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Abstract: As the most popular technologies of the 21st century, artificial intelligence (AI) and the
internet of things (IoT) are the most effective paradigms that have played a vital role in transforming
the agricultural industry during the pandemic. The convergence of AI and IoT has sparked a recent
wave of interest in artificial intelligence of things (AIoT). An IoT system provides data flow to
AI techniques for data integration and interpretation as well as for the performance of automatic
image analysis and data prediction. The adoption of AIoT technology significantly transforms the
traditional agriculture scenario by addressing numerous challenges, including pest management
and post-harvest management issues. Although AIoT is an essential driving force for smart
agriculture, there are still some barriers that must be overcome. In this paper, a systematic literature
review of AIoT is presented to highlight the current progress, its applications, and its advantages.
The AIoT concept, from smart devices in IoT systems to the adoption of AI techniques, is discussed.
The increasing trend in article publication regarding to AIoT topics is presented based on a database
search process. Lastly, the challenges to the adoption of AIoT technology in modern agriculture are
also discussed.

Keywords: artificial intelligence of things; smart agriculture; internet of things; artificial intelligence;
post-pandemic; crop diseases

1. Introduction

COVID-19 left a visible and evident economic impact on the agriculture sector.
Issues such as pest attacks and bacterial infections resulted in large-scale crop
diseases [1,2]. The traditional approaches must be more effective in resolving the
issues, forcing researchers to consider using IR4.0 technology to tackle the problems and
transform the agricultural industry.

In the post-pandemic era, smart agriculture presents itself as an appropriate solution
for labor shortages and a continuous food supply chain [3,4]. Only some countries, such
as the U.S. and South Korea, have established holistic visions and frameworks for smart
agriculture solutions to achieve their sustainable development goals [5]. Artificial intelli-
gence (AI) and internet of things (IoT) technologies were the most influential paradigms
that played a vital role during the COVID-19 pandemic [6]. As the most popular set of
technology for the 21st century, this integrated system can perform data informatization [7],
efficient remote-control monitoring in real-time [8,9], and intelligent management [10].
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A typical IoT system consists of wireless sensor networks (WSN) installed in different
venues to collect spatial and temporal data. Such a system includes a global visualization
consisting of a collection of “things” or objects or devices connected with micro-controllers,
embedded intelligence, communication means, sensing properties, and actuation. All
these objects are connected via internet protocol (IP) [11,12]. In industrial IoT applications,
AI functions as the technology enabler for hundreds of devices and a wide range of
applications, including environmental monitoring, agriculture [13,14], smart grids [15],
cities [16], buildings [17], homes [18], transportation [19], and healthcare [20].

AI supports the application, implementation, infrastructure, and management of
IoT technology. The application of AI in IoT environments boosts operational efficiency,
provides better risk management, triggers enhanced products/services, and increases the
scalability of IoT [21,22]. Fujitsu has developed a technology for estimating human body
postures using millimeter wave sensors and cloud data [23]. AI techniques include image
optimization, sensor processing, data transmission, and decision-making. The processes
involved require high-speed data streams, low-latency communications, fast processing
time, and time-sensitive actions on the IoT system [24]. Based on reinforcement learning
models, the model works in the compact memory space of IoT devices [25].

Paramount quantities of IoT data require powerful AI techniques for pre-processing
and preparing data to reduce noise, minimize dimensionality, and remove possible redun-
dancies [26]. In most reports, AI techniques such as artificial neural networks, fuzzy logic,
and evolutionary computation are mainly used for heterogeneous purposes [27], including
classification, regression, signal processing, forecasting, decision support, and data trans-
mission. Benefitting from their learning capabilities, various deep learning methods are
frequently used in the development of intrusion detection systems [28].

Contributions of This Study

There are still limited numbers of review articles regarding AIoT in smart agriculture,
although it is widely reported for other applications. Here, we specifically focus on the
AIoT concept by exploring AI and IoT as an overview. The advantages and potential
challenges through a systematic literature review are also included. The contributions of
this study can be summarized as follows.

(1) We discuss the AIoT concept, from smart devices in IoT systems to the adoption of
AI techniques.

(2) We present a systematic literature review to highlight the increasing trend in the
article publication regarding AIoT in different applications . . . and the progress of AI
and IoT.

(3) We summarize a few promising applications of AIoT and other AI/IoT-
enabling technologies.

(4) We highlight the challenges of AIoT adoption.

2. Artificial Intelligence of Things (AIoT)
Concept

The rapid evolution of AI, IoT sensors, and 5G infrastructures into robust technologies
has led to their intersection under the paradigm of AIoT (artificial intelligence of things) [29].
Despite AIoT still being in its infant stage, the applications and trends that it encompasses
are reshaping the future of enormous business potential. Overall, the IoT system provides
data flows and is further utilized with AI techniques to integrate the data, interpret the
data, perform automatic image analysis and data prediction, etc. Figure 1 illustrates the
integration of AI with IoT for better user outcomes [30].

In agricultural applications, the integration of AIoT mostly regards controlling har-
vests, greenhouse parameters, and smart fertigation to induce reactions to any change
in external conditions. For instance, convolutional neural networks are adopted to pre-
dict and detect possible diseases in applications at any scale on the basis of the collected
IoT data [31].
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Figure 1. From smart “Things” in IoT systems to the adoption of AI techniques.

AIoT makes the operation and management of agriculture easier to access, effective,
and autonomous for the users. AIoT will become one of the main driving forces for smart
agriculture. However, some barriers still must be overcome, such as the cost factors and
the readiness for technology adoption as standard practice.

Several promising AIoT applications are discussed thoroughly in this paper. The
motivation is triggered by existing proven applications of AI/IoT, such as computer vision,
video surveillance systems, and infrared cameras. The review propounds ideas on further
improving AIoT applications and advantages that benefit the users. The challenges in
technology adoption are also discussed.

3. Methodology

A systematic literature review (SLR) approach was applied to select, review, and
critically appraise existing published articles with similar research problems before sum-
marizing selected primary articles. The overall stages of the SLR consist of planning an
reviewing, a similar approach to that reported previously. Figure 2 presents the step-by-step
of the SLR conducted in this study; a similar approach was applied previously [32].

Sensors 2023, 23, x FOR PEER REVIEW  5  of  23 
 

 

 

Figure 2. Systematic literature review approach [32]. 

At the planning stage, the research objective and questions were identified and final-

ized before developing and evaluating  the  review protocol. Then,  the  identification of 

main articles using search strategies, the selection of articles, and the extraction of the data 

were progressed during the review stage. Finally,  the summary and report were made 

after the data were synthesized and interpreted. 

3.1. Objective 

The objective of this study is to review the current progress of AIoT adoption in smart 

agriculture and to identify the research gap and potentials related to AIoT technology. To 

the best of our knowledge, few articles related to AIoT applications in smart agriculture 

have been published, hence the scope of the study focusing on the technology based on 

deep learning, computer vision, and intelligent video surveillance systems. Table 1 pre-

sents the research questions of this study. 

Table 1. Research question and justification. 

ID  Research Question  Justification 

RQ1 

What are common subject areas of 

AIoT application that have been re-

ported recently? 

Providing the context and analyz-

ing the current trends of subject 

area.   

RQ2 

Which deep learning (DL) models are 

widely used in AIoT applications in 

smart agriculture? 

Identifying common DL models 

used for the same scope of study 

and assessing the comparison of 

few DL models. 

RQ3 

What are common technologies re-

ported for AIoT application in agricul-

ture? Is there any potential technology 

to explore for the same application? 

Providing the review of current re-

lated technology. 

RQ4 

What is the current trend in terms of 

the number of studies according to 

similar work? 

Providing the context related to the 

trend of publication number over 

few years. 

   

Figure 2. Systematic literature review approach [32].



Sensors 2023, 23, 3752 4 of 22

At the planning stage, the research objective and questions were identified and final-
ized before developing and evaluating the review protocol. Then, the identification of main
articles using search strategies, the selection of articles, and the extraction of the data were
progressed during the review stage. Finally, the summary and report were made after the
data were synthesized and interpreted.

3.1. Objective

The objective of this study is to review the current progress of AIoT adoption in smart
agriculture and to identify the research gap and potentials related to AIoT technology. To
the best of our knowledge, few articles related to AIoT applications in smart agriculture
have been published, hence the scope of the study focusing on the technology based on
deep learning, computer vision, and intelligent video surveillance systems. Table 1 presents
the research questions of this study.

Table 1. Research question and justification.

ID Research Question Justification

RQ1 What are common subject areas of AIoT application that
have been reported recently?

Providing the context and analyzing the current trends of
subject area.

RQ2 Which deep learning (DL) models are widely used in
AIoT applications in smart agriculture?

Identifying common DL models used for the same scope
of study and assessing the comparison of few DL models.

RQ3
What are common technologies reported for AIoT
application in agriculture? Is there any potential
technology to explore for the same application?

Providing the review of current related technology.

RQ4 What is the current trend in terms of the number of
studies according to similar work?

Providing the context related to the trend of publication
number over few years.

3.2. Process

The automatic database search was carried out on 12 December 2022 with the search
keywords “Artificial Internet of Things (AIoT)” and “AIoT in agriculture”, as shown
in Table 2.

Table 2. The details for database search process.

Database Search Keywords Number of Articles URL

WOS
Artificial Internet of Things (AIoT) 157 http://www.isiknowledge.com

(accessed on 4 March 2023)AIoT in agriculture 18

SCD
Artificial Internet of Things (AIoT) 133 http://www.sciencedirect.com

(accessed on 4 March 2023)AIoT in agriculture 64

IEEE
Artificial Internet of Things (AIoT) 174 https://ieeexplore.ieee.org

(accessed on 4 March 2023)AIoT in agriculture 14

3.3. Article Selection Criteria

This section focuses on the selection process of the articles and specific criteria applied
to the available filters of each of the databases. Table 3 presents the summary of inclusion
and exclusion criteria. The contents of each article were read, reviewed, and considered
during the process. A total of 11 articles remained, all of which were in the context of AIoT
applied in smart agriculture.

http://www.isiknowledge.com
http://www.sciencedirect.com
https://ieeexplore.ieee.org
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Table 3. Inclusion and exclusion criteria.

No. Criteria Database

Inclusion

1. Articles published between 2017 and 2022. WOS, SCD, IEEE

2. Peer-reviewed primary articles. WOS, SCD, IEEE

3. Studies within the context of AIoT applied in smart agriculture based
on research scope established. WOS, SCD, IEEE

4. Articles published in English. WOS

Exclusion

1. Secondary or tertiary studies within the context of AIoT applied in
smart agriculture based on research scope established. -

2. Other document types, such as short articles, proceedings, books etc. WOS, SCD, IEEE

3. Redundant studies by the same researcher. WOS, SCD

4. Articles published prior to 2017. WOS, SCD, IEEE

3.4. Quality Assessment and Data Extract

After articles were identified, quality assessment was carried out to ensure the article’s
quality and its relevancy to this study. Table 4 shows five questions to comply in order to
assess the quality of the articles based on specific scores: yes (1.0), partially (0.5) and no (0).

Table 4. Quality assessment on the articles based on the questionnaire.

ID Question

Q1 Are the objectives of the study clearly defined?
Q2 Are the research questions clearly answered?
Q3 Did the study use DL algorithm in its research scope?
Q4 Did the study report a well-described experiment?
Q5 Does the finding of the study prove the validity which relevant to it?

The total score for each article from the sum of the values obtained from answers. A
score of 1.0 indicated well-matched with this study, and 0.0 indicated otherwise. A cut-off
score of 0.5 was defined as moderate, and only articles with a score greater than 0.5 were
considered for this study.

Table 5. Quality evaluation.

ID Research Scope Author Final Score

A1 Smart aquaculture farm management system [33] 3.5

A2 Plant growth monitoring and environmental [34] 4.0

A3 Algae culture monitor [35] 5.0

A4 Agriculture 4.0 [36] 4.5

A5 Pest Detection [31] 3.5

A6 Smart Livestock Surveillance [37] 3.5

A7 Empowering Things with Intelligence: A Survey [29] 3.0

A8 AI-Rooted IoT System Design Automation [38] 3.0

All primary articles that passed inclusion and exclusion criteria in previous stage
(Section 3.3) were read and evaluated to acquire the score. Table 5 shows the summary of
scores from the quality assessment of selected 11 articles as the input set, of which 3 articles
received scores less than or equal to 0.5.
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4. Results

At the primary stage, the initial amount of five hundred and sixty articles was found
from three databases. Eleven articles were considered as final primary articles after con-
sidering inclusion and exclusion criteria. It cannot be neglected that the biases during the
initial stage of primary article selection due to the small number of articles were published
that according to similar scope of study.

This may also imply that the possibility of irrelevance of the articles to answer the
research questions. Additionally, the choice of databases also cannot be considered can
represent the completeness of the studies. Other reasons that can also be considered are:
(a) the limited AIoT applications in agriculture have been reported; (b) related policies
and mechanisms also might be under-developed to push as the assessment. However, it is
worth noting that the number of articles reporting on AIoT adaption in smart agriculture
has increased massively since 2021, from less than 5 in 2017 to a projection of close to
50 papers in 2023 (Figure 3).
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4.1. Current Applications of AIoT in Smart Agriculture

The articles presented in the next subtopics have been contributed to the massive
research development of AI and IoT in smart agriculture and have potential for AIoT
application in the future. To date, 37,230 articles have been published regarding the scope
of AI and IoT in agriculture (Table 6).

Table 6. Number of articles reported for AI and IoT in smart agriculture.

Database Search Keywords Number of Related Articles URL

WOS
Artificial Intelligence in agriculture 1237 http://www.isiknowledge.com

(accessed on 4 March 2023)IoT in agriculture 319

SCD
Artificial Intelligence in agriculture 21,309 http://www.sciencedirect.com

(accessed on 4 March 2023)IoT in agriculture 7045

IEEE
Artificial Intelligence in agriculture 4690 https://ieeexplore.ieee.org

(accessed on 4 March 2023)IoT in agriculture 2630

4.1.1. Deep Learning Methods

Deep learning offers many opportunities in various agricultural stages, and its ap-
plication has increased substantially in recent years, with numerous studies providing
innovative insights into this topic. Table 7 shows the recent work on deep learning, and
Table 8 shows that for traditional machine learning, both for the agriculture application.

http://www.isiknowledge.com
http://www.sciencedirect.com
https://ieeexplore.ieee.org
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Most proposed works focus on predicting and classifying crop production, disease detec-
tion, and automating irrigation systems. The data consists of various sources, including
irrigation systems, temperature, humidity, water, weeds and crops, disease, and fruit
grading. Combining IoT data with advanced deep learning algorithms has brought vast
development and continuous breakthroughs in agriculture, AI, and deep learning fields.

Table 7. Deep learning for smart agriculture.

Method Description Data Disadvantages Advantages References

Gated recurrent unit
(GRU) and reversible
automatic selection
normalization (RASN)

A hybrid deep learning
method embedded in
IoT system
as a predictor.

Humidity, wind,
and temperature.

Short time data period
for prediction

More accurate
prediction on humidity,
temperature, and wind
speed compared to
other methods

[39]

Deep learning
algorithm on fog
nodes (DLEFN)

Deep learning
algorithm that
performs some DL
tasks on fog nodes

Smart agriculture
application

No report on
prediction and
algorithm performance

Efficient resource
utilization and
able to reduce
network congestion

[40]

K-nearest neighbors
algorithm (KNN),
artificial neural
network (ANN), long
short-term memory
(LSTM), recurrent
neural network (RNN),
and ensemble
subspace discriminate
analysis (ESDA)

Proposed method for
system monitoring of
fruits, smart agriculture
of UAVs, crop disease
prediction, leaf
identification and
classification in
real-time.

Growth of strawberries,
weeds, crops, lettuce
production, plant
disease, bird species,
apple leaf diseases, and
agricultural machinery

There is no standard
procedure to conduct
verification and
validation of the
proposed method.

Most of the proposed
method and algorithms
report competitive
performance in terms
of classification
accuracy, identification,
and prediction, which
applied in
computer vision.

[41–50]

Deep reinforcement
learning

Deep reinforcement
learning in
smart systems

Water consumption No validation and
experiment report

Efficient integrated
system incorporating
cloud computing
to improve
food production

[51]

Table 8. Previous reports on traditional machine learning methods in smart agriculture.

Method Description Data Disadvantages Advantages References

Fuzzy logic controller
Small-scale machine
intelligence for
smart agriculture

Cultivated data Only focus on
irrigation system

Real time classification
with 90% and
higher accuracy

[52]

Neural network
(ANN) and neural
network (CNN)

Application of computer
vision and crop farming
algorithms for
smart farming

Fruit grading and
spraying system

No report on the
performance based on
ANN, CNN, and SVM

Provide direction and
trend on using various
methods in
smart agriculture.

[53,54]

Supervised learning
algorithms

An algorithm for
detecting and preventing
spread of diseases to the
whole crop

High-yield crop

Limited amount of data
for the trained model and
challenging to be used in
real-world practice

Classification
performance achieved
98% with adequate
computation time.

[55]

Support vector,
machine, random
forest, neural network,
and K-nearest
neighbors (KNN)

IDS system in smart
agriculture and
Intelligent biochemical
spraying

Field’s water
supply and
crop/weed

Uses standard machine
learning algorithms, and
the performance is not
tested with deep learning.

Focusing security IDS on
smart farming and
compare with several
algorithms (SVM
achieve higher
accuracy).

[56–58]

Wrapper PART
(WPART)

Machine learning
algorithm for
smart farming

Crop productivity

No time series analysis for
prediction future value
from previously
observed values

WPART able to achieve
high accuracy with 90%
and above in crop
productivity and
drought prediction

[59]
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Table 8. Cont.

Method Description Data Disadvantages Advantages References

Various machine
learning algorithms

Application and
suggestion in smart
agriculture using
various machine
learning algorithms

Cultivate crops
productivity

Challenging to
non-technical people,
specifically when
introduced to machine
learning algorithms

Direct recommendation
to individual and farmer
in managing their
crop cultivation

[60]

A recent study used a hybrid method based on empirical mode decomposition
(EMD) to decompose the data. At the same time, a gated recurrent unit (GRU) was
utilized as a predictor to predict various climate data, including temperature, humidity,
and wind speed. The performance of the proposed method is superior and can produce
the highest accuracy in precision agriculture production. Another predictor model for
automating normalization using reservable automatic selection normalization (RASN)
based on indoor data from the smart greenhouses is presented in [39]. The authors
have introduced scaling and translating techniques with parameters that can be learned
to improve prediction and adaptability in innovative agriculture systems. Combining
IoT devices with the DL algorithm is a challenging problem due to device limitations,
as DL requires high computational resources to process the IoT data. To solve this
issue, ref. [40] proposed the deep learning based on fog nodes (DLEFN) algorithm and
experimented with it in order to determine the optimal layers in DL for execution in each
fog node. The availability of device capacity and bandwidth influences the results. The
output shows that the proposed algorithm can reduce network congestion and utilize
resources efficiently.

Several CNN algorithms have been improved and utilized in computer vision for
smart agriculture. For example, ref. [41] introduced a computer vision monitoring
system to monitor tomato growth stages using a regional-based convolution neural
network (R-CNN). Other utilized algorithms include artificial neural networks (ANN),
KNN, and support vector machine (SVM). The proposed system shows the highest
accuracy in predicting flower and fruit and in maturity grading. The RCNN was also
used to detect leaf disease in smart agriculture [42]. The authors combined R-CNN
with MASKRCNN to detect the infected disease in apple leaves. Transfer learning was
used to extract features from the pre-trained CNN model. Results confirmed that the
proposed framework was superior compared to other frameworks. Aside from that, long
short-term memory (LSTM) is a recent DL technique that has had remarkable results.

On the other hand, auto-encoder (AE) is an artificial neural network that shows
excellent performance in learning codings for unlabeled data. Both LSTM- and AE-based
techniques have been used in smart agriculture. In a study [43], a deep neural network
based on LSTM was used in an IoT irrigation system for precision agriculture (DLiSA).
In their work, LSTM was utilized to predict several irrigation conditions including
soil moisture, irrigation time, and water amount needed to spray the arable land. The
simulation of the proposed system showed that it was efficient in water usage compared
to other state-of-the-art irrigation systems. The authors of [44] focused on an unmanned
aerial vehicle (UAV) framework in which several techniques—including blockchain for
data authentication, sparse auto-encoder (SAE) for data transformation, and stacked long
short-term memory (SLSTM)—were combined for training, and they evaluated the result.
The experiments demonstrated that the framework outperformed other state-of-the-art
block chain and non-block chain frameworks. Deep reinforcement learning is another
advanced deep learning model used in smart agriculture [51]. Specifically, the model
was combined with cloud computing technology, resulting in an intelligent model that
can determine the amount of water needed for irrigation. The work resulted in increased
production and an improved crop growth environment.
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4.1.2. Computer Vision

A smart agriculture system using DL-based computer vision is promising due to
the massive growth of agriculture data commonly collected from IoT sensors. Other
researchers also studied and applied traditional machine learning (also in combination
with DL) techniques, such as fuzzy logic, SVM, supervised learning, decision tree, linear
regression, and KNN [52–60]. The authors of [52] proposed a small-scale agriculture
machine to irrigate and weed automatically in the cultivated area. In their work, the fuzzy
logic controller was applied to provide data on the wet distribution area of surface soil
(WDAS). The results showed that the machine achieved an accuracy of at least 90% in
weeding and watering the deep soil. In recent works from [53,54], the combination of
ANN, Gaussian curve fitting, and CNN was proposed in crop farming specifically for
fruit-grading systems. The SVM classifier is mainly used for various classifications in
smart farming. In [55], the authors proposed an IoT framework using machine learning
algorithms, as illustrated in Figure 4. The primary purpose of the framework was to
measure and predict crops using supervised learning. The dataset consists of 200 instances
and eight attributes. The experiments showed that the proposed model could predict the
high-yield crop in precision agriculture with an accuracy of 98%. Other frameworks have
been developed to detect and automate agriculture, including water supply and crop/weed
spraying.
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The framework commonly collects primary data from scalable IoT sensors [56–58].
Some works focused on the security aspect of IoT systems, specifically in performing smart
agriculture—for example, ref. [56] studied risk mitigation in smart irrigation based on
an intrusion detection system (IDS). The authors proposed a framework using SVM as
a classifier, linear regression, and random forest based on the NSL KDD data set. The
framework performance was compared to state-of-the-art machine learning algorithms
based on recall and precision. Another work also used a random forest classifier in detecting
crops/weeds for real-time variable-rate spraying [57]. Their work aims to improve spray
yield and protect crops from disease according to a specific amount of agrochemicals and
field/crop requirements. The random forest classifier detected and classified various weeds
and crops. The desired amounts of agrochemicals were then sprayed using a vision-based
feedback system. The simulation result shows that the proposed method is effective.
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Handling enormous amounts of data is a daunting task and results in higher costs,
especially if the data come from heterogeneous information. To cater to this challenge,
ref. [58] introduced a method of managing heterogeneous agriculture datasets (biological,
sensory, and physical values). Various machine learning techniques have been utilized to
suggest the best effort and investments in data management. Another work proposed an
intelligent method based on wrapper feature selection combined with the PART classifi-
cation technique (WPART) to improve crop productivity and drought prediction [59]. In
their experiments, five data sets were used to train the model. Using productivity crop data
including soybean and sugarcane, the proposed method could obtain high accuracy and
outperform other machine learning algorithms in crop productivity and drought prediction.
Machine learning and deep learning algorithms consist of various techniques and methods.
Applying all these algorithms to perform prediction and classification in smart agriculture
is time-consuming, challenging, and requires enormous cost. To facilitate the selection of
the best machine learning and deep learning algorithms, ref. [60] studied various algo-
rithms to be applied in smart farming. Their work guides other researchers and farmers
in cultivating crops efficiently and helps improve productivity while keeping costs low.
Furthermore, the work also helps farmers better manage their crops and suggests a smarter
harvesting process.

It should be noted that the methods presented rely on machine learning and deep
learning algorithms, which have seen substantial improvement and breakthroughs in
smart agriculture. Although deep learning has received great attention in recent years,
machine learning methods based on basic algorithms, such as random forest, support
vector machine, and K-nearest neighbors, are still useful because of the labelled data and
supervised learning [61,62]. However, due to the heterogeneous and variety data sources
from the agriculture field, verification and validation of the machine learning system must
be further analyzed. This area is also known as the formal method, which is a field of study
that examines and strictly verifies machine learning systems both in hardware and software
systems. Several approaches have been proposed to provide verification framework for the
high dimensionality, complexity, and uncertainty of machine learning algorithms [63,64].

4.1.3. Intelligent Video Surveillance Systems

Intelligent video surveillance systems are widely used in many applications, such as
crime prevention, security, monitoring and controlling essential infrastructures, and the
smart agriculture industry [63,64]. From 2010 until 2019, there were 220 video surveillance
system (VSS) studies, which highlights the continuous relevance of research in this field [64].
VSS has garnered great interest in the past decades, especially with the integration of
computer vision, image processing, and artificial intelligence capabilities. Figure 5 shows
the VSS architecture that includes components such as sensors, servers, and network
types [65]. The analytics cover the part of processing algorithms to ensure good surveillance.
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With traditional video, human energy and input are required to watch and analyze
the video multiple times, which is tedious and time-consuming. Many academics recently
proposed various intelligent surveillance methods that can recognize human action based
on high accuracy and efficiency. Intelligent VSS may consist of a few stages, such as video
preprocessing, object detection, activity detection, recognition, and action classification.

The combination of AI and IoT sensors makes video surveillance smarter and recog-
nizes an object automatically [66]. The intelligent VSS system operates without human
control or within autonomous systems; it detects, analyzes, and anticipates events or be-
haviors of things that trigger a warning. The system can perform face recognition, identify
intrusion and anomalies and send alerts to farmers to take appropriate action. The integra-
tion with the IoT system effectively manages all devices such as cameras, smoke detectors,
and audio sensors in the monitoring area [66]. In the future, AIoT will allow all devices,
especially VSS, to think and decide on their own if any unexpected events occur on the farm.
With the fast evolution of IR4.0 Technology, video surveillance systems are also undergoing
continuous development in terms of the devices and analysis based on AI algorithms.
Among various AI models used for surveillance analysis are CNN, auto-encoders, and
their combination. The author summarized AI methods most commonly applied in visual
surveillance systems: deep learning, Gaussian, support vector machine (SVM), fuzzy logic,
and nearest neighbor [65].

Meanwhile, the capabilities of smartphone technology also revolutionize farming
activity. Current smartphones are equipped with various in-built sensors, such as GPS,
temperature, accelerometers, and light sensors. The authors of [67] reported on the state-of-
the-art of current publication on the application of smartphone sensors in agriculture. With
users of smartphones being everywhere and widely connected through networks, there
is an increasing opportunity in the development of smartphone-based sensor systems for
agriculture. As shown in Figure 6, the sensors of smartphones monitor the environment
and collect and process the data either in the smartphone itself or on local machines or
remote cloud servers [68].
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The main advantage of a smartphone-based sensor system (SBSS) over a typical
wireless sensor network is its low cost of equipment; the built-in sensors on smartphones
reduce the cost of software and central equipment [69]. For light use applications, smart-
phones can partially process the data with free and powerful development tools. For
instance, Android smartphone users may program in Java on Android Studio Integrated
Development Environment (IDE) [70]. Smartphones have become powerful tools in the
agricultural sector [71], and recently, a mobile vision system was reported for identifying
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early-stage diseases in plants [72]. By taking photographs of the parts of the plant to
analyze for the infection, these photographs are then pre-processed and transferred to
distant labs. Additionally, a color estimator on the application of smartphone is reported
for chlorophyll estimation [73].

However, there are still some limitations on the use of smartphones. For example,
the sensor-collected data might not be complete or uniform. In addition, the quality of
smartphones also varies with different levels of data accuracy are provided. The privacy of
smartphones users also contributes to the need for proper protection mechanisms in order
to avoid the leaking of the user’s personal data.

The use of smartphones helps farmers to be more productive and helps better decision-
making after obtaining useful insight from agriculture data. The use of AI and IoT in
agriculture technology has proven to be a significant improvement in farming efficiency,
cost, and crop yields. However, further research and development in AI and IoT towards
AIoT should be accelerated to fully optimize the future of agriculture technologies. In the
future, the increasing number of smartphones and their sensor capacities will be improved
and should contribute to faster adoption of AIoT in real life. To achieve this goal, it is
necessary to deepen the research on whole system components improvement, sensors, data
exchange and gathering, and data security [74].

4.2. Advantages of AIoT in Agriculture

According to past studies, about 75–80% of people live in rural areas and still depend
on agriculture. In the context of AIoT, the technology can serve as a solution to help farmers
increase yield and productivity exponentially. It uses various sensors connected to the
internet and integrated into the satellites.

Smart agriculture, or smart farming, is the concept of maintaining and monitoring
farms using modern technologies to increase the quantity and quality of products. With
the advancement of sensor technologies, miniaturization, and cost reduction, farmers have
access to navigation, soil scanning, data management, and pest detection technologies.
AIoT-enabled devices, real-time data collection, and automation can vastly improve the
smart agriculture industry. Smart farming is not the same as embedded systems, which
allow AIoT to enable devices and take advantage of AI technology. Considering the benefits
of IoT and AI, better possibilities could be expected from AIoT in performing better than
previous technology. The subtopics that follow describe the four critical advantages that
AIoT is expected to contribute to the agricultural sector.

4.2.1. Disease Identification and Plant Monitoring

Farmers and researchers may use crop imagery analysis to spot early infection, en-
abling them to take action before the illness becomes a significant issue. One of the main
advantages of employing deep learning is the ability to detect infections in their early
stages. It can take a lot of time and effort to discover disease using traditional approaches,
such as manual examinations by trained workers. Additionally, these techniques might
only sometimes be reliable because it can be challenging for human inspectors to spot
minute evidence of infection. On the other hand, deep learning systems can swiftly and
reliably assess photos of crops, enabling the early diagnosis of illnesses. The system may be
trained to accurately recognize infection symptoms using a sizable photo collection. This
can assist farmers in acting quickly to stop the virus from spreading in order to safeguard
their crops.

Crop diseases represent a significant threat to agricultural output. Frameworks for
deep learning utilize sick leaves’ unique characteristics to detect different diseases. The
paper employed complete deep learning (CDL) architecture to offer a multi-crop disease
detection model capable of categorizing crop diseases irrespective of crop type [75].

Agricultural progress is constantly aided by early disease diagnosis, classification,
and analysis of ill leaves as well as the identification of viable treatments. The authors
concentrated on detecting, classifying, and predicting several plant diseases, especially in
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tomatoes and grapes [76]. An algorithm based on deep learning was used to extract visual
features to discriminate sick leaves from healthy ones, as illustrated in Figure 7.
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Identifying plant diseases is highly significant in agriculture to boost crop output. Due
to recent breakthroughs in imaging, visual plant disease analysis is now used to address
this issue. Authors examined the difficulties in visually recognizing plant illnesses for
disease diagnosis [78].

Plant disease images are more likely to have randomly dispersed lesions, various
symptoms, and complex backgrounds than other typical types of photography, making it
more challenging to capture distinguishing information.

The behavior of the soil varies due to alternating climatic conditions. Pests are another
major worry. Image processing has evolved into a valuable instrument for the early
detection and diagnosis of plant diseases. Several methods have been employed to identify
diseases in their earliest stages, resulting in little crop loss and good crop quality. The
authors’ study on banana crop diseases and their potential solutions aids faster detection
and diagnosis [79]. Thanks to an IoT system, agricultural data can be collected while AI
mechanisms train and automatically analyze data in real time.

4.2.2. Intelligent Farm Machinery and Crop Management

Complex mathematical models called “deep learning” are modelled to resemble
the structure and operation of the human brain. These neural networks are trained on
enormous datasets and can learn and make predictions or judgments based on the data.

Additionally, deep learning may be utilized to create autonomous agricultural equip-
ment that can plant, weed, and harvest crops autonomously, without human assistance.
This may lower labor expenses and boost overall effectiveness. Deep learning algorithms
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may be used to train autonomous farm machinery to navigate and operate in complex
agricultural situations while making judgments based on the information obtained from
sensors and other sources.

Numerous challenges remain, such as the shortage of workers in the agricultural sector
and the increased demand for newer high-tech advanced machinery. New technologies
within autonomous robotics are expanding in the agricultural industry. Huge investments
are being made to develop autonomous agricultural mobility robots; as a result, modern
farms have high prospects for increased productivity. Due to the complexity and diversity
of the agricultural work environment, it is difficult to overcome current obstacles using the
present machinery design. The paper examined a technique for creating and managing
a mobile robot platform that may handle these difficulties in a greenhouse [80]. The
developed platform has two driving wheels and four casters that could operate on a route
and a rail. In addition, it provides technology for a multi-AI deep learning system to
operate a robot, a robot-operating algorithm, and a VPN-based network and security
communication system [81].

Food shortages are expected to worsen because of the growing world population. Due
to the diversity of orchard conditions and tree types, fruit farming requires substantial
manual labor, causing mechanization and automation to fall behind [82]. Mechanization is
important to improve efficiency and reduce dependence on manual labor. A system for
automated fruit picking using robots fitted with robotic arms was proposed by the authors
of [83]. Before putting end-effectors into the fruit’s bottom half, the fruit-harvesting robot
uses sensors and computer vision to identify and estimate the fruit’s location. Experiments
demonstrated that this technology could detect pears and apples in the field and pick them
autonomously [84].

For agricultural automation, the exact distribution of liquid fertilizer and pesticides
to plants is a critical activity in precision agriculture. It provides a more cost-effective and
ecologically friendly alternative to conventional, non-selective spraying by identifying and
decreasing the number of chemicals used. Spraying with precision involves the detection
and tracking of each plant. Traditional detection or segmentation techniques lump all
plants inside an image collected by a robotic platform irrespective of the plant’s unique
identifier. In addition to recognizing each plant, it is vital to track each plant to administer
pesticides precisely once to each plant. The previous researcher proposed a multiple object
tracking (MOT) technology that recognizes and tracks lettuce concurrently, only spraying
plants that have never been treated before [85]. The approach leverages YOLO-V5 for
identifying lettuce and includes plant feature extraction and data association algorithms to
monitor all plants successfully.

The authors created a virtual simulation setting by fusing a robot operating system
(ROS) to illustrate the possibilities of a simulator channel to present a case study on indoor
robotic farming [86]. The paper developed a technique for evaluating the harvest of sweet
peppers. The method uses aerial robotics control and trajectory planning, followed by
deep learning-based recognition and a clustering algorithm for fruit counting. This case
study illustrated that a complex robotic system may be modeled by integrating real-time
modeling with almost practical rendering capacities.

4.2.3. Efficient Agricultural Data Analysis

A wide variety of variables crucial for effective crop management may be predicted
using deep learning. Deep learning algorithms may be used to assess sensor data and data
from other sources to forecast agricultural production, soil health, and other elements that
are crucial for effective crop management. This information may be utilized to optimize
irrigation, fertilization, and other farming practices to enhance crop health and yield. The
health and quality of crops may also be predicted using deep learning algorithms.

For instance, using information from cameras and other sensors, algorithms may be
taught to find illnesses or pests in crops. This data may be utilized to spot issues early on
and take appropriate actions before the problem causes serious harm to the crops. Deep
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learning algorithms may also forecast customer preferences and market circumstances.
Farmers and other agricultural stakeholders may utilize this information to better guide
their choices on what crops to grow, when to plant them, and how to market and sell them.
Deep learning may assist related stakeholders in making better decisions and increasing
the productivity and sustainability of their operations by enabling the construction of more
precise and complex prediction models.

The work outlined the construction of a low-cost and low-power wireless sensor
network (WSN) based on photovoltaic (PV) sensor nodes that can obtain ambient circum-
stances and soil data [87]. Soil moisture sensors are the most critical installed sensors due to
huge costs and difficulties in installation, reliability, and calibration. This article presented a
deep learning (DL) technique using long short-term memory (LSTM) networks to simulate
a soil moisture sensor using data collected from the other transducer mounted on the node.
To confirm the usefulness of the suggested soft sensing technique, this study evaluated the
performance of virtual sensors and compared it to other approaches.

Recent advancements in remote sensing using unmanned aerial vehicles (UAVs) for
precision agricultural operations have significantly enhanced crop health and management.
UAVs outfitted with sensors, cameras, LIDAR, and thermal cameras have been used for
crop remote sensing since they offer new methods and possibilities. The article examined
the use of UAVs for pest and disease control, yield estimation, phenotypic measurement
soil moisture assessment, and nutritional status evaluation in the sugarcane industry to
boost efficiency and maintain an ecological state [88].

Proper land use and crop maps obtained from remote sensing provide critical and
timely information for agricultural monitoring on a wide scale. Due to their limited
model transfer capabilities, the bulk of existing multi-crop products for complex agricul-
tural landscapes centered on standard machine learning approaches must be improved
for large-scale agricultural management. That is why developing a segmentation and
classification model with spatial and temporal transfer across regions and years is es-
sential. A study developed a deep learning technique for large-scale land use and crop
mapping by combining feature fusion with the up sampling of small data using the
UNet++ architecture. The method improved classification accuracy for datasets with
variables by analyzing the full confusion matrix [89].

In smart agriculture, computer vision and AI can optimize agricultural output while
minimizing resource use and improving environmental and economic results. This effort
aims to develop cutting-edge algorithms for image-based crop evaluation to help growers
make real-time choices. The previous paper made two substantial algorithmic advances.
First, the report devised a technique for segmenting cranberry instances which offers
a number of sun-exposed berries susceptible to warming [90]. The second algorithmic
contribution of an end-to-end differentiated network is a combined in-field prediction
of sun irradiance and berry temperature. The integrated system evaluates the risk of
overheating impacting irrigation decisions.

Developing and using new technology to solve agricultural issues and boost agricul-
tural productivity is necessary. The authors described heterogeneous data management for
agriculture to explore IoT [91]. The article proposed an IoT-based smart farming prediction
and intelligent agricultural analytics model, as well as a decision tendency that reliably
anticipates crop yield using a deep learning approach. Ensemble voting increases the
agricultural enterprise’s profitability, efficiency, and sustainability in this model.

Another author proposed a decision system able to predict the crop yield at the country
level [92]. The results calibrated and trained regression methods for the simulation model
using meteorological, soil, crop, and agro-management data.

The results show that the three proposed machine learning models fit well the crop
data with a high accuracy R2 and minimum values of the root mean square error (RMSE)
and mean absolute percentage error (MAPE) [92].
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4.2.4. Weather Forecasting System for Quality Production

Deep learning can be used to anticipate weather patterns and other meteorological
phenomena that may influence crops and farming activities. Deep learning algorithms
may be trained to create precise and trustworthy weather forecasts by studying data from
weather stations, satellites, and other sources. Farmers and other agricultural stakeholders
may utilize this information to guide their decisions regarding the best times to plant, water,
and harvest crops.

The chance of rainfall and the anticipated amount of precipitation may also be pre-
dicted using deep learning algorithms. This information may be utilized to improve
irrigation schedules and to minimize overwatering or underwatering of crops. Addi-
tionally, deep learning algorithms may be used to forecast the possibility of catastrophic
weather occurrences, such as hurricanes, floods, and droughts, which can significantly
influence crops and agricultural operations.

Additionally, forecasts concerning long-term weather patterns, such as trends in
temperature and precipitation, may be made using deep learning systems. Farmers and
other agricultural stakeholders may make plans and decisions about what crops to grow,
how to save water and other resources, and how to adapt to changing conditions using
this knowledge.

Variations in precipitation adversely affect agricultural yield and inflict climatic
severe conditions. Especially in rain-dominated countries, research concentrating on
climate swings, such as variations in rainfall and temperature, is essential. It is chal-
lenging to predict precipitation accurately due to its dynamic nature. Using 30 years of
climate data, the authors planned to develop a prediction model based on an optimized
GRU neural network [93]. The minimal loss reached by the model revealed the validity
of chosen elements to correctly predict precipitation irrespective of the volatility of
meteorological conditions.

The publication describes field-transportable rain forecasting equipment that can
identify the chance of precipitation by detecting relevant atmospheric variables, such
as temperature, humidity, and atmospheric pressure, as well as sky conditions [94].
In addition to the device’s portability, it can be used to predict the likelihood of
precipitation at a specific location by integrating the prediction model of cloud images
using deep learning [95].

The research by authors in the preprocessing phase employed wavelet decomposition.
The implementation of a long short-term memory (LSTM) network and of a suitable forecast
improvement phase was further optimized by algorithms for monthly rainfall forecast
modifications [96]. The approach was executed at four weather stations and compared to
transfer function models, multiple regression, and other prediction strategies.

One effective strategy for conserving water is utilizing rainwater to its maximum
capacity. It is possible to use weather forecasting to save irrigation water; however, unnec-
essary watering and yield loss should be avoided due to weather forecast unpredictability.
A deep Q-learning (DQN) irrigation decision-making system based on short-term weather
forecasts was established to determine the optimal irrigation method. The DQN irrigation
method showed strong generalization capability and may be used to make irrigation deci-
sions based on weather forecasts. The DQN irrigation strategy of learning from previous
irrigation experiences and uncertain weather forecasts mitigated the risks associated with
faulty weather forecasts [97].

4.3. Challenges in Technology Adoption

AIoT is very promising as it has an immense potential to transform society and
business positively. According to [98], the use of the newest technology with no experience
and digital skills is currently the biggest challenge in many industries since many companies
have started to use “things” to connect with others [99]. As “things” connected to the
internet are rapidly growing in number, it may lead to several issues in technology adoption.



Sensors 2023, 23, 3752 17 of 22

One of the issues most companies face is complexity. This complexity refers to
the interrelation of connected devices with other systems from a cyber-physical system
perspective [100]. In technology adoption, the major challenge faced by users is the
monetary budget for a given purpose, such as purchasing the tools and main training
the overall system. The limited knowledge and awareness also caused challenges in
technology adoption.

The other challenge is the need for more trust in AIoT technology. Lack of confidence
in AI and IoT also could delay technology adoption. It is expected that AIoT technology
is reliable and highly dependent on accurate knowledge in the context of the flexibility of
data handling. Farmers are not tech-savvy, so they may entirely depend on the experts to
understand and analyze the AIoT system. It can become challenging for them to learn and
adopt the technology. Additionally, the industry found it challenging to hire experts and
professionals with digital skills to implement new systems as well as operate and maintain
new technology operations.

Other than that, privacy and security issues also cause a delay in technology adoption.
The integration of AI and IoT can create new security risks, such as data breaches and
cyber-attacks. As IoT devices collect and transmit vast amounts of data, privacy concerns
are becoming more significant. Hence, organizations should be aware of the applicable
laws and regulations regarding the data preservation.

In many industries, technology infrastructure was found to be an essential factor to en-
suring the managerial success of the new technology [98]. Without a proper infrastructure,
the company can be addressed as having an outdated technology of AIoT.

The most challenging part of deploying an AIoT model in agriculture is ensuring it
maintains its performance in any environmental conditions or uncertainty factors, such as
rainfall, humidity, sunlight, temperature, and water availability.

AIoT systems require many data from agriculture to produce robust AI models. In the
case of agriculture, the data are usually based on seasons even though spatial data can be
collected in real-time. This limitation may make it challenging to achieve the accuracy of
AI models at a particular time. Moreover, an inaccurate prediction may entail costs. Errors
in making predictions and recommendations could mean losing crop production for an
entire year, affecting farmers’ lives and global food security. Hence, using a small portion
of the farmers’ land for data analysis based on AI systems may become a part of strategic
planning performed prior to deploying the AI model on the whole farm.

5. Conclusions

This study presented a systematic literature review of AIoT studies to highlight the
increasing attention on this technology. It is worth noting that the number of articles
reporting on AIoT adaption in smart agriculture has been increased massively since 2021,
from less than 5 in 2017 to a projection of close to 50 papers in 2023. From IoT to the AI
techniques, this brings remarkable progress towards AIoT in various applications. AIoT-
enabled devices, real-time data collection, and automation are important criteria that can
improve the smart agriculture industry. The current application of AI/IoT technologies
with some advantages of AIoT was summarized in this paper. Several advantages of
AIoT in agriculture, such as disease identification, smart farm monitoring, and efficient
agricultural data analysis, were also highlighted. It can also be noted that there is some
limitation on technology adoption in the smart agriculture industry as related policies
and mechanisms are still under-developed to push as the assessment. Lastly, technology
complexity, privacy and security issues, and under-developed infrastructure were identified
as a few challenges of the application of AIoT in smart agriculture.
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