Handbook of: Basic Methods For Environmental Analysis

Editors Nurul Syazana Abdul Halim Nor Shahirul Umirah Idris Wong Hie Ling

Copyright UMK PRESS, 2023

All rights reserved. No part of this publication may be reproduced, stored in production transmitted in any form, whether electronic, mechanical, photocopying, recording or otherwise, without having permission from the UMK Press.

Cataloguing-in-Publication Data Perpustakaan Negara Malaysia

A catalogue record for this book is available from the National Library of Malaysia

ISBN 978-967-0021-61-4

Executive Producer: Azman Hashim. Copy Editor: Amirul Firdaus Zilah, Raihana Sulaiman. Acquisition Editor: Nur Fatihah Pahazri. Concept & Typesetting: Siti Aishah Mokhtar. Proof Reader: Zaliha Noor Technical Assistant: Mohd Suhairi Mohamad.

Published by: UMK Press Universiti Malaysia Kelantan Office of Library and Knowledge Management 16300 Bachok, Kelantan (Member of Malaysian Scholarly Publishing Council (MAPIM)) (Member of Malaysian Book Publishers Association (MABOPA) Membership Number : 201903)

Printed by: Pustaka Aman Press Sdn Bhd 4200-A Simpang tiga Telipot, Jalan Sultan Yahya Petra 15150 Kota Bharu Kelantan

TABLE OF CONTENT

List of Figures	vii
List of Tables	Х
List of Contributors	xii
Preface	XV
CHAPTER 1 INTRODUCTION TO ENVIRONMENT	1
Nurul Syazana Abdul Halim	
CHAPTER 2 WATER QUALITY ANALYSIS:	11
PHYSICAL PARAMETER	
Noor Syuhadah Subki	
CHAPTER 3 WATER QUALITY ANALYSIS:	25
CHEMICAL PARAMETER	
Nik Raihan Nik Yusoff and Rozidaini Mohd Ghazi	
CHAPTER 4 WATER QUALITY ANALYSIS:	59
ENUMERATION OF BACTERIA	
Mohamad Faiz Mohd Amin and Shahrul Ismail	
CHAPTER 5 WATER QUALITY ANALYSIS:	67
MACROINVERTEBRATES IN WATER	
Sharifah Aisyah Syed Omar, Aweng A/L Eh Rak and Ahmad Aba.	s Kutty
CHAPTER 6 HYDROLOGICAL OBSERVATIONS-	81
PRECIPITATION MEASUREMENT	
Norrimi Rosaida Awang	

CHAPTER 7 AIR QUALITY ANALYSIS: AUTOMATIC	91
WEATHER STATION	
Marieanne Christie Leong	
CHAPTER 8 SOIL ANALYSIS: PHYSICOCHEMICAL	101
PROPERTIES	
Muhammad Firdaus Abdul Karim and Wong Hie Ling	
CHAPTER 9 NOISE MEASUREMENT	109
Nor Shahirul Umirah Idris	
CHAPTER 10 SPECTROSCOPY AND	115
CHROMATOGRAPHY	
Rozidaini Mohd Ghazi and Nik Raihan Nik Yusoff	
Index	129

maen		127
Editors	'Biographies	133

LIST OF FIGURES

Figure 1.1	The connection between biotic and abiotic	2
	components	
Figure 1.2	How to save the Earth	8
Figure 2.1	a) YSI 556 Multi Probe, b) features of 556 YSI	12
	Multiprobe System and c) features for 556 YSI	
	Multiprobe [1]	
Figure 2.2	Example of 556 YSI Multi Probe System Display	13
	[1]	
Figure 2.3	a) Portable Turbidity Meter HACH 2100Q and	14
	b) features of Portable Turbidity Meter HACH	
	2100Q [2]	
Figure 2.4	Turbidity measurement procedure	16
Figure 2.5	Total Suspended Solid Portable meter (Model:	17
	HACH-LXV322.99.00002) and its features [5]	
Figure 3.1	Method for measuring the dissolved oxygen	26
Figure 3.2	Showing of 99.5% of DO on the screen of YSI	27
	556 MPS multiparameter instrument	
Figure 3.3	The YSI probe is ready to be submerged in the	29
	river	
Figure 3.4	The example of BOD graph indicating the BOD ⁵	33
-	and BOD ₂₁	
Figure 3.5	Overestimation of BOD value due to the	34
-	nitrification process	
Figure 3.6	The collected water sampled in the BOD bottle	35
Figure 3.7	The aluminium wrapped BOD bottle (in red	35
	circle) place in the icebox before being topped	
	with the ice cube and bring back to laboratory	
Figure 3.8	The BOD nutrient buffer pillow	36

Figure 3.9	The three BOD bottle samples are ready to be	37
	incubated in the incubator for five days at 20 $^{\circ}\mathrm{C}$	
Figure 3.10	The example of the initial and final DO reading	37
	using HACH HQ40D portable DO meter	
Figure 3.11	The water sample is being transferred to the	41
	amber bottle for the manometric respirometric test	
	method	
Figure 3.12	The manometric respirometric test setup	42
Figure 3.13	Simple step involve in COD test	44
Figure 3.14	The COD concentration versus absorbance	45
Figure 3.15	The intensity of the transmitted light varies due to	48
	the intensity of the coloured solution	
Figure 3.16	The flowchart for conducting ammoniacal	51
	nitrogen test	
Figure 3.17	The distillation set	52
Figure 3.18	The residual oil after being placed in the oven	52
Figure 3.19	The collected water sample with had been	54
	acidified by concentrated nitric acid	
Figure 4.1	Serial dilution	62
Figure 5.1	Collection of benthic macroinvertebrates	70
Figure 5.2	Sieved sample and preservation in 75% ethanol	70
Figure 5.3	Identification processes by using	71
	stereomicroscope	
Figure 6.1	Symon rain gauge schematic diagram [3]	84
Figure 6.2	Tipping Bucket rain gauge schematic diagram [3]	85
Figure 6.3	Thiessen Polygon Method	87
Figure 6.4	Isohyetal to divide catchment area	89
Figure 7.1	Name of parts of the Automatic Weather Station	94
Figure 7.2	A screenshot that shows the pop-up window	95
	containing the data recorded by the data logger on	
	the AWS	

Figure 7.3	Time-series plot for temperature, dew point	97
	temperature and relative humidity for Day 1 and	
	Day 2	
Figure 7.4	Wind rose for showing the direction of the	97
	prevailing winds	
Figure 8.1	Example of laboratory setup for soil texture	103
	determination using hydrometer method and the	
	correct position of eye level when taking the	
	meniscus reading	
Figure 9.1	Sound Level Meter	110
Figure 9.2	Noise level from different sources	113
Figure 10.1	Example of Analysis of Cu ions in soil	117
Figure 10.2	FT-IR analysis for raw bamboo	123
Figure 10.3	Chromatogram of Standard Glyphosate at	126
	retention time 3.16 min	

LIST OF TABLES

Table 2.1	Water Quality Index Parameters [6]	18
Table 2.2	National Water Quality Standards for Malaysia [6]	19
Table 2.3	Drinking Water Quality Standard [12]	21
Table 3.1	Chemical, physical and biological properties of water quality parameter	25
Table 3.2	The advantages and limitation of three sensor method for measuring dissolved oxygen concentration in water	28
Table 3.3	The differences of BOD and COD properties	32
Table 3.4	The example of the DO values recorded for the BOD calculation	38
Table 3.5	The estimation of the BOD values provided by the manufacturer	41
Table 3.6	COD concentration with respective absorbance value (example)	45
Table 3.7	The differences of ammonia and ammoniacal nitrogen [19]	49
Table 4.1	Agar plate count	63
Table 4.2	Most probable number	64
Table 4.3	MPN index and 95% confidence limits for various combinations of positive results when five tubes are used per dilution (10 mL, 1.0 mL and 0.1 mL)	64

Table 5.1	Description of sampler equipment	68
Table 5.2	Ecological and Biological indices description [4, 5, 6, 7, 8]	72
Table 6.1	Thiessen Polygon areal precipitation calculation	88
Table 6.2	Isohyetal area precipitation calculation	89
Table 9.1	Effect of noise levels on humans [2]	113
Table 10.1	Absorbance of methylene blue standard and sample	119
Table 10.2	Simplified Infrared Correlation Chart	120
Table 10.3	Functional group present in raw bamboo	124

LIST OF CONTRIBUTORS

Ahmad Abas Kutty

Faculty of Science and Technology National University of Malaysia

Aweng A/L Eh Rak Faculty of Earth Science Universiti Malaysia Kelantan

Nik Raihan Nik Yusoff Faculty of Earth Science Universiti Malaysia Kelantan

Noor Syuhadah Subki Faculty of Earth Science Universiti Malaysia Kelantan

Norrimi Rosaida Awang

Faculty of Earth Science Universiti Malaysia Kelantan

Nor Shahirul Umirah Idris

Faculty of Earth Science Universiti Malaysia Kelantan

Nurul Syazana Abdul Halim

Faculty of Earth Science Universiti Malaysia Kelantan **Marieanne Christie Leong**

Faculty of Earth Science Universiti Malaysia Kelantan

Mohamad Faiz Mohd Amin

Faculty of Earth Science Universiti Malaysia Kelantan

Muhammad Firdaus Abdul Karim

Faculty of Earth Science Universiti Malaysia Kelantan

Rozidaini Mohd Ghazi Faculty of Earth Science Universiti Malaysia Kelantan

Sharifah Aisyah Syed Omar

Faculty of Earth Science Universiti Malaysia Kelantan

Shahrul Ismail

Faculty of Ocean Engineering Technology and Informatics Universiti Malaysia Terengganu

Wong Hie Ling Faculty of Earth Science Universiti Malaysia Kelantan

PREFACE

Environmental analysis is an integral part of environmental management to protect the environment and human health. Over time, equipment and techniques in the environmental analysis have evolved to account for various environmental issues including pollution. This Handbook aims to present fundamental analytical methods for tracking changes in different environmental compartments ranging from water, and air to soil using appropriate indicators.

On-site and off-site measurements during the respective field and laboratory experiments can be expensive due to the costs associated with equipment, labour, and time. However, the measured field data deem very important to reflect what happened under the actual conditions and for environmental monitoring purposes as part of regulatory procedures.

This Handbook consists of an overview of basic equipment and methods to investigate common environmental issues. What we hope, is that readers will find this Handbook a useful reference. We thank all authors for their extraordinary competence in sharing their knowledge in specific fields.

Nurul Syazana Abdul Halim Nor Shahirul Umirah Idris Wong Hie Ling

CHAPTER 1 INTRODUCTION TO ENVIRONMENT Nurul Syazana Abdul Halim

WHAT IS THE ENVIRONMENT?

In simple words, the environment is everything around us, which includes the biotic and abiotic components. The biotic component is referring to the living things (the human, flora, and fauna including fungi, bacteria, and viruses) that shape an ecosystem; whereas, the abiotic component is the non-living factors that are present in the ecosystem such as temperature, water, soil, light, wind, nutrients and etc. (Figure 1.1).

THE CONNECTION BETWEEN BIOTIC AND ABIOTIC COMPONENTS

Both biotic and abiotic components are important and connected. For example, in an ecosystem, there are many types of plants, animals, and insects. Plants depend on the heat from the sun to produce food through the photosynthesis process. In the process of photosynthesis, they consume a large amount of carbon dioxide and supply oxygen, which is used by animals and humans to breathe. At the same time, they need water and good soil with a suitable pH and nutrients to grow. In this case, the plant is the biotic component that relies on many abiotic factors in order to survive. Meanwhile, herbivores like cows, goats, zebras, elephants, and others depend on the plant as their energy source and also as a source of oxygen. They also rely on other abiotic factors to live. This scenario is similar for other living organisms (carnivores, insects, humans), but each organism has different needs for abiotic factors.