MPT 00303

SCIENCE PRE-DEGREE **BIOLOGY**

Aainaa Syazwani Mohamad Amir Hamzah Nor Shahirul Umirah Idris Nurul Irene Hanie

Copyright UMK PRESS, 2023

All rights reserved. No part of this publication may be reproduced, stored in production transmitted in any form, whether electronic, mechanical, photocopying, recording or otherwise, without having permission from the UMK Press.

Cataloguing-in-Publication Data Perpustakaan Negara Malaysia

A catalogue record for this book is available

from the National Library of Malaysia

ISBN 978-967-0021-50-8

Executive Producer: Azman Hashim. Copy Editor: Amirul Firdaus Zilah, Raihana Sulaiman. Acquisition Editor: Nur Fatihah Pahazri. Concept & Typesetting: Siti Aishah Mokhtar. Proof Reader: Zaliha Noor Technical Assistant: Mohd Suhairi Mohamad.

Published by: UMK Press Universiti Malaysia Kelantan Office of Library and Knowledge Management 16300 Bachok, Kelantan (Member of Malaysian Scholarly Publishing Council (MAPIM)) (Member of Malaysian Book Publishers Association (MABOPA) Membership Number : 201903)

Printed by: Visual Print Sdn Bhd No 47, 47-1 Jalan Damai Raya 1 Alam Damai, Cheras 56000 Kuala Lumpur Your scientific journey begins here.

vi |

CONTENT

LIST OF ILLUSTRATIONS	xi
LIST OF TABLES	xix
LIST OF ABBREVIATIONS	xxi
PREFACE	xxiii
CHAPTER 1 BIOLOGY MOLECULES	1
Water	1
Carbohydrate	7
Lipids	11
Protein	17
Nucleic Acid	20
CHAPTER 2 ENZYME	29
Classification of Enzymes	32
Cofactor	33
Inhibitor	34
CHAPTER 3 STRUCTURE AND TRANSPORT	47
Cells	47
Organelles	52
CHAPTER 4 RESPIRATION AND PHOTOSYNTHESIS	67
Anaerobic Respiration	67
Aerobic Respiration	70
Photosynthesis	73
CHAPTER 5 GAS EXCHANGE	79
Gaseous Exchange in Plants	79
Gaseous Exchange in Human	81

CHAPTER 6 CONTROL AND REGULATION	89
Nervous System	89
Hormone	107
Homeostasis	109
Osmoregulation in Plants	116
CHAPTER 7 REPRODUCTION, DEVELOPMENT AND GROWTH	125
Sexual Reproduction in Humans	125
Sexual Reproduction in Plants	130
Asexual Reproduction in Plants	135
CHAPTER 8 IMMUNITY AND INFECTIOUS DISEASES	145
Immune System	145
Infectious Disease	151
Examples	153
CHAPTER 9 BIODIVERSITY AND ECOLOGY	165
Biodiversity in Malaysia	165
Conservation Biology	166
Population Ecology	169
Quantitative Ecology	176
CHAPTER 10 GENETIC	179
Mendelian Inheritance	179
Non-Mendelian Inheritance	184
Population Genetics	188
Mutation	188

CHAPTER 11 BIOTECHNOLOGY	193
Roles of Biotechnology	
Applications of Biotechnology	193
	193
GLOSSARY	198
BIBLIOGRAPHY	201
INDEX	203
AUTHORS' BIOGRAPHIES	205

x

LIST OF ILLUSTRATIONS

Figure 1.1	The water molecule is visualized in three ways: ball-and-stick, space-filling, and the structural formula with partial charges.	1
Figure 1.2	A hydrogen bond is the attraction between a lone pair of oxygen electrons and an electron-deficient hydrogen atom.	2
Figure 1.3	Vital properties of water	3
Figure 1.4	Latent heat of vaporization of water	6
Figure 1.5	Water skaters	7
Figure 1.6	Main function of carbohydrates	8
Figure 1.7	Lipids characteristics	11
Figure 1.8	Structure and functions of lipids	12
Figure 1.9	The importance of lipids	12
Figure 1.10	Saturated and unsaturated fatty acids	14
Figure 1.11	Phospholipids structure	16
Figure 1.12	Amino acid structure	19
Figure 1.13	Peptide bond	20
Figure 1.14	Nucleotides structure	21
Figure 1.15	Structure of DNA and RNA	22
Figure 1.16	Base pairs of DNA structure	23
Figure 2.1	Properties of enzymes	29
Figure 2.2	Characteristics of enzymes	30
Figure 2.3	Structure of enzymes	31
Figure 2.4	Lock and key model in enzyme reaction	32
Figure 2.5	Functional types of enzymes	32
Figure 2.6	Enzymes cofactors	33
Figure 2.7	Enzyme inhibition classification	34
Figure 2.8	Examples of enzymes and its functions	36
Figure 2.9	Mechanisms of enzyme reaction	37
Figure 2.10	Enzyme reaction	38
Figure 2.11	Factors affecting enzyme activity	39

Figure 2.12	Effect of the substrate on an enzyme reaction	40
Figure 2.13	Effect of temperature on enzyme reaction	40
Figure 2.14	Effect of pH on enzyme reaction	41
Figure 2.15	Main function of enzymes	42
Figure 3.1	Classification of domain	47
Figure 3.2	Characteristics and properties of bacteria	48
Figure 3.3	Structure of Archaea	49
Figure 3.4	Anatomy of animal cell	51
Figure 3.5	Anatomy of plant cell	51
Figure 3.6	Properties of cell organelle	52
Figure 3.7	Movement across a membrane	56
Figure 3.8	Transport into and out of the cell	57
Figure 3.9	Characteristics of passive transport	58
Figure 3.10	Sodium-potassium pump	59
Figure 3.11	Phagocytosis	60
Figure 3.12	Endocytosis	61
Figure 4.1	Anaerobic and aerobic respiration share the glycolysis pathway. If oxygen is not present, fermentation can produce lactic acid, ethyl alcohol, and carbon dioxide. The fermentation products still contain chemical energy and are widely used to make food and fuel.	68
Figure 4.2	<i>E.coli</i> are anaerobic bacteria that live in the human digestive tract.	69
Figure 4.3	Hurdler's muscles get energy from anaerobic respiration. It energises them for short-term sports.	70
Figure 5.1	Stomata control the transpiration of water vapor and the exchange of carbon dioxide and oxygen. Stomata are flanked by protective cells that swell or shrink as they absorb or lose water by osmosis. When they do this, they open or close the stomata.	79

Figure 5.2	The tiny white spots on the apple are lenticels that allow gas exchange.	80
Figure 5.3	Breathing depends on the contractions of the diaphragm.	81
Figure 5.4	Respiratory bronchiole	82
Figure 5.5	The alveoli	82
Figure 5.6	The alveoli are tiny sacs where gas exchange occurs in the lungs.	84
Figure 6.1	The nervous system includes the brain, spinal cord, and nerves (peripheral nervous system).	89
Figure 6.2	A neuron's structure allows it to transmit nerve impulses to other cells quickly.	90
Figure 6.3	Motor neuron axon. It sends nerve impulses to contract skeletal muscles.	91
Figure 6.4	The sodium and potassium pump maintains the resting potential of a neuron.	92
Figure 6.5	An action potential accelerates along an axon in milliseconds.	93
Figure 6.6	At a synapse, the terminal axon releases neurotransmitters. They bind to receptors on the other cell.	94
Figure 6.7	The two main divisions of the human nervous system are the central and peripheral nervous systems.	95
Figure 6.8	The components of the central nervous system.	96
Figure 6.9	The components of the central nervous system.	97
Figure 6.10	The nerves of the peripheral nervous system.	99
Figure 6.11	A reflex arc like this allows for involuntary actions. How can reflex responses be beneficial to the body?	100

Figure 6.12	The eye is the organ that senses light and allows us to see.	102
Figure 6.13	The ear is the organ that detects sound waves and allows us to listen. It also detects the position of the body so that we can maintain balance.	103
Figure 6.14	The taste buds on the tongue contain taste receptor cells.	104
Figure 6.15	Odor receptors: Smell receptors and associated nerves line the top of the nasal passages.	105
Figure 6.16	A steroid hormone crosses the plasma membrane of a target cell and binds to a receptor within the cell.	108
Figure 6.17	A non-steroidal hormone binds to a receptor on the plasma membrane of a target cell. So a secondary messenger affects cellular processes.	109
Figure 6.18	Feedback regulation. If an increase in body temperature (stimulus) is detected (receptor), a signal will cause the brain to maintain homeostasis (response). Once body temperature normalises, unfavourable effects end the response. This stimulus-receptor-signal-response sequence is used throughout the body to maintain homeostasis.	111
Figure 6.19	The human excretory system comprises the kidneys, ureter, urinary bladder, and urethra. The kidneys filter the blood and urine stored in the bladder until it is eliminated through the urethra. Right: Interior structure of a kidney.	114
Figure 6.20	Example of plants that have adaptations in ensuring osmoregulation.	116

Figure 7.1	During meiosis, the number of chromosomes is reduced from the diploid number (2n) to the haploid number (n). During fertilization, the haploid gametes group forms a diploid zygote, and the original number of chromosomes (2n) is restored.	126
Figure 7.2	This represents the human egg, often known as the placenta or a female reproductive cell. It does not have a defined shape like a sperm cell, which is a spherical egg cell with a haploid nucleus. Instead, it is more similar to the shape of a potato. Eggs have the cytoplasm and organelles that were present in the initial cell.	128
Figure 7.3	Angiosperms are flowering plants.	130
Figure 7.4	A full flower contains one or more sepals, petals, stamens, and carpels.	131
Figure 7.5	The difference between petals and sepals.	132
Figure 7.6	Life cycle of angiosperms	134
Figure 7.7	Roots are horizontal, modified, underground stems that produce the roots and shoots of new, individual plants in their nodes. Ginger is an example. Ferns and irises reproduce by roots, but their stems run directly above the soil's surface.	137
Figure 7.8	Most commonly called "runners" of strawberry plants, stolons are horizontal stems with long inner lines, which produce new roots and shoots at their tips. Offspring "spiders" at the ends of stolons give "spider plant" its name. Stolons also reproduce some varieties of the buttercup.	138

Figure 7.9	Shoots and adventitious buds grow on stems, leaves, or stems other than the tips. Redwood trunk pieces can produce new shoots (left), such as the leaves of Kalanchoe, "mother of thousands" (right).	139
Figure 7.10	Suckers – adventitious buds produced over an extensive root system – produce clonal colonies.	140
Figure 7.11	Onions and many other monocots produce bulbs – modified, underground buds – for food storage and vegetative propagation.	140
Figure 7.12	Tubers are specialized organs for food storage and vegetative propagation. They may form from stems (potato: bud on the inset) or roots (sweet potatoes).	141
Figure 7.13	Ornamental crocus (left) and important food crop taro (right) store food and propagate asexually by corms; short, vertical, bulging stems called corms. Corms may resemble bulbs, but internally they are entirely different. The bulbs store food in layers of thick leaves; these layers are absent in stalk-like hard corms.	142
Figure 8.1	A white cell called macrophage phagocytes bacteria in a series of steps described here: (a) ingestion of bacteria, (b) digestion of bacteria with enzymes, and (c) disposal of residual waste particles.	147
Figure 8.2	The lymphatic system includes the organs and vessels.	149
Figure 8.3	Correct way to wash hands. Frequent handwashing helps prevent the spread of pathogens.	152
Figure 9.1	Characteristics of the population.	169

Figure 9.2	The population size is determined by the balance between natality, immigration, mortality, and emigration.	170
Figure 9.3	Population dispersion patterns.	170
Figure 9.4	Growth of populations according to exponential (J-curve) growth model (left) and logistic (S-curve) growth model (right).	171
Figure 9.5	Characteristics of demography.	173
Figure 9.6	Three survivorship curves: Type I, II, and III.	174
Figure 10.1	Punnett square illustrating the allelic distribution of recessive traits.	180
Figure 10.2	Dominant allele distributions	181
Figure 10.3	Expressiveness and penetrance.	185
Figure 10.4	Mitochondrial ancestry.	186
Figure 10.5	Trinucleotide repeat expansion characteristic of Huntington's disease.	187
Figure 10.6	Types of point mutation.	189
Figure 10.7	Radiation damage to DNA due to thymine dimer formation induced by UV light.	190
Figure 11.1	Main applications of biotechnology.	193

LIST OF TABLES

Table 1.1	Specific heat capacity	4
Table 1.2	Class and examples of carbohydrates	9
Table 1.3	Protein and their functions	18
Table 1.4	Differences between DNA and RNA	22
Table 2.1	Biochemical property of enzyme	33
Table 3.1	Comparison of Prokaryotes and Eukaryotes	50
Table 3.2	Cell organelles and their function	52
Table 6.1	Caffeine content in drinking product	106
Table 7.1	Summarizes the parts of the flower	132
Table 8.1	Common types of pathogens that cause human disease, with an example of each.	146
Table 9.1	Summary of overall species richness in Malaysia (Source: 5 th National Report to Convention on Biological Diversity, 2015).	165
Table 9.2	Factors affecting distribution.	171
Table 9.3	The exponential and logistic equations.	172
Table 9.4	Comparison of r and K selected organisms.	175
Table 9.5	Characteristics of r-selected (Opportunistic) and K-selected (Equilibrial) populations.	175
Table 11.1	Summary of the advantages and disadvantages of Biotechnology.	195

LIST OF ABBREVIATIONS

ADP	Adenosine diphosphate
AIDS	Acquired immunodeficiency syndrome
ANS	Autonomic nervous system
ATP	Adenosine triphosphate
C2H6O	Ethyl alcohol
C3H6O3	Lactic acid
C6H12O6	Glucose
CBD	Convention on Biological Diversity
CDC	Centre for Disease Control and Prevention
CH3	Methyl group
CNS	Central nervous system
COOH	Carboxyl group
COVID-19	Coronavirus disease 2019
DNA	Deoxyribonucleic acid
ETC	Electron transport chain
HFMD	Hand, foot, mouth disease
IUB	International Union of Biochemist
IUCN	International Union Conservation of Nature
K	Potassium
MHC	Major histocompatibility complex
Na	Sodium
NAD	Nicotinamide adenine dinucleotide
NADH	Nicotinamide adenine dinucleotide hydride
NADPH	Nicotinamide Adenine Dinucleotide Phosphate Hydrogen
NH2	Amino group
NPBD	National Policy on Biological Diversity
NSAIDs	Non-steroid anti-inflammatory drugs
OH	Hydroxyl group
PAV	Population viability analysis
PNS	Peripheral nervous system
RAMSAR	Convention on Wetland
RNA	Ribonucleic acid
SARS	Severe acute respiratory syndrome
SNS	Somatic nervous system
WHO	World Health Organization

PREFACE

Welcome to the first edition of Biology textbook for Science Pre-Degree. We are honoured to present this book which has been created to increase student access to quality learning materials. Our starting point, as always, is our passion for teaching Biology and to help student in acquiring and reinforcing Biology concepts and especially the difficult ones, more easily and effectively. You will find this book interesting as it is specially written and provide instant facts to ease learning and stimulate interest in Biology. Visual aids such as annotated diagram are integrated to make the concepts easier to understand and remember. This book complements all the topics in Biology for Science Pre-Degree syllabus and will certainly help in your preparation for the examination.

AAINAA SYAZWANI MOHAMAD AMIR HAMZAH NOR SHAHIRUL UMIRAH IDRIS NURUL IRENE HANIE

xxiv |

CHAPTER 1 BIOLOGY MOLECULES

WATER

Water is the most abundant, smaller molecular and typically makes up between 60-95 % of the new mass of an organism. Water is essential for two reasons:

- 1. It is a vital chemical constituent of living cells.
- 2. It provides an environment for those organisms that live in water.

Polarity and the formation of hydrogen bonds between water molecules are water's two most essential features.

Structure of Water Molecule

One oxygen atom bonds to two hydrogen atoms to form the water molecule. Due to oxygen's strong electronegativity, the bonds are polar covalent (Figure 1.1).

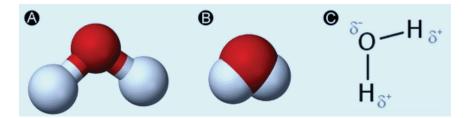


Figure 1.1: The water molecule is visualized in three ways: ball-andstick, space-filling, and the structural formula with partial charges.

The oxygen atom's attraction has for the shared electrons in the covalent bonds is substantially more potent than the hydrogen atoms. As a direct consequence, the oxygen atom oxygen must take on a partial negative charge (δ -), whereas each hydrogen atom must take on a partial positive

charge (δ +), as shown in Figure 1.1. The angle formed by the H-O-H bond is approximately 104.5°. Because of this, the molecule takes on a curved shape due to the two lone electron pairs found on the oxygen atom.

Polar molecules are attracted by dipole-dipole forces, with one molecule's positive end attracting the opposite end of a neighbouring molecule.

Hydrogen Bonds

Highly polar O-HO-H bonds reduce electron density around water's hydrogen atoms. Each hydrogen atom is drawn to the lone pair of electrons on a nearby oxygen atom (Figure 1.2). Water molecules have a weak affinity for one other because opposing charges make them 'sticky'. These weaker bonds are hydrogen bonds.

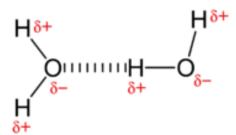


Figure 1.2: A hydrogen bond is the attraction between a lone pair of oxygen electrons and an electron-deficient hydrogen atom.

A positively charged portion of one molecule forms a hydrogen bond with a negatively charged region of another molecule through electrostatic attraction between the two regions. They undergo a continuous process of formation, destruction, and reformation in the presence of water. Only 20 % of these hydrogen bonds are created when water molecules are allowed to dwell in a liquid state at ambient temperature. When the temperature drops below 0 °C, all water molecules combine to create the three-dimensional