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ABSTRACT 

This paper reviews the theory of matrices and determinants. Matrix and determinant are nowadays considered 

inseparable to some extent, but the determinant was discovered over two centuries before the term matrix was 

coined. Our review associate determinant with the matrix as part of linear systems but not with polynomials. 

Thus, the paper first gives the background on matrix with vast applications in all fields of study and then reviews 

the history of determinants which is based on its major contributors in chronological order from the sixteenth 

century to the twenty-first century.  
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INTRODUCTION 

Matrices and determinants have been the aesthetic aspect of 

mathematics that anyone who studies it, not only found 

interesting but also able to teach the topics or pass the 

knowledge to others without loss of generalities. Many 

mathematicians have made contributions to the history of 

matrices and determinants (Burton, 2003; Eves, 1969). The 

modern theory of determinants was put forward by German 

mathematicians in Karl Theodor Wilhelm Weierstrass and 

Leopold Kronecker's lectures, but the notes were published 

after their death (Kronecker, 1903). The earliest contributors 

to determinants associate it with polynomials. Hence, they 

defined the term determinant without any reference to the 

existence of a square matrix. If the square matrix is an 

essential element of a determinant, then determinants would 

have been used more than a century after the death of Cramer. 

Instead, polynomial was considered which brings about the 

dual meaning of determinant. The early history of 

determinants focused on a system of 𝑛 + 1 linear equations 

in 𝑛  unknowns to eliminate the unknowns, linear 

transformations, and the solution of a system of 𝑛  linear 

equations in 𝑛 unknowns (Miller, 1930). These systems were 

mostly represented in a rectangular form, known as a matrix. 

A matrix is a rectangular array of entries or elements 

(numbers, expressions, or symbols) in rows and columns. A 

matrix is referred to be a square matrix of size 𝑛 × 𝑛 if the 
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number of rows (𝑛) and columns (𝑚) are equal otherwise, it 

is a non-square matrix  of size (𝑛 × 𝑚) . Square matrices 

(which include Arrowhead matrix, Hadamard matrix, 

Sylvester matrix, Walsh matrix, Bézout matrix, Hessian 

matrix, Symplectic matrix, Bernoulli matrix, Hourglass 

matrix, Adjacency matrix, Edmonds matrix, Hat matrix, and 

Supnick matrix) are more interesting due to their unique 

properties than the counterpart non-square matrices 

(Babarinsa, 2018). In this write-up, basic matrix 

terminologies will not be defined except where necessary for 

further discussion and reference. Readers are expected to 

consult matrix-related books or articles. It is often impossible 

for an article (if not a book) to cover all the forms of square 

matrices (sparse or dense), except by devoting the work to a 

specific square matrix. Hence, we focus our review on the 

theory of determinants on a finite “square” matrix. 

 

MATRICES 

History of matrices 

The word “matrix” was not coined for over four millennia, 

yet the history of matrices can be traced to ancient times. 

According to Debnath (2013a), a lot of evidence from 

mathematics history suggests the discovery of matrices may 

have started with the existence of magic squares. About 4000 

years ago, magic squares were engraved on stones, metals, or 

paintings. If 𝑀𝑛  is an 𝑛 × 𝑛  magic square which contains 

each entry 1, 2, 3,… , 𝑛2exactly one with the same sum of 

each row, each column, and each of the two diagonals, then 

the common sum is the weight denoted as 𝑤𝑡(𝑀𝑛)  and 

defined by 

𝑤𝑡(𝑀𝑛) =
1

𝑛
∑𝑘 =

𝑛2

𝑘=1

𝑛(𝑛2 + 1)

2
 

Magic squares (not Sagrada Familia magic square or Parker 

square) are esoteric in ancient times and were used in India, 

China, and Japan (Yoke, 1991). The study of systems of 

simultaneous linear equations starts from the origin of 

mathematical matrices which can be traced to Babylon and 

were recorded in a tablet dating 300 BC (Shafarevich and  

Remizov, 2013). Chinese came much closer to matrices 

methods to solve simultaneous linear equations than the 

Babylonians through Han Dynasty (200 BC – 100 BC). The 

author wrote the linear equations in columns rather than rows 

in modern methods, which is documented in “Nine Chapters 

of the Mathematical Art”. Chapter eight of the book was 

dedicated to Fangcheng - rectangular array, popularly known 

today as a matrix. Fangcheng's problems are displayed in two 

dimensions on the counting board (Hart, 2011; Shen, 

Crossley, Lun,  and  Liu, 1999). However, the concept of the 

matrix did not resurface and garner further attention until the 

end of the 17th century. In 1850, an English mathematician 

James Joseph Sylvester coined the term “matrix”. Matrix is a 

Latin word for "womb", derived from mater—mother, and is 

defined as an oblong arrangement of terms (Sylvester and 

Baker, 2012). Sylvester further explains, “I previously 

described a “Matrix” as a rectangular array of terms from 

which several determinant systems could emerge as though 

from a single parent” (Sylvester, 1867). He coined the word 

womb to treat a matrix as a generator of determinants 

(Tucker, 1993). Sometimes the understanding of a whole field 

of science is suddenly advanced by the discovery of an idea 

(Pickover, 2011). 

 

Contributors to matrix theory 

In 1841, British mathematician Arthur Cayley used the letter 

𝐴  (uppercase) to represent matrix and lowercase for its 

elements (Debnath, 2013b). He released the initial article on 

the inverse of a matrix and focused more on the power of 

square matrices and matrix polynomials. Then, He provided 

definitions for addition, multiplication, scalar multiplication, 

and inverse in matrix algebra. In 1844, the combination of a 

row matrix and a column matrix was first proposed by 

German mathematician Hermann Günther Grassmann (1809-

1877). Almost a century apart, an American mathematical 

physicist, Josiah Willard Gibbs (1839-1903), published a 

treatise on vector analysis to represent general matrices, 

called dyadic. Vector analysis got more improvement when 

an English physicist Paul Adrien Dirac (1902-1984) 

introduced the term ''bra” (row) vector and ''ket'' (column) 

vector. The result from scalar multiplication of ''bra-ket'' or 

''ket-bra'' form a simple matrix (Tucker, 1993). 

In 1855, Cayley successfully established that there is a strong 

connection between matrices and linear transformations in his 

memoir on the "theory of linear transformations". In 1858, he 

published “A memoir on the theory of matrices” and 

discussed geometric transformation with abstract matrix 

operations. The problem with Cayley's writing is that he did 

not have a fixed notation for matrices. MacDuffee (1934) and 

Wedderburn (1934) used double vertical lines for matrices in 

their leading English books on matrices. These lines are now 

recommended for (matrix) norms. A British mathematician 

named Cuthbert Edmund Cullis (1875-1955) was the first to 

represent matrices using modern bracket (or parenthesis) 

notation in his 1913 treatise “Matrices and Determiniods” 

(Dossey, Otto, Spence,  and  Eynden, 2001). These days, 

entire rows or columns in a matrix are indicated by an 

asterisk. Later, Cayley developed matrix algebra alongside 

some matrix terminologies and introduced two vertical lines 

for a determinant on the side of the array (matrix). He used 0 

for the zero matrix and 1 for the identity matrix. Though, Bell 

(2014) attributed Cayley as the founder view of the history of 

a matrix which is misleading since his paper in 1858 “A 

memoir on the theory of matrices” was not known due to 

where he published it. The same work of Cayley was done by 

a French mathematician, Edmond Nicolas Laguerre (1834-

1886), in 1867 but his paper was not known too. Nevertheless, 

the paper of a German mathematician, Ferdinand Georg 

Frobenius (1849-1917), was not only known on the theory of 

matrix due to the world-leading journal (Crelle’s journal) of 

the time he published it but also his paper is more substantial 

than those by Laguerre and Cayley (Hawkins, 1974).  

Jan de Witt (1625-1672), a Dutch mathematician and 

statesman in 1660,  never thought of the term “symmetric 

matrix” in his book “Elements of Curves” but showed how to 

transform a Canonical form of a conic given equation in 

arrays (Descartes, 1886). Later. a German mathematician 

David Hilbert (1862-1943) coined the Latin word “spectrum” 

for the set of eigenvalues (latent roots)  of a matrix or 

operator. Eigenvalues and eigenvectors of a matrix are 

important aspects of engineering. Cayley-Hamilton sole 

theorem points out in a memoir that a square matrix is a root 

of its characteristic polynomial.  However, in 1878, Frobenius 

proved the Cayley-Hamilton theorem. He then introduced the 

concept of the rank of a matrix from the results on Jordan 

canonical and orthogonal matrices. Frobenius did not use the 

term matrix, his paper deals with coefficients of forms and 

bilinear forms. Aitken (1956) and Weyl (1922) discussed the 

trace “spur’ of a matrix is equal to the product of its 

eigenvalues, and the determinant of the matrix is equal to the 

sum of its eigenvalues. A German mathematician Ferdinand 

Gotthold Max Eisenstein (1823 - 1852) showed that matrix 

products are non-commutative which conformed to be non-

abelian and he introduced the algebraic notation for products, 

inverses, and powers of linear substitutions (Hawkins, 1974). 
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Richard Dedekind (1831–1916), a German mathematician, in 

his study of algebraic numbers first discovered the set of 𝑛 ×
𝑛  square matrices form an abstract mathematical system 

called a ring.  In 1800, Carl Friedrich Gauss developed the 

method known as Gaussian elimination in his Disquisitio de 

Elementis Elliptic is Palladis (Bernardes and Roque, 2018; 

Grcar, 2011). He used the method to solve the normal 

equations associated with the method of least squares. 

However, some authors consider the Gaussian elimination 

was already known to a Chinese mathematician, He Chang 

Tsang, around 200 BC - 263 AD as the author of the method 

(Degos, 2015). Gauss-Jordan elimination (with reference to 

Wilhelm Jordan but not Camille Jordan) was considered as 

part of the development of geodesy (Athloen and  

McLaughlin, 1987). Russell and Whitehead (1913), in the 

article “Principia Mathematica”, proposed the context of the 

axiom of reducibility for “matrix”. The notion of the truth 

table in mathematical logic in connection with matrix was 

established in a 1946 paper titled “Introduction to 

Logic”(Tarski, 1946). AlanTuring introduced the LU 

decomposition of a matrix in 1948 while Roger Penrose 

developed the theory of generalized inverse matrices 

(Kyrchei, 2015; Rao and  Mitra, 1972).  

 

Applications of matrices 

Matrix notations and computations have had a profound 

influence on all branches of mathematics: linear algebra, 

number theory, differential equation, numerical analysis, 

abstract algebra, modeling, operations research, and graph 

theory (Bôcher and  Duval, 1922). Applications of matrices 

have spread like a wildfire in almost all fields of education 

such as engineering, computer science, statistics, economics, 

chemistry, physics, biology, geology, accounting, business, 

and industry to mention but a few (Jaffe, 1984).  One of the 

great qualities of a matrix is the ability to create code in a 

situation where you need to send a private message to an ally 

(Babarinsa, Arif,  and  Kamarulhaili, 2019; Kippenhahn, 

1999). The concept of matrix militarization was back to Julius 

Ceaser in 49 BC (Churchhouse, 2002). In the early 20th 

century, militaries of the world began to take advantage of the 

great ability of the matrix to create code in enigma machine 

during World War I by German engineer Arthur Scherbius 

(Kruh and  Deavours, 2002), work of ballistic tables by 

Mauro Picone in World War I (Benzi, a), and to plane 

vibrations analysis – flutter - during World War II by female 

mathematician Olga Taussky Todd (Channell, 1977).  

Nowadays, not only militaries of the world cannot survive 

without the application of matrices but also individuals and 

groups for handling large amounts of data. We depends on 

matrices in designing computer game graphics (Eberly, 2001; 

Lengyel, 2012), cyberspace internet (D’Andrea, Ferri,  and  

Grifoni, 2010; Vaishnav, Choucri,  and  Clark, 2013),space 

communication (Tarokh, Seshadri,  and  Calderbank, 1998; 

Tirkkonen  and  Hottinen, 2002), facial recognition (Mangal, 

Malik,  and  Aggarwal, 2020; Rohil  and  Kaushik, 2014), 

PageRank algorithm for Google search engine (Djungu  and  

Manneback, 2020), analyzing relationships (Henry  and  

Fekete, 2007), choreographers plotting complicated dance 

steps (Raptis, Kirovski,  and  Hoppe, 2011), network analysis 

(Hawe, Webster,  and  Shiell, 2004), sound analysis (Sueur, 

Aubin,  and  Simonis, 2008), health and safety (Kariuki  and  

Löwe, 2007; Lenhart  and  Travis, 1986), quantum theory 

(Mehra  and  Rechenberg, 1982), Markov chains (Bylina  and  

Bylina, 2009; Searle, 2000), seismic survey (Berkhout, 2008; 

MacBeth  and  Li, 1996), chemical analysis (Gutman, 1977), 

decision making (Feng  and  Zhou, 2014; Saaty, 2003), 

population growth (Kendall, 1949; Lefkovitch, 1965), 

accounting game (Vysotskaya, 2018),  robotic and 

automation (Ivanov, Ivanova,  and  Meleshkova, 2020; 

Stocco, Salcudean,  and  Sassani, 1999) and gene expression 

analysis (Shiflet  and  Shiflet, 2011). 

 

NOTE ON HISTORY OF DETERMINANT THEORY  

Determinant (resultant) was discovered over two centuries 

before the term “matrix” was coined, which is the backbone 

of Linear algebra (Bernstein, 2009). A determinant is a scalar 

value that represents certain aspects of a square matrix's linear 

transformation and is derived by computing its members, 

which can be denoted as det (𝐴) or |𝐴|. Determinant provides 

information about a matrix (its eigenvalues and eigenvectors): 

Geometrically, it provides the absolute value of area and 

volume in 𝑛 -dimensional space, preserving transformation 

and can be used to create equations for curves, planes, and 

other geometric figures; and algebraically, it determines 

whether the system of 𝑛-linear equations in 𝑛-unknowns has 

a unique solution and a good indicator whether a square 

matrix has an inverse, see (Karim, 2013; Muir, 1911a; Rice 

and  Torrence, 2006). The properties of determinants come 

from the characteristics of the matrices (Browne, 2018). Thus, 

setting prerequisites for linear equations' nontrivial solutions 

is the leading application of determinants (Weber and  

Arfken, 2003).  

The determinant is famously known for square matrices. 

Some methods of computing determinants are fast and simple 

for lesser dimensions, especially for 2 × 2  and 3 × 3 

matrices. However, for larger dimensions, Chio’s 

condensations, Dodgson’s condensation method, Laplace 

expansion method, triangle’s rule, Gaussian elimination 

procedure, LU decomposition, QR decomposition, Bareiss 

algorithm, and Cholesky decomposition are considered. 

Nowadays, there is an extension of determinant to rectangular 

matrices, using Laplace expansion, called determinoids. 

Other less known types or forms of a determinant are the 

Dieudonné determinant, Fredholm determinant, Slater 

determinant, immanant, and functional determinant 

(Sobamowo, 2016). Based on history, the theory of 

determinant started in 16th century, but we give the 

chronological order of the contributions till the 21st century. 

General methods/formulas for evaluating determinants are 

not new, as they can be attributed to the 18th century. They 

are, in fact, the modification of the old methods, perhaps 

except for a few special matrices. Contributors to 

determinants (and its theory) are many but not all contribute 

immersive to the subject matter. It is either they reiterated 

what others have done without a new (or less) contribution or 

their contributions have been debunked due to a lack of 

mathematical evidence.  

 

16th century: Gerolamo Cardano (1501-1576), an  Italian 

mathematician provided a rule called regula de modo - 

mother of rules - for resolving a system of two linear 

equations, in his  “ars magna” (Cardano, 1993). The rule later 

gave what we are essentially known as Cramer’s rule 

(Cardano and  Spon, 1968). His determinants were practically 

for 2 × 2 matrices and larger ones were discussed by Leibniz 

(Babarinsa, 2020; Eves, 1969). 

 

17th century: Determinants emerged from two simultaneous 

quadratic equations in the theory of equations, matrix algebra, 

geometry, and differential equations, among other fields of 

mathematics (Kline, 1990). Let 

𝑎11𝑥
2 + 𝑎12𝑥 + 𝑐12 = 0          

𝑎21𝑥
2 + 𝑎22𝑥 + 𝑐22 = 0         

                                                     (1) 

http://www.maa.org/mathland/mathtrek_8_16_99.html
http://www.geocities.com/SiliconValley/2151/matrices.html
http://www.cut-the-knot.com/blue/relation.html
http://www.sciencenews.org/sn_arc97/6_14_97/mathland.htm
http://www.sciencenews.org/sn_arc97/6_14_97/mathland.htm
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Seki Takakazu who is popularly known as Seki Kōwa (1642-

1708) initially introduced the concept of determinant to 

Japan. In 1683, he published his findings in a book titled 

“Method of Solving the Dissimulated Problems” in the 

absence of a word that describes the determinant (Martzloff, 

2008). He gave the solution to Equation (1) by eliminating 𝑥2 

as well as a constant term  𝑐12 and 𝑐22. Thus, he arrived at the 

determinant as                        

(𝑎11𝑎22 − 𝑎21𝑎12) 
Seki still introduced the concept of determinants and provided 

broad guidelines for calculating them in accordance with his 

2 × 2  determinant through a process he called tatamn 

(folding). Instead of using them to solve systems of linear 

equations, he applied them to equations (Rothman and 

Fukagawa, 1998). In the same year of 1683, the European 

counterpart to work on determinants independently was a 

German mathematician and logician, Leibniz Gottfried 

Wilhelm (1646-1716). Leibniz referred to specific 

combinatorial sums of words of a determinant as "resultants" 

(Muir, 1906). He presented a few results on the outcome and 

used number pairs as coefficients to serve the same purpose 

of double subscript for rows and columns in the square matrix 

of a determinant (Miller, 1930). Leibniz and Seki knew the 

properties of determinants and that determinants can be 

expanded using any column which we now called Laplace 

expansion – though both did not publish the findings 

(Debnath, 2013a). 

 

18th century: The development of resultant (determinant) 

was out of sight to mathematicians for over a century until a 

Scottish mathematician, Colin Maclaurin (1698-1746)  in 

1748, offered the first results on two, three, and four 

simultaneous equations that had been published in a book 

titled “Treatise of Algebra” (MacLaurin, 1748). Although the 

publication of his findings was made two years after his death 

which gave Cramer the edge to introduce the method 

(Tweedie, 1915). Nevertheless, Boyer (1966) showed that 

Cramer’s rule was published two years earlier in Colin 

Maclaurin’s posthumous. Hedman (1999) analyzed a 

document that offers convincing proof that Maclaurin was 

imparting "Cramer's rule" to his pupils more than 20 years 

before Cramer published it. While asserting the "opposite" 

coefficient, Kosinski (2001) contended that the rule he chose 

to assign the appropriate sign to each summand was incorrect. 

Cramer remedied this by counting the number of 

transpositions, or dérangements, in the permutation. 

Maclaurin missed the general rule for solving linear 

equations, according to Günther (1908), because of poor 

notation. 

In 1750, Swiss mathematician Gabriel Cramer (1704-1752) 

hinted that resultants are useful in analytical geometry 

(Habgood and Arel, 2010). Cramer gave the general rule for 

solving  𝑛  linear simultaneous equations in 𝑛   unknowns 

𝑥1,𝑥2 ,𝑥3… 𝑥𝑛  defined by 
𝑎11𝑥1 + 𝑎12𝑥2 + 𝑎13𝑥3 +⋯+ 𝑎1𝑛𝑥𝑛  = 𝑐1`
𝑎21𝑥1 + 𝑎22𝑥2 + 𝑎23𝑥3 +⋯+ 𝑎2𝑛𝑥𝑛  = 𝑐2
𝑎31𝑥1 + 𝑎32𝑥2 + 𝑎33𝑥3 +⋯+ 𝑎3𝑛𝑥𝑛  = 𝑐3
     ⋮    +       ⋮     +     ⋮     +⋯ +     ⋮     =   ⋮ 

𝑎𝑛1𝑥1 + 𝑎𝑛2𝑥2 + 𝑎𝑛3𝑥3 +⋯+ 𝑎𝑛𝑛𝑥𝑛  = 𝑐𝑛}
 
 

 
 

 

𝐴𝑥 = 𝑐                                                                 (2) 

where 

𝐴 =

[
 
 
 
 
𝑎11 𝑎12 𝑎13 … 𝑎1𝑛
𝑎21
𝑎31
⋮
𝑎𝑛1

𝑎22 𝑎23 … 𝑎2𝑛

𝑎32 𝑎33 … 𝑎3𝑛
⋮ ⋮        ⋱ ⋮

𝑎𝑛2 𝑎𝑛3 … 𝑎𝑛𝑛]
 
 
 
 

,   𝑥 =

[
 
 
 
 
𝑥1
𝑥2
𝑥3
⋮
𝑥𝑛]
 
 
 
 

 and c =

[
 
 
 
 
c1
c2
c3
⋮
cn]
 
 
 
 

 

the 𝑛 × 𝑛  matrix A  (coefficient matrix) has a nonzero 

determinant, c the constant term (nonhomogeneous term), and 

the vector 𝑥 = (𝑥1, 𝑥2, … 𝑥𝑛)
𝑇  is the column vector of the 

variables; ∀ 𝐴, 𝑐 ∈ 𝔽 

 

Theorem 1 (Cramer’s rule) Let 𝐴𝑥 = 𝑐 be an 𝑛 × 𝑛 linear 

system with 𝐴 an 𝑛 × 𝑛 matrix, if  |𝐴| ≠ 0 and the column 

(constant) vector 𝑐  replaces the 𝑖 th column vector 𝑎𝑖of 𝐴 , 

then the 𝑖 th entry 𝑥𝑖  of the unique solution 𝑥 =
(𝑥1, 𝑥2, … , 𝑥𝑛)  is given by       

𝑥𝑖 =
|𝐴𝑖|

|𝐴|
                                                              (3) 

where 𝑖 = 1,2,… , 𝑛 , |𝐴| = |𝑎𝑖𝑗|  is the 𝑛th  - order 

determinant with 𝑎𝑖𝑗  as its elements and |𝐴𝑖|  is the 𝑛th  - 

order determinant obtained from |𝐴|  by replacing its 𝑖th 

column with the column containing the non-homogeneous 

terms 𝑐1, 𝑐2, 𝑐3,… , 𝑐𝑛 . In his work "Introduction to the 

Analysis of Algebraic Curves," Cramer went on to further 

describe how to calculate the terms using his formula for 

figuring out the sign and getting the numerator. (Cramer, 

1750; Robinson, 1970). 

Although Swiss scientist Leonhard Euler (1707–1783) 

demonstrated that a system of linear equations need not have 

a solution, researchers have linked the solution of a system of 

linear equations to Cardano (Tucker, 1993). Cardano’s 

methods were practically based on 2 × 2 resultants, the rule 

later gave what we knew as Cramer’s rule (Cardano, Witmer,  

and  Ore, 2007). At least three drawbacks of Cramer's rule 

include its failure when the coefficient matrix's determinant 

is 0, the number of determinant calculations it necessitates (if 

determinant values are calculated through minors), and is also 

numerically unstable (Chapra and  Canale, 1998; Debnath, 

2013a; Higham, 2002; Vein and  Dale, 1999). Therefore, 

Cramer’s rule has asymptotic complexity of 𝑂(𝑛. 𝑛!)  via 

minors, but it has been shown that it is possible to apply 

Cramer's rule in 𝑂(𝑛3)  time (Habgood and  Arel, 2012; 

Shores, 2007). Cramer's rule for solving systems of linear 

equations has historical and theoretical significance despite 

its high processing cost (Brunetti and  Renato, 2014). Due to 

roundoff error, Moler (1974) claimed that Cramer's rule is 

insufficient even for 2 × 2 linear systems; however, Dunham 

(1980) provided an example to refute this claim. Other 

efficient iterative and numerical techniques which include the 

Gauss–Jordan elimination have replaced Cramer’s rule for 

solving linear systems of equations (Hoffman and  Frankel, 

2001; Watkins, 2004). Nowadays, much advancement has 

been made on Cramer’s rule to solve simple and large-scale 

linear systems, Quaternionic systems, minimum-norm least-

squares solution of linear equations, matrix iteration, 

condensed Cramer’s rule for the solution of restricted matrix 

equation where inverse was not employed as well as 

integrating Dodgson condensation and Sylvester’s 

determinant identity with Cramer’s rule, see (Benzi, 2009b; 

Gu and  Xu, 2008; Ji, 2012; Kyrchei, 2008; Ufuoma, 2013). 

A French mathematician Étienne Bézout (1730-1783) in 1764 

gave methods of calculating resultants (determinants) by 

combining his rule of term formation and his rule of signs into 

one. He requires the permutations, unlike Cramer and Leibniz 

finding the permutations in any way, to be found by a process, 

and contributed to the recurrent law of formation of the new 

functions.  Then he proved that the nontrivial solutions of a 

system exist provided the determinant of the coefficient 

matrix is zero, in his Théorie des équations algébriques 

(Bézout, 1779; Godin, Demours,  and  Cotte, 1774). He stated 

a reframed theorem of Vandermonde that determinant of a 

matrix is zero if two rows are identical. According to Bézout, 

solving simultaneous equations by elimination is similar to 
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solving 𝑛 th degree equations in one unknown since "it is 

known that a determinate equation may always be interpreted 

as the outcome of two equations in two unknowns when one 

of the unknowns is eliminated". Bézout saw that he could 

determine the form of its solution. Conversely, if the 

coefficients of a given nth degree equation in one unknown 

had the form built up from such a special solution, that nth 

degree equation could be solved. In his treatise “Sur plusieurs 

classes d'équations de tous les degrés qui admettentune 

solution algébrique”. Bézout stated that the degree of the 

final equation resulting from any number of complete 

equations in the same number of unknowns, and of any 

degrees, is equal to the product of the degrees of the 

equations. Then he discussed another method of finding the 

resultant equation  by finding polynomials, which we may 

write 𝑄1, … , 𝑄𝑛  such that 𝑃1𝑄1 + 𝑃2𝑄2 +⋯+ 𝑃𝑛𝑄𝑛 = 0  is 

the resultant equation. Each 𝑄𝑘(𝑘 = 1, 2, … , 𝑛)  has 

indeterminate coefficients, which Bézout explicitly 

determined for many systems of equations by comparing 

powers of the unknowns x, y, z,···  (Bézout, 1762). This 

theorem brought about the development of the Bézout matrix, 

the theory of determinants, and resultants (Muir, 1911b). 

The widely extended concept known as the theorem for 

expressing a determinant as an aggregate of products of 

complementary minors was first published in 1771 by French 

mathematician and chemist Alexandre-Théophile 

Vandermonde (1735–1796) in his "Mémoiresurl' 

élimination" (Vandermonde, 1772). His method can evaluate 

the determinant of order 𝑛 (Hadamard, 1897). Thus, the only 

one fit to be viewed as the founder of the theory of 

determinants is Vandermonde since he was the first to 

recognize determinants as independent functions (Campbell, 

1980). Vandermonde’s matrix is a matrix where each row's 

terms correspond to a geometric progression. The  𝑛th-order 

Vandermonde determinant is 

 

|𝑉𝑛| = |
|

1 1 1    ⋯  1
𝑥1 𝑥2 𝑥3 ⋯ 𝑥𝑛

𝑥1
2

⋮
𝑥1
𝑛−1

𝑥2
2

⋮
𝑥2
𝑛−1

𝑥3
2

⋮
𝑥3
𝑛−1

⋯
⋱
⋯

𝑥𝑛
2

⋮
𝑥𝑛
𝑛−1

|
|
 

= (𝑥2 − 𝑥1)(𝑥3 − 𝑥2)(𝑥4 − 𝑥3)… (𝑥𝑗 − 𝑥𝑖  

Thus, 
|𝑉𝑛| = ∏ (𝑥𝑗 − 𝑥𝑖)1≤𝑖<𝑗≤𝑛                            (4) 

 

Where |𝑉𝑛|  is Vandermonde determinant or alternant, the 

right-hand side is the continued product of all the differences 

that can be formed from the 
𝑛(𝑛−1)

2
  pairs of numbers taken 

from 𝑥1, 𝑥2, … , 𝑥𝑛  with the order of the differences taken in 

the reversed order of the suffixes that are involved. The 

matrix can be transposed and has applications in 

Cryptography, polynomial interpolation, and signal 

processing (Klinger, 1967; Sobczyk, 2002).   

Pierre-Simon marquis de Laplace (1749-1827), a French 

polymath in 1772, gave a notation for a resultant or 

determinant (Sobczyk, 2002). He created a method to 

determine the number of terms in this aggregate and provided 

a rule for how to describe a resultant as an aggregate of terms 

made up of components (minors) that are also resultants. In 

addition, he named the new functions and provided proof of 

the theorem on the impact of transposing two adjacent letters 

in any of the new functions. His theorem may be described as 

giving an expression of a resultant in the form of an aggregate 

of terms each of which is a product of a lower degree (Brualdi 

and Schneider, 1983). Laplace later claimed that the methods 

employed by Cramer and Bézout were impractical. Laplace 

expansion is the best for computing determinants as it works 

for all forms of square matrices except it has a high time of 

complexity (Bronson, 1988; Cormen, 2009; Franklin, 1968). 

However, the disadvantage of Laplace expansion is that 

nowhere does a determinant of order greater than two have to 

be computed except by expressing it in numerous minors and 

thus leading to time wastage (Wexler, 1969). Let A be 𝑛 × 𝑛 

matrix. A minor is any (𝑛 − 𝑚) × (𝑛 − 𝑚) matrix formed by 

deleting 𝑚  rows and 𝑚  column from 𝐴. A complementary 

minor is the 𝑚 ×𝑚 matrix diagonally adjacent to the minor 

matrix 𝐴 . A consecutive minor is a matrix in which the 

remaining rows and columns in the minor were adjacent to 

the original matrix (Rice and Torrence, 2007). 

 

Theorem 2 (Laplace expansion) Suppose 𝐴 =  [𝑎𝑖𝑗] is an n 

× n matrix such that any 𝑖, 𝑗 ∈ (1,2,… , 𝑛) . Then its 

determinant of 𝐴 is given by 

det(𝐴) =∑ (−1)𝑖+𝑗𝑎𝑖𝑗𝑀𝑖𝑗
𝑛
𝑗=1                                       (5) 

where 

(−1)𝑖+𝑗 = {
+      𝑤ℎ𝑒𝑛 𝑖 = 𝑗 𝑜𝑟 𝑖 + 𝑗 𝑖𝑠 𝑒𝑣𝑒𝑛
−       𝑤ℎ𝑒𝑛 𝑖 ≠ 𝑗 𝑜𝑟 𝑖 + 𝑗 𝑖𝑠 𝑜𝑑𝑑

 

  for 𝑖, 𝑗 ∈ ℤ+. 

The minor 𝑀𝑖𝑗 is defined to be the determinant of the (𝑛 −

1) × (𝑛 − 1)matrix that results from the matrix by removing 

the 𝑖th row and the 𝑗th column and (−1)𝑖+𝑗 the checkerboard 

sign, for 𝑖, 𝑗 = 1, 2, … , 𝑛 . The expression (−1)𝑖+𝑗𝑀𝑖𝑗   is 

known as a cofactor, see (Afriat, 2000; Horn and  Johnson, 

2012; Lancaster and Tismenetsky, 1985). Thus, (−1)𝑖+𝑗 can 

be represented in the checkerboard sign below 

 

[
 
 
 
 
 
 
(−1)𝑖+𝑖 (−1)𝑖+𝑗 (−1)𝑖+𝑗 (−1)𝑖+𝑗 ⋯ (−1)𝑖+𝑗

(−1)𝑖+𝑗 (−1)𝑖+𝑖 (−1)𝑖+𝑗 (−1)𝑖+𝑗 ⋯ (−1)𝑖+𝑗

(−1)𝑖+𝑗

(−1)𝑖+𝑗

⋮
(−1)𝑖+𝑗

(−1)𝑖+𝑗 (−1)𝑖+𝑖

(−1)𝑖+𝑗

⋮
(−1)𝑖+𝑗

⋮
(−1)𝑖+𝑗 (−1)𝑖+𝑗

(−1)𝑖+𝑗

(−1)𝑖+𝑖

⋮
(−1)𝑖+𝑗

⋯…
⋱
…

(−1)𝑖+𝑗

(−1)𝑖+𝑗

⋮
(−1)𝑖+𝑖 ]

 
 
 
 
 
 

 

 

According to Jeffrey (2010) when evaluating a determinant, 

the amount of calculation required can be estimated by giving 

the determinant's order, while not indicating the value of the 

determinant. In the quest to make determinants more 

computable, Almalki, Alzahrani, and Alabdullatif (2013) 

designed a Laplace expansion-based sequential and parallel 

technique for finding determinants. Janjia (2005) stated that 

one of the most significant characteristics of determinants is 

Laplace expansion theorem. This theorem can be obtained by 

a proper rearrangement of summands when determinants are 

stated in terms of permutations. 

In 1773, an Italian mathematician and astronomer Joseph 

Louis Lagrange also known as Giuseppe Luigi Lagrange 

(1736-1813) for the first time gave a volume interpretation of 

a determinant. He treated determinants and applied them to 

elimination theory – bilinear forms. While other contributors 

focus on the problem of elimination, langrage work, on the 

other hand, consists of several incidentally obtained algebraic 

identities. Lagrange’s identity and the modern-looking 

identities are essentially the same and he proved many special 

cases of general identities. He further gave a theorem in his 

“Recherches d'arithmetique” that a minor determinant 

adjugates to another determinant (Lagrange, 1775; Weld, 

1893). 

A German mathematician Carl Friedrich Hindenburg (1741-

1808) worked on Cramer and Bezout's point of view in 1784. 

He wrote his permutation, calculating determinants, in a 

definite order regarding the sequence of signs by successfully 
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combining the rule of term formation and the rule of signs 

(Muir, 1911a).    

19th century: In 1800, a German mathematician Heinrich 

August Rothe (1773-1842), made an ill-advised and pointless 

modification of Cramer’s idea of the rule of signs. Though, 

he made remarkable contributions from the theorems he gave. 

He claimed that by counting the interchanges required to 

convert one permutation into the other, it is possible to 

discover the sign of any single permutation when the sign of 

any other is known – conjugate permutations has the same 

sign. Rothe further went and stated a theorem that depending 

on whether 𝑚 is even or odd, the sign of the new permutation 

is the same as, or different from, that of the original if one 

element of a permutation is forced to take up a new position 

by being passed over 𝑚  additional elements. (Studnička, 

1876).  

A year after, the term “determinant ” was first introduced in 

1801 by German mathematician Johann Carl Friedrich Gauss 

(1777-1855) in his book titled “DisquisitionesArithmeticae” 

while discussing quadratic forms (Gauss, 1966; Knobloch, 

2013). Gauss used the term because the determinant 

determines the properties of quadratic forms. The new term 

introduced by Gauss was not ‘determinant” but “determinant 

of a form”. Nowadays, the determinant of a form is referring 

to the discriminant of a quantic. In the theory of numbers, he 

frequently used determinants. The idea of reciprocal (inverse) 

determinants was also developed by Gauss (Kani, 2011). In 

the modern sense, the association of a square matrix and the 

corresponding polynomial in connection with linear 

transformation is due to Gauss. 

In 1809, a French mathematician Gaspard Monge (1746-

1818) used a process of elimination to compute the 

determinant. His method was quite general because the 

method possesses numerous other identities of the same kind. 

In 1811, a French mathematician and physicist Jacques 

Philippe Marie Binet (1786-1856) gave an extension of a 

theorem of Lagrange on determinant which expressed that a 

sum of products of resultants as a single resultant (Knobloch, 

1994; Shallit, 1994). He gave a modern notation for the 

formula 

∑∑|
𝑦ℎ
1 𝑦ℎ

2 … 𝑦ℎ
𝑛

𝑧𝑘
1 𝑧𝑘

2 … 𝑧𝑘
𝑛 | |

𝜐ℎ
1 𝜐ℎ

2 … 𝜐ℎ
𝑛

𝜁𝑘
1 𝜁𝑘

2 … 𝜁𝑘
𝑛|

ℎ=𝑠

ℎ=1

𝑘=𝑠

𝑘=1

 

 

A French mathematician and engineer Augustin-Louis 

Cauchy (1789-1857) in 1812 used “determinant” in its 

modern sense as was the most complete work on determinant. 

He published a paper in which he used determinants to 

compute the volume of several solid polyhedral (Vein and 

Dale, 1999). He gave a multiplication theorem for 

determinants and new results on minors and adjoints. He 

introduced the idea of similar matrices (but not the term) and 

pointed out that the eigenvalues of symmetric matrices are 

real. He introduced certain matrix terminologies such as 

terms, characteristics, principal terms, symmetric products, 

principal product, conjugate, conjugate system, and 

complementary derived systems. In 1826, Cauchy referred to 

the coefficients matrix as a "tableau" while discussing 

quadratic forms in 𝑛  variables. His method produced 

eigenvalues and eigenvectors, which offered a fresh way to 

handle quadratic expressions with 𝑛  variables (Knobloch, 

1994). He viewed determinant as a special class of alternating 

symmetric functions and gave the method as 

𝐷𝑛 = 𝑆(±𝑎1.1𝑎2.2…𝑎𝑛.𝑛)                                                    (6) 

His method produced eigenvalues and eigenvectors, which 

offered a fresh way to handle quadratic expressions with n 

variables (Knobloch, 1994). However, the eigenvalue 

problem to solve systems of ordinary differential equations 

was generalized by French mathematician Jacques Sturm. 

Later, Cauchy introduced the 2 × 2  determinant involving 

partial derivatives – known today as the Jacobian 

determinant. The Jacobian matrix is an 𝑛 × 𝑛 matrix, usually 

defined and arranged as follows 

 

𝐽 =
𝑑𝑓

𝑑𝑥
= [

𝜕𝑓

𝜕𝑥1
⋯

𝜕𝑓

𝜕𝑥𝑛
] 

=

[
 
 
 
𝜕𝑓1

𝜕𝑥1
⋯

𝜕𝑓1

𝜕𝑥_

⋮ ⋱ ⋮
𝜕𝑓𝑛

𝜕𝑥1
⋯

𝜕𝑓𝑛

𝜕𝑥𝑛]
 
 
 

= ||

𝜕𝑓1

𝜕𝑥1
⋯

𝜕𝑓1

𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕𝑓𝑛

𝜕𝑥1
⋯

𝜕𝑓𝑛

𝜕𝑥𝑛

||                                 

(7) 

Jacobian determinant has application in polar coordinates, 

cylindrical polar coordinates, and spherical polar coordinates. 

In this, he used the word “determinant” in its present sense 

after considering Laplace, Vandermonde, Gauss, and 

Bezout’s work. He modernized the notation, streamlined what 

was then known about the subject, and provided a more 

convincing demonstration for the multiplication theorem than 

Binet did. With him begins the theory in its generality 

(Cauchy, 1812).  

In 1841, a German mathematician Carl Gustav Jacob Jacobi 

(1804-1851) gave the definition of determinant which was 

made algorithmically. Jacobi gave the adjugate determinant 

of matrix 𝐴 given as  

|𝑎𝑑𝑗𝐴| = |𝐴|𝑛−1          and      𝑎𝑑𝑗𝐴 = (𝐴𝑖𝑗)
𝑇 = (𝐴𝑗𝑖) 

where adjugate matrix of 𝐴 is 𝑎𝑑𝑗𝐴 and 𝐴𝑖𝑗 are the cofactors 

of elements 𝑎𝑖𝑗 (Jacobi, 1896). In the same year (1841), 

Cayley introduced hyperdeterminant. He published for the 

first time on the inverse of a matrix. He proposed a theorem 

which is now known as the Cayley-Hamilton theorem that a 

matrix must satisfy its characteristic equation (Cayley, 1858). 

In his memoir, he successfully discovered that there is a close 

relationship between matrices and linear transformations 

(Cayley, 1845). Peter Guthrie Tait once said, “Cayley is 

forging the weapons for future generations of physicists”  

(Bonolis and de Laplace, 2004). 

Pierre Frédéric Sarrus (1798–1861), a French mathematician 

in 1842, gave a memorization scheme to compute only the 

determinant of a 3 × 3  matrix, 𝐴 = 𝑎𝑖,𝑗 , ∀ 𝑖, 𝑗 = 1, 2, 3 . 

Sarrus rule or basketweave method can be derived from the 

case of the Leibniz formula, and Laplace expansion. The 

method considers one to write out the first two columns of the 

matrix to the right of the third column to yield five columns 

in a row. Then, add the top-to-bottom diagonal's products and 

deduct the bottom-to-top diagonal's products (Ahmed and 

Bondar, 2014; Karim, Ibrahim, and Omar, 2016) to yield  

det(𝐴) = 𝑎11𝑎22𝑎33 + 𝑎12𝑎23𝑎31 + 𝑎13𝑎21𝑎32 −
𝑎31𝑎22𝑎13 − 𝑎32𝑎23𝑎11 − 𝑎33𝑎21𝑎12    (8) 

In 1866, an English writer Charles Lutwidge Dodgson 

popularly known as Lewis Carroll (1832-1898) gave a 

method of computing the determinant of a square matrix by 

condensation. The method proves to be effective as well as 

minimizes errors before arriving at the solution (Leggett, 

Perry, and Torrence, 2009). Dodgson condensation reduces 

the matrix into 2 × 2 submatrices for easy computation of 

determinants. The method reduces the risk of miscalculation 

as it is bound to divide the determinant of the submatrices by 

interior elements (Abeles, 1986). The fatal of Dodgson's 

condensation defect is that the determinant of an interior 

matrix must not be zero because dividing the determinant of 

the minors by zero makes the solution indeterminate (Abeles, 

1994). The advantage of Dodgson condensation is that the 

determinant of a square matrix is a rational function of all its 
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connected minors of any two consecutive sizes (Schmidt and  

Greene, 2011). The fatal defect of Dodgson condensation has 

a remedy like row (column) permutations, though it may not 

always work if there are many zero entries in the matrix or the 

determinant of interior matrix zero - this can happen even if 

no zeroes appear in the interior of the matrix (Abeles, 2008; 

Robbins, 2005). In Dodgson’s condensation, each smaller 

matrix contains the 2 × 2 connected minors of the previous 

iteration’s matrix. The 2 × 2  connected minors are the 

determinants of each 2 × 2  submatrices consisting of 

adjacent elements of the larger matrix. Beginning with the 

second stage of iteration, each of these minors is divided by 

their central element from two stages previous. In this case, 

Dodgson suggested replacing the zero element with a nonzero 

element of the matrix by rotating columns or rows and then 

proceeding with condensation. If all elements of the matrix 

are zero, then the matrix is trivial, and its determinant is zero.  

For a given 𝑛 × 𝑛 matrix, a minor is any (𝑛 − 𝑚) × (𝑛 − 𝑚) 
matrix formed by deleting 𝑚 rows and 𝑚 columns from 𝐴. A 

complementary minor is the resulting 𝑚 ×𝑚  matrix 

diagonally adjacent to the minor matrix while a consecutive 

minor is one in which the remaining rows and columns in the 

minor were adjacent in the original matrix. interior of 𝐴 is the 

(𝑛 − 2) × (𝑛 − 2) consecutive minor that results when the 

first and last rows and columns of matrix 𝐴 are deleted, see 

(Abeles, 1986; Rice and Torrence, 2006, 2007).   

Theorem 3 (Dodgson’s condensation theorem) Let A be an 

𝑛 × 𝑛  matrix. After 𝑘  successful condensation, Dodgson 

produces the matrix 

𝐴(𝑛−𝑘) =

(

 
 

|𝐴1…𝑘+1,1…𝑘+1| |𝐴1…𝑘+1,2…𝑘+2| ⋯ |𝐴1…𝑘+1,𝑛−𝑘…𝑛|

|𝐴2…𝑘+2,1…𝑘+1| |𝐴2…𝑘+2,2…𝑘+2| ⋯ |𝐴2…𝑘+2,𝑛−𝑘…𝑛|

⋮
|𝐴𝑛−𝑘…𝑛,1…𝑘+1|

⋮
|𝐴𝑛−𝑘…𝑛,2…𝑘+2|

⋱
⋯

⋮
|𝐴𝑛−𝑘…𝑛,𝑛−𝑘…𝑛|)

 
 

 

Whose entries are the determinants of all (𝑘 + 1) × (𝑘 + 1) contiguous submatrices of 𝐴. 

 Then  

𝐴𝑛(1,1)𝐴𝑛−2(2,2) = 𝐴𝑛−1(1,1)𝐴𝑛−1(2,2) − 𝐴𝑛−1(2,1)𝐴𝑛−1(1,2) 
more precisely, 

det (𝐴) = 𝑑𝑒𝑡𝐴𝑛(1,1) =
𝑑𝑒𝑡𝐴𝑛−1(1,1) 𝑑𝑒𝑡𝐴𝑛−1(2,2)− 𝑑𝑒𝑡𝐴𝑛−1(1,2) 𝑑𝑒𝑡𝐴𝑛−1(2,1)

𝑑𝑒𝑡𝐴𝑛−2(2,2)
                  (9) 

 

For an 𝑛 × 𝑛matrix 𝐴, let 𝐴𝑟(𝑖, 𝑗)  denote the 𝑟  by 𝑟  minor 

consisting of 𝑟 contiguous rows and columns of 𝐴, beginning 

with row 𝑖, column 𝑗 (Amdeberhan and  Ekhad, 1997). Note 

that 𝐴𝑛−2(2,2)  is the central minor or interior elements; 

𝐴𝑛−1(1,1) , 𝐴𝑛−1(2,2) , 𝐴𝑛−1(1,2)  and 𝐴𝑛−1(2,1)  are the 

respective northwest, southwest, southeast, northeast, and 

southwest minors,  see (Abeles, 2014; Amdeberhan, 2001; 

Muir, 1881) and the references therein. According to 

Bressoud and Propp (1999), “Although the use of division in 

Dodgson condensation may appear to be a drawback, it 

serves as a useful form of error checking for calculations 

done by hand using integer matrices. When the algorithm is 

carried out correctly, all the entries of all the intervening 

matrices are integers, making it impossible to know that a 

mistake has been made when a division does not come out 

evenly. The approach is helpful for computer calculations as 

well, particularly”. 

 

Theorem 4 (Chio’s method) For an 𝑛 × 𝑛 matrix 𝐴 = (𝑎𝑖𝑗) 

with 𝑎𝑛𝑛 ≠ 0, let 𝐹 = (𝑓𝑖𝑗) be the (𝑛 − 1) × (𝑛 − 1) matrix 

defined by  

𝑓𝑖𝑗 = |
𝑎𝑖𝑗 𝑎𝑖𝑛
𝑎𝑛𝑗 𝑎𝑛𝑛

| = 𝑎𝑖𝑗𝑎𝑛𝑛 − 𝑎𝑖𝑛𝑎𝑛𝑗                                 (10) 

Then,                              det (𝐴) =
1

𝑎𝑛𝑛
𝑛−2 𝑑𝑒𝑡 𝐹 

For𝐼, 𝑗 = 1,… , 𝑛 − 1. 

The process in Equation (10) substitutes every element in the 

matrix with a 2 × 2  determinant comprises the 𝑎𝑖𝑖 element, 

the highest value in the element’s column, the first value in 

the element’s row, and the element being replaced. The 

computed values of 2 × 2 determinant replace the 𝑎𝑖,𝑗  with 

𝑎𝑖,𝑗
′. The 𝑖th row and the 𝑖th column are deleted, therefore 

decreasing the initial 𝑛 × 𝑛 matrix to an (𝑛 − 1) × (𝑛 − 1) 
matrix with the equivalent determinant, see (Brualdi and  

Schneider, 1983; Eves, 1980; Habgood and Arel, 2012). 

Chio’s method will not work if the pivotal element is zero 

because dividing the determinant of the minors by zero makes 

the solution indeterminate and the method fail to compute 

over a small finite field (Robbins, 2005). 

A German mathematician, Karl Theodor Wilhelm 

Weierstrass (1815-1897), gave the axiomatic definition of a 

determinant. 

 

20th century: During the 20th century, the matrix begins to 

have tentacles due to its applications in different fields which 

emerged a new field in mathematics called matrix theory. 

Since Laplace expansion is a building block for other methods 

of determinant, only a few of the contributors to the 

determinant of a matrix in mathematics will be discussed.  

Bareiss (1968) worked on improving the computation of 

determinants by minimizing the complexity time of the 

condensation. Although Bareiss algorithm or Montante’s 

method is based on row reduction, it can also be proven using 

Sylvester’s identity(Yap, 2000). The Chinese remainder 

theorem has been used to compute some cases of 

determinants (Pan, Yu,  and  Stewart, 1997). 

Robbins and Rumsey (1986) made important studies on the 

iteration of the Dodgson’s Determinantal Identity (DDI) to 

the discovery of Alternating Sign Matrix Conjecture (ASM). 

The iteration was from the recurrence of the Laurent 

polynomials (when 𝜆 = −1) to form lambda determinant of 

matrix (Mills, Robbins,  and  Rumsey, 1986). An Alternating 

Sign Matrix has +1,−1, 0 as an element in every row and 

column and thus, the ASM conjecture is given as 

 

𝐴𝑛 = ∏
(3𝑗+1)!

(𝑛+𝑗)!

𝑛−1
𝑗=0                                                              (11) 

Within a decade Zeilberger (1997) published a combinatorial 

proof of DDI. A better algorithm than simple Dodgson’s 

condensation is the recurrence of DDI. Though DDI requires 

more calculation yet the computational complexity of DDI 

and Dodgson condensation remain the same (Francisco Neto, 

2015).  Grcar (2012) asserted that several authors including 

Charles Dodgson reinvented Chio’s method of evaluating the 

determinant. However, Abeles (2014) stated that Dodgson’s 

identity was a result of a theorem of Jacobi while Chio’s 

identity was from a theorem of Sylvester.  
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Theorem 5 (Jacobi’s theorem on adjoint determinant) Let 𝐴 

be an 𝑛 × 𝑛 matrix, let [𝐴𝑖𝑗] be an 𝑚 ×𝑚 matrix of 𝐴, where 

𝑚 < 𝑛, let [𝐴𝑖𝑗
′ ]be the corresponding 𝑚 ×𝑚 minor of 𝐴′ and 

let [𝐴𝑖𝑗
∗ ]  be the complementary (𝑛 − 𝑚) × ( 𝑛 − 𝑚) minor 

𝐴. Then.  

𝑑𝑒𝑡[𝐴𝑖𝑗
′ ] = (𝑑𝑒𝑡𝐴)𝑚−1. 𝑑𝑒𝑡[𝐴𝑖𝑗

∗ ]                                 (12) 

By Laplace expansion 𝐴. 𝐴′ = det (𝐴). 𝐼 
Thus, 

det(𝐴. 𝐴′) = det(𝐴) det (𝐴′) = (𝑑𝑒𝑡𝐴)𝑛 

Likewise, Dodgson’s method is a unique case for both 

Desanot and Muir's law of extensible minors and Jacobi 

adjoint matrix theorem. More precisely for Dodgson/Muir 

determinantal identity is 

𝑑𝑒𝑡 𝐴 =
∑ (−1)𝑙(𝜎)∏ 𝑑𝑒𝑡𝐴[{𝑗,𝑘+1,…,𝑛},{𝜎(𝑗),𝑘+1,…,𝑛}]𝑘

𝑗=1𝜎∈𝑠𝑘

𝑑𝑒𝑡 𝐴[{𝑘+1,…,𝑛},{𝑘+1,… ,𝑛}]𝑘−1
     (13) 

 

From the above equation, if 𝑘 = 2 then it turns out to be DDI. 

Other special cases where Dodgson's identity was derived are 

Lagrange, Cauchy and Minding, and Sylvester's identity 

(Amdeberhan and  Ekhad, 1997). It was Brualdi and 

Schneider (1983) that successfully linked Chio and 

Sylvester's identity by considering Schur’s identity  as 

follows: 

 Let 𝐴 = (𝑎𝑖𝑗)  be a square matrix. If 𝐴  is partition using 

block triangularization, then we can factor 𝐴 into 

𝐴 = [
𝐴11 𝐴12
𝐴21 𝐴22

] = [
𝐴11 𝑜
𝐴21 𝐼

] . [
𝐼 𝐴11

−1𝐴12
0 𝐴22 − 𝐴21𝐴11

−1𝐴12
]  

(14) 

Where 𝐴11 ≠ 0 is of order 𝐾. Multiplying both sides by their 

respective determinants |𝐴11|
𝑛−𝑘−1, we therefore have 

|𝐴11|
𝑛−𝑘−1|𝐴| = ||𝐴11|(𝐴22 − 𝐴21𝐴11

−1𝐴12)|                                      
(15) 

When 𝑘 = 1  the expression becomes Chio’s identity, see 

(Akritas, Akritas,  and  Malaschonok, 1996; Eves, 1980). 

Chang and Su (1998) devised a method, to reduce the 

cumbersome method of evaluating determinant, known as the 

order-reduction formula through condensation which is 

𝑑𝑒𝑡 [

𝑤11 𝑣1 𝑤12
𝑢1 𝑟 𝑢2
𝑤21 𝑣2 𝑤22

] 

= 𝑟 det [[
𝑤11 −𝑤12
−𝑤21 𝑤22

] −
1

𝑟
[
𝑣1
−𝑣2

] [𝑢1 −𝑢2]]                   

(16) 

 

Provided that 𝑟 ≠ 0. Where 𝑊 (𝑤11…𝑤22), 𝑟 𝑣 and 𝑢 are a 

square matrix, a scalar (pivot element), a column matrix and 

a row matrix respectively. 

 

21st century: In the early 21st century, Rezaifar and Rezaee 

(2007) discussed a new method of computing determinants. 

They compute the determinant as the result of submatrices 

derived by discarding row and column in a specific direction 

or way and resulting in the formula given as 

|𝑀| =
1

|𝑀11,𝑛𝑛|
|
|𝑀11| |𝑀1𝑛|

|𝑀𝑛1| |𝑀𝑛𝑛|
|                                                (17) 

where 

 

 

𝑀 = [

𝑥 𝑥 𝑥 𝑥
𝑥 𝑥 𝑥 𝑥
𝑥
𝑥

𝑥
𝑥

𝑥
𝑥

𝑥
𝑥

]𝑀𝑛𝑛 = [

𝑥 𝑥 𝑥
𝑥 𝑥 𝑥
𝑥 𝑥 𝑥

]𝑀11,𝑛𝑛 = [
𝑥 𝑥
𝑥 𝑥

] 

𝑀𝑛1 = [

𝑥 𝑥 𝑥
𝑥 𝑥 𝑥
𝑥 𝑥 𝑥

], 𝑀11 = [
𝑥 𝑥 𝑥
𝑥
𝑥

𝑥
𝑥

𝑥
𝑥

]    and   𝑀1𝑛 = [
𝑥 𝑥 𝑥
𝑥
𝑥

𝑥
𝑥

𝑥
𝑥

] 

 

Salihu (2012) gave a method that is based on Dodgson-Chio’s 

condensation. By calculating four unique determinants of 

(𝑛 − 1) × (𝑛 − 1)  order, which can be derived from 

determinants of nn order, we can resolve Salihu’s  method. If 

we remove the first row and first column, first row and last 

column, last row and first column, or last row and last 

column, we should refer to these elements as unique elements, 

and one determinant of (𝑛 − 2) × (𝑛 − 2) the order, which is 

formed from 𝑛 × 𝑛 order determinant with elements 𝑎𝑖,𝑗with 

𝑖, 𝑗 ≠ 1, on the condition that the determinant of (𝑛 − 2) ×
(𝑛 − 2) ≠ 0. However, Salihu’s method is not different from 

Rezaifar and Rezaee’s method. Though Rezaifar and Rezaee 

first published the new method and gave comprehensive 

proof as well as the algorithm using MATLAB and 

FORTRAN, they failed to formulate a theorem. Salihu went 

further to coin a new term called “unique elements” for 

𝑀11,𝑛𝑛 . He got his idea from Chio’s condensation and 

Dodgson condensation method, while Rezaifar and Rezaee 

got theirs from inversing matrices in a linear equation. It may 

be noted that Salihu was unaware of Rezaifar and Rezaee's 

article as he did not cite it in his paper. The common thing 

among the findings of Salihu and, Rezaifar and Rezaee is that 

their method reduces 𝑛 × n matrix into four (𝑛 − 1) × (𝑛 −
1) matrices and one (𝑛 − 2) × (𝑛 − 2) matrix. 

Furthermore, Taheri, Boostanpour, and Mohammadi (2013) 

claimed to have gotten a novel algorithm for the determinant 

calculation of 𝑛 × 𝑛 matrix, called TaBe. They were, in fact, 

unaware of Salihu nor Rezaifar and Rezaee’s work, because 

their work is termed to be a reinvention of Rezaifar and 

Rezaee’s method.  

Urbańska (2008) devised faster combinatorial algorithms for 

determinants and Pfaffian. Improvements are made on a fast 

algorithm to compute determinants of special matrices such 

as circulant matrix, Pentadiagonal matrix, Divisor matrix, 

Bezout matrix, and Toeplitz matrix, see (Chen, 2014; Cinkir, 

2014; El-Mikkawy, 2008). 

Over a century of discovering Cramer’s rule and Dodgson’s 

condensation, no one has successfully linked the two methods 

together until recently when  Ufuoma (2013) described the 

relationship between Cramer’s rule and Dodgson’s 

condensation with lucid understanding. She, as well, gave 

proof of her new method is the same as classical Cramer’s 

rule. Without loss of generality, this method is used for the 

system of the linear equation of the form 𝐷𝑥 = 𝑏.  

Let    𝑆1 = [

𝑎11 … 𝑎1𝑛
⋮ ⋱ ⋮
𝑎𝑛1 ⋯ 𝑎𝑛𝑛

𝑏1
⋮
𝑏𝑛

𝑎11 … 𝑎1(𝑛−1)
⋮ ⋱ ⋮
𝑎𝑛1 ⋯ 𝑎𝑛(𝑛−1)

]. That is, 𝑆1 = [𝐷 𝑏 𝐷′] 

Where 𝐷′ is the array of numbers that remains after removing the last column of 𝐷. Thus, 
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|𝐷𝑛| = |
𝑏1
⋮
𝑏𝑛

𝑎11 … 𝑎1(𝑛−1)
⋮ ⋱ ⋮
𝑎𝑛1 ⋯ 𝑎𝑛(𝑛−1)

| = (−1)𝑛−1 |

𝑎11 … 𝑎1(𝑛−1)
⋮ ⋱ ⋮
𝑎𝑛1 ⋯ 𝑎𝑛(𝑛−1)

𝑏1
⋮
𝑏𝑛

| 

Therefore, 

𝑥𝑛 = (−1)
𝑛−1 |𝐷𝑛|

|𝐷|
                                                              (18) 

 

Chang (2014) discussed an integrated method of 

condensation in his “determinant of a matrix by order 

condensation”. The method was easy for hand calculation by 

reducing the number of steps in the calculation. He provided 

the MATLAB code for the method; however, he did not prove 

his acclaimed method but rather gave examples. 

In 2016, Sobamowo (2016)gave an extension of the Sarrus 

rule to 4 × 4 matrices. His method is the most successful of 

the Sarrus rule to 4 × 4 matrices. 

 

CONCLUSION 

The theory of determinant came into existence from the 

contributions of different authors, most of which have roles 

in the establishment of matrix theory since determinant 

provides information about the matrix. Nowadays, it is almost 

impossible to discuss determinant without considering its 

matrix. Evidently, determinant and matrix have played an 

important role beyond the field of mathematics.  
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