of MTBC. Histopathological techniques have 
high specificity and the advantage of producing results 
within a few days. A correlation was found between 
the results obatained using histopathology and culture 
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methods. Serology or antibody detection is the most 
widely used approach for the detection of TB in wild 
animals because of the maintenance of antibodies 
during transportation, storage, and handling, the abil-
ity to standardize the protocol in different laboratories, 
and the fact that the results are obtained within a short 
period of time. One disadvantage of antibody detection 
is that humoral responses to infection occur at the later 
stage of the disease. Bacterial culture remains the gold 
standard diagnostic method for MTBC, but requires 
several weeks to obtain positive results due to the 
extremely fastidious growth of tuberculous mycobac-
teria. It is used for species differentiation and has high 
sensitivity and specificity. Molecular diagnostic tech-
niques of MTBC have advantages over conventional 
methods due to their sensitivity and specificity, being 
less complicated, less time-consuming, but expensive 
and not cost-effective compared with conventional 
methods for the early confirmation of the diagnosis of 
TB in both humans and animals. Molecular genotyp-
ing methods are used to differentiate between MTBC 
and NTM, and for species differentiation, which are 
not possible by the conventional approach. The com-
bination of antemortem, postmortem, and molecular 
diagnostic techniques is the best option for controlling 
and preventing TB in both humans and wild animals.
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