MFT00104

Science Foundation MATHEMATICS II

Marinah Muhammad Muhammad Akmal Mohd Zawawi Siti Aisyah Nawawi Copyright UMK PRESS, 2023

All rights reserved. No part of this publication may be reproduced, stored in production transmitted in any form, whether electronic, mechanical, photocopying, recording or otherwise, without having permission from the UMK Press.

Cataloguing-in-Publication Data

Perpustakaan Negara Malaysia

A catalogue record for this book is available from the National Library of Malaysia

ISBN 978-967-0021-51-5

Executive Producer: Azman Hashim. Copy Editors: Amirul Firdaus Zilah, Raihana Sulaiman. Acquisition Editor: Nur Fatihah Pahazri. Concept & Typesetting: Mohamad Kamarul Hisyam A Rahman. Proof Reader: Zaliha Noor. Technical Assistant: Mohd Suhairi Mohamad.

Publish by: UMK Press Universiti Malaysia Kelantan The Office of Library and Knowledge Management 16300 Bachok, Kelantan (Member of Malaysian Scholarly Publishing Council (MAPIM)) (Member of Malaysian Book Publisher Association (MABOPA) Membership No. : 201903)

Printed by: Visual Print Sdn Bhd No 47, 47-1 Jalan Damai Raya 1 Alam Damai, Cheras 56000 Kuala Lumpur **Your scientific** journey begins here.

CONTENTS

List of Figures List of Tables	xiii
	XV
Preface	xvii
Acknowledgement	xix

CHAPTER 1 VECTORS

1.1 Definition of Vectors	1
1.2 Vector in the Plane, R ²	5
1.2.1 Vector operations	7
1.2.2 Unit vectors	10
1.2.3 Direction angles	12
1.2.4 The dot product of two vectors	13
1.2.5 Applications of vectors	17
1.3 Vector in Space, R ³	21
1.3.1 The scalar product	28
1.3.2 The vector product	37
1.4 Lines and Planes in Space, R ³	47
1.4.1 Lines	47
1.4.2 Planes	51

CHAPTER 2

MATRICES AND DETERMINANTS

2.1 Introduction	61
2.2 Types of Matrices	62
2.2.1 Row and column matrix	62
2.2.2 Null or zero matrix	62
2.2.3 Square matrix	62

2.2.4 Equal matrices	64
2.2.5 The negative of a matrix	65
2.3 Operations on Matrices	66
2.3.1 Multiplication of a matrix by a scalar	66
2.3.2 Addition and subtraction of matrices	66
2.3.3 Product of matrices	67
2.4 Elementary Row Operation	72
2.5 Determinants	74
2.5.1 Minor and cofactor of element	75
2.5.2 Properties of determinant	78
2.6 Special Matrices	85
2.6.1 Transpose of a matrix	85
2.6.2 Symmetric matrix	85
2.6.3 Skew symmetric matrix	85
2.6.4 Singular and non-singular matrices	87
2.6.5 Adjoint of a matrix	88
2.6.6 Inverse of a matrix	89

CHAPTER 3

SYSTEM OF LINEAR EQUATION, SLE

3.1 Solving SLE Using the Substitution Method	97
3.2 Solving SLE Using the Elimination Method	99
3.3 Solving SLE Using Matrices	103
3.3.1 Crammer rule's method	103
3.3.2 Inverse matrix method	107
3.3.3 Gauss elimination method	109
3.4 Existence and Uniqueness in Solving LES	115
3.5 Application in Systems of Linear Equations	117

CHAPTER 4 SET AND PROBABILITY

4.1 Introduction to Sets	131
4.1.1 A language of set	131
4.1.2 Set operations	133
4.1.3 Additional laws for set	135
4.2 The Number of Elements in Set	138
4.2.1 Counting the elements of a set	138
4.2.2 Union rule for two sets	139
4.3 Pemutations and Combinations	140
4.4 Sample Space and Events	145
4.4.1 The language of probability	145
4.4.2 Tree diagram	147
4.4.3 Events	148
4.5 Introductions to Probability	151
4.6 Basic Probability Rules	153

CHAPTER 5

STATISTICS AND DATA DESCRIPTION

5.1 The Nature of Statistics	163
5.1.1 What is statistics?	163
5.1.2 Population and sample	164
5.1.3 Descriptive and inferential statistics	166
5.1.4 Parameters and statistics	173
5.1.5 Statistical data analysis	175
5.2 Variables and Data Organization	175
5.2.1 Variables	175
5.2.2 Data organization	179

5.3 Describing Data by Tables and Graphs	181
5.3.1 Qualitative variable	181
5.3.2 Quantitative variable	190
5.3.3 Sample and population distributions	193

CHAPTER 6

MEASURE OF CENTER AND VARIATION

6.1 Measure of Center	199
6.1.1 The mode	199
6.1.2 The median	202
6.1.3 The mean	203
6.1.4 Which measure to choose?	205
6.2 Measure of Variation	206
6.2.1 Range	207
6.2.2 Interquartile range	209
6.2.3 Standard deviation	212
6.2.4 Sample statistics and population parameters	216
6.3 Microsoft Excel to Analyse Data	217

CHAPTER 7

SAMPLING DISTRIBUTIONS AND ESTIMATION

7.1 Sampling Distributions	231
7.2 Sampling Distributions of Sample Means	232
7.3 Point Estimations	237
7.4 Confidence Interval	239
7.4.1 Confidence interval for μ when σ known	240
7.4.2 Large sample confidence interval for μ	242
7.4.3 Small sample confidence interval for μ	243

CHAPTER 8

SUMMARIZATION OF BIVARIATE DATA

8.1 Introduction	251
8.2 Qualitative variable	251
8.2.1 Chi-square Test	252
8.3 Qualitative Variable and Quantitative Variable	255
8.3.1 Paired Samples T-Test	255
8.4 Quantitative Variable	258
8.4.1 Scatterplot	259
8.4.2 Correlation coefficient	265
Bibliography	279
Index	281
Authors' Biographies	287

LIST OF FIGURES

Figure 1.1: Illustration of vector addition.	7
Figure 1.2: Illustration of a situation when an airplane travelling.	18
Figure 1.3: Illustration of vector components.	20
Figure 1.4: Illustration on the magnitude of a position vector.	22
Figure 5.1: The different of population and sample.	164
Figure 5.2: The different of population and sample.	167
Figure 5.3: Bar chart to present the number for each species of medicinal	170
plants.	
Figure 5.4: Figure 5.4.4 Pie chart shows the summary data blood types	183
among 50 UMK Science Foundation students.	
Figure 5.5: Figure 5.5.5 Charts for blood types of 50 UMK Science	183
Foundation Students: (a) vertical graph (b) horizontal graph.	
Figure 5.6: Example of Histogram with different sample size.	194
Figure 5.7: Example of population graph.	194
Figure 5.8: U-shaped and Bell-shaped frequency distribution.	195
Figure 5.9: Skewed frequency distribution.	195
Figure 7.1: U-shaped and Sample mean frequency distribution.	237
Figure 8.1: Number of shoes sold as a function of price (RM).	261

LIST OF TABLES

Table 5.1: Summary of descriptive and inferential statistics.	172
Table 5.2: Example of parameter and statistics.	173
Table 5.3: Symbols used for parameter and statistics.	174
Table 5.4: Encoded number of qualitative variable to nominal data.	180
Table 8.1: Contingency table for gender and type of car.	252
Table 8.2: Contingency table for gender and house location.	253
Table 8.3: Contingency table for level of education and type of house.	254
Table 8.4: Table weight of 20 cats before and after diet.	256
Table 8.5: Different names of the dependent and independent variables.	258
Table 8.6: Sales of Sport Shoes.	260
Table 8.7: Data weight of students and their spending for food.	261
Table 8.8: Scores of students in Program Asasi Sains at UMK Jeli for the	264
Mathematics and Physics course.	
Table 8.9: Summary of Pearson correlation coefficient r.	266
Table 8.10: Data of DO and NH3-N at nine different locations.	270
Table 8.11: Data of Heavy metal at different locations of pond.	271
Table 8.12: Data of Age and Glucose Level of six patients admitted to	274
hospital.	

PREFACE

This book covers the full syllabus of the Mathematics II course for Science Foundation Program students at Universiti Malaysia Kelantan. It has been written as a hands-on workbook module style to prepare these students in transitions from school mathematics teaching and learning concepts to higher mathematical thinking with analytical rigor at the university level.

In order to be user-friendly and easy to read and understand, the material was written casually. There is not contains a lot of text, and exercises, as in traditional textbooks. It is all mixed together with explanation, exploration, examples, exercises and tutorial worksheet for each chapter. It was designed for students to study in a small collaborative group setting, where they read and work together, assisting one another in mastering the content. Ideally, by using this book the students itself can be an instructor to their friends to clarify ideas. Although the intention of this book is to be used in solving some exercises in class, most of the reading and work will have to be done by the students out of class.

As previously indicated, it is preferred if students go through this book and work through the exercises in a small group setting both in and out of class. Because each exercise set can take many hours to complete, it is not always possible for group members to finish all of them at the same time. As a result, while certain tasks need the student to debate concepts with others in a group, they can also work on the exercises by themselves alone. If the student is extremely driven and has a strong background in mathematics, the content of this book can also be learned in a self-paced or individual manner. Ideally, all of the work should be done and shown in this workbook.

Marinah Muhammad Muhammad Akmal Mohd Zawawi Siti Aisyah Nawawi

ACKNOWLEDGMENT

Our present and future students will really understand us through this book. Therefore, we would like to express our gratitude to previous students which provided a space and time for us to write and gather materials through teaching and learning experiences with them for mathematics and statistics subjects to such an extent this book can be realized. We also want to give our special thanks to many people who saw us through this book; to all those who provided support, talked things over, read, wrote and offered comments.

We also would like to thank our family for enabling us to publish this book. They supported and encouraged us in spite of all time it took us away from them.

Thanks to UMK Science Preparatory Department and staff members of UMK Jeli Campus for encouraging us to write this book. Special thanks also goes to University Malaysia Kelantan for the one book one subject (OBOS) campaign that has further encouraged and motivated us to write this book. We really hope that this book will benefits to Science Foundation Program students in preparing them to strive in mathematics and statistics courses during undergraduate program.

CHAPTER 1 VECTORS

1.1 DEFINITION OF VECTORS

Vectors are usually first introduced as objects having magnitude and direction such as force and velocity which cannot be completely characterized by a single real number. Geometrically,

such a quantity can be represented by using a directed line segment. The directed line segment has initial point P (tail of \overrightarrow{PQ}) and terminal point Q (head of \overrightarrow{PQ}). Its magnitude (or length) is denoted by $\|\overrightarrow{PQ}\|$ and can be found using the Distance Formula.

Two directed line segments that have the same magnitude and direction are Equivalent as illustrated by side figure. The set of all directed line segments that are equivalent to the directed line segment \overrightarrow{PQ} which can be

said as a vector in the plane. Vectors defined this way are called free vectors.

Therefore, any two vectors of the same length and parallel to each other are considered to be identical. So, by this definition a vector is an infinite set of parallel directed line segments. Vectors can be denoted lowercase, boldface letters such as \mathbf{u} , \mathbf{v} , and \mathbf{w} or lowercase with arrows such as \vec{u} , \vec{v} ,

and \vec{w} . Therefore, for above case the vector \overrightarrow{PQ} can be denoted as $\mathbf{v} = \overrightarrow{PQ}$ or $\vec{v} = \overrightarrow{PQ}$, where its magnitude is also can be denoted as $\|\mathbf{v}\|$ or $\|\vec{v}\|$ instead of $\|\overrightarrow{PQ}\|$.

People often choose one line segment from this infinite set to suit a particular application and it is sensible to ask why in practice we can take a single representative without reference to the whole set. For example, suppose an insect walk

directly from a point O to point A and then from point A to point C with the length 30cm and 20cm respectively. The insect has walked 50 cm altogether, but in clearly not 50 cm from O to C, $A + AC \neq OC$. However it is true to say that, in traveling from O to A and then from O to C, or travelling from O to A and A to C, the insect arrives at the same point C as same as the insect walk directly from O to C, $\overrightarrow{OA} + \overrightarrow{AC} = \overrightarrow{OC}$, where \overrightarrow{OA} indicates both, the length and direction that are being considered.

By working with just the geometric definition of the magnitude and direction of vectors, several operations on vectors such as

addition, subtraction, and multiplication by scalars with their properties can be defined. For addition of vectors, Given two vectors \mathbf{a} and \mathbf{b} , a sum of these vectors can be denoted as $\mathbf{a}+\mathbf{b}$, and can be defined as follows. Vector \mathbf{b} is translated until its tail coincides with the head of \mathbf{a} . Then, the directed line segment from the tail of \mathbf{a} to the head of \mathbf{b} is the vector $\mathbf{a}+\mathbf{b}$.