
Original Research Article

Journal of Educational Computing
Research
2022, Vol. 0(0) 1–35
© The Author(s) 2022
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/07356331221121106
journals.sagepub.com/home/jec

Mapping Computational
Thinking Skills Through
Digital Games Co-Creation
Activity Amongst Malaysian
Sub-urban Children

Mohd Kamal Othman1, Syazni Jazlan1, Fatin Afiqah Yamin1,
Shaziti Aman1, Fitri Suraya Mohamad1,
Nurfarahani Norman Anuar1, Abdulrazak Yahya Saleh1, and
Ahmad Azaini Abdul Manaf2

Abstract
This study investigates how digital game co-creation promotes Computational Thinking
(CT) skills among children in sub-urban primary schools. Understanding how CT skills
can be fostered in learning programming concepts through co-creating digital games is
crucial to determine instructional strategies that match the young students’ interests
and capacities. The empirical study has successfully produced a new checklist that can
be used as a tool to describe the learning of CT skills when children co-create digital
games. The checklist consists of 10 core CT skills: abstraction, decomposition, al-
gorithmic thinking, generalisation, representation, socialisation, code literacy, auto-
mation, coordination, and debugging. Thirty-six 10–12 year-olds from sub-urban
primary schools in Borneo participated in creating games in three separate eight-hour
sessions. In addition, one pilot session with five participants was conducted. The game
co-creation process was recorded to identify and determine how these young, in-
experienced, untrained young learners collaborated while using CT skills. Analysis of
their narratives while co-creating digital games revealed a pattern of using CT while

1Faculty of Cognitive Sciences and Human Development, Universiti Malaysia Sarawak, Sarawak, Malaysia
2Faculty of Creative Technology and Heritage, Universiti Malaysia Kelantan, Kelantan, Malaysia

Corresponding Author:
Mohd Kamal Othman, Faculty of Cognitive Sciences and Human Development, Universiti Malaysia Sarawak,
FCSHD, Sarawak 94300, Malaysia.
Email: omkamal@unimas.my

https://us.sagepub.com/en-us/journals-permissions
https://doi.org/10.1177/07356331221121106
https://journals.sagepub.com/home/jec
https://orcid.org/0000-0001-5401-2515
https://orcid.org/0000-0003-4460-8061
mailto:omkamal@unimas.my
http://crossmark.crossref.org/dialog/?doi=10.1177%2F07356331221121106&domain=pdf&date_stamp=2022-10-31

developing the games. Although none of the groups demonstrated the use of all ten
CTs, conclusively, all ten components of the CT were visibly present in their co-
created digital games.

Keywords
Digital games development, co-creation, computational thinking, children, sub-urban

Introduction

The ability to think computationally is a necessary component of education for the
twenty-first century, and according to Tekdal (2021), the field’s research has expanded
rapidly in recent years. Higher-order thinking skills are being pushed in Malaysian
classrooms to keep up with the demands of the modern learning environment. The
primary school curriculum in Malaysia promotes the use of CT and other forms of
critical and creative thinking. In accordance with the aspirations of the Malaysian
National Blueprint for Education 2015–2025, the current curriculum for all schools
under the Ministry of Education offers CT skills through a subject called Technology
Across the Curriculum.

CT is a problem-solving skill set traditionally associated with the Computer Science
field. It entails conceptualising, theorising and designing systems that overlap with the
science of thought, an essential computing component (Wing, 2006). Grover and Pea
(2013) provided a thorough review of CT and a good starting point for understanding
the use of CT in K-12 education. CT is a core component of problem-solving that
focuses on the cognitive process, whilst code literacy means that students can read and
write programming language in learning a programming language (Vee, 2013). As a
result, code literacy will significantly impact digital literacy. Digital literacy includes
mastering basic computing skills to create multimodal texts and utilising technology to
interact with the world around them (Blummer, 2008).

Previous studies have established the need to integrate CT skills into the curriculum
(e.g., Balanskat & Engelhardt, 2014; Brown et al., 2013; Garcı́a-Peñalvo et al., 2016;
Lee et al., 2011; Ung et al., 2022) and its perceived impact on education (Garcı́a-
Peñalvo & Mendes, 2018). Hambrusch et al. (2009) described the importance of CT in
K-12 STEM (Science, Technology, Engineering, and Mathematics) education. Nu-
merous studies have emphasised using programming languages to promote CT (e.g.,
Tedre, 2017; Lye & Koh, 2014; Kelleher & Pausch, 2005). It is vital to introduce CT
skills to learners before learning about programming concepts (Qualls & Sherrell,
2010), and programming course robots have significantly impacted student CT and
creativity in elementary school (Noh & Lee, 2020). However, studies have consistently
found it difficult to ascertain the skills and abilities needed to develop CT skills among
learners (e.g., de Araujo et al., 2016; Tang et al., 2020) or teach CT (Guzdial, 2008).
Recenlty, Jiang et al. (2021) describe the importance of student participation in the

2 Journal of Educational Computing Research 0(0)

programming process, which involves social interaction amongst the children and
focuses not only on developing CT skills. In addition, Anuar et al. (2020) posited that
CT can be introduced in a playful approach to young learners living in remote rural and
found out that boys performed better at drawing and abstraction skills whilst the girls
did better at recognising patterns and colours.

Currently, there are two leading Game-Based Learning approaches to facilitate the
development of CT skills and programming courses, such as “learning through the
exercise of designing games” and “learning through gameplay” (Kazimoglu et al.,
2012). This current study employs the first method and focuses on the specific task of
developing digital games through co-creation. It builds on an earlier observation about
how digital game development is highly motivational and practical in getting students
engaged with programming concepts (Wilson et al., 2011). Moreover, when put into a
digital game designer role, young learners will learn to program and develop tech-
nology literacy (Resnick & Silverman, 2005).

Creativity is the ability to construct and create ideas, objects, and inventions that
carry value, originality, and effectiveness (Runco & Jaeger, 2012). Romero et al. (2018)
defined co-creation as a collaborative effort to undertake a complex task that requires
critical and creative thinking skills, which implies working in a team to develop ideas
and solutions (Romero et al., 2018). Furthermore, Arnab et al. (2019) found how co-
creativity facilitates an engaging learning process amongst undergraduates in the UK
and how co-creativity experiences enabled the discovery of empathy, purpose,
meaning, art, creativity, and teamwork.

Motivation/Rationale

Building on our understanding of previous work on CT and Creativity, we want to
investigate if the co-creation process positively affects young learners developing CT
skills. The objective of the study is two-fold; (1) to produce a CT skills checklist for
learning programming concepts using document analysis, and (2) to validate the
produced CTskills by determining the pattern of utilising CTamongst young sub-urban
primary school students as they co-create digital games using Scratch�.

Many previous studies have focused on CT skills for various contexts and various
CT Skills models/frameworks/definitions/concepts were introduced. For example,
Zhang and Nouri (2019) posited that CT skills definition varies between countries,
curricula and literature, whilst recently, Ezeamuzie and Leung (2022) in their sys-
tematic literature review explained why CT skills have been operationalised differently
in the literature, especially empirical studies whereby many of them were aligned with
computer science concept and practices. Furthermore, previous studies lack a standard
definition of CT or agree on the standard definition (Grover & Pea, 2013). Conse-
quently, it is difficult for future researchers to choose which definition, concept, model,
or construct to use.

The CT skills for the developed digital games were also examined using methodologies
and tools thatwere already in use, such asDrScratch (Moreno-León&Robles, 2015a, 2015b),

Othman et al. 3

Scratch Analysis Tool (SAT) (Boe et al., 2013), Hairball (Wolz et al., 2011), and Scrape
(Denning, 2003). However, following a thorough literature review, we found that the
limits of the CT skills utilised in their research restricted us from using these tools. For
instance, only seven CT concepts—abstraction and issue decomposition, parallelism,
logical reasoning, synchronisation, flow control, user activity, and data representation—
are used by Dr Scratch to analyse the scripts. By creating a thorough checklist that can be
used to evaluate CT skills in the co-created digital games, this study intends to close
these gaps.

Furthermore, this study presents a more comprehensive checklist to measure CT for
learning programming concepts and further validates them with young sub-urban
children who willingly engage in co-creation by analysing activities and digital game
artefacts created using Scratch�. It is crucial to observe the phenomenon, as these
participants come from limited technological backgrounds at home and school. Given
their low socio-economic backgrounds, they would not participate in a commonly
assumed conducive nurturing environment to cultivate interest or skills in computer
programming at home or in their schools. In this study, we also intend to document the
viability of integrating ICT competencies through co-design by creating opportunities
to construct digital games using Scratch� for children from underprivileged families
(particularly in sub-urban areas) who otherwise would not participate in creative
technology. Scratch� was selected for this study because it represents a simplified
visual approach to programming and has been notably reported to motivate young
people to learn how to program (e.g., Brennan & Resnick, 2013; Maloney et al., 2010;
Meerbaum-Salant et al., 2013; Resnick et al., 2009; Wolz et al., 2008).

The rest of the paper is organised as follows. The literature on CT and digital games
is reviewed in the part that follows by highlighting the various tools, constructs,
definitions, and interpretations. The methodology section focuses on how the in-
strument was created and how the experiment was done to validate it. The results of the
experiment to verify the instrument are reported in the Results section (digital games
co-creation activities). The study’s goal, which addressed the study’s gap, is revisited in
the discussion part, followed by a section on future research and conclusions.

Literature Review

Digital Games Development. The development and availability of numerous student-
friendly applications, digital game development are becoming more reachable for
students (Resnick et al., 2003). Denner et al. (2012) suggested that computer game
programming is essential and beneficial for engaging middle school children in training
them for future computer classes and careers. Multiple attempts and innovations have
been seen over the years. Several computing languages and programming applications
have been developed to get students into programming since Logo was created in 1967
(e.g., Kelleher & Pausch, 2005; Kahn, 2007; Mc Nerney, 2004).

Game construction embodies the constructionist perspective that views learning as
an active process in which the student actively forms knowledge by making things

4 Journal of Educational Computing Research 0(0)

(Rovegno & Dolly, 2006). When students develop games, they make interactive things
and, in doing so, promote the building of knowledge. Constructionists’ views aim to
give students ways to develop their games and develop new links with knowledge
instead of integrating lessons directly into games (Kafai, 2006). Papavlasopoulou et al.
(2018) used the constructionist approach to developing a digital game using Scratch�
and found that students used specific programming concepts such as sequence/event
handling and conditionals followed by threads and operators in developing the digital
game. Scratch� is a programming environment that visually represents programming
concepts, and was developed to guide learners aged 8 years. Though aimed at students,
the tool is frequently used to teach young and mature students basic programming
principles (e.g., Malan & Leitner, 2007; Fadjo, Lu, & Black, 2009; Fadjo, Hallman,
et al., 2009; Maloney et al., 2010) because programming concepts are visualised in
blocks that students can snap together to create scripts (e.g., Resnick et al., 2003;
Maloney et al., 2008).

Wilson et al. (2011) used Scratch� for game making with students aged eight and
nine years old to learn programming concepts, whilst others focused on 13–14-year-old
(e.g., Adams, 2010; Papavlasopoulou et al., 2018; Sivilotti & Laugel, 2008) and
university students (Malan, 2010). Grover et al. (2014) compared the learning per-
formance of Scratch� programming between Israeli middle school students and
Northern California students; the findings indicate a significant difference in students’
performance between pre-test and post-test. Scratch� is also able to motivate young
people to learn how to program (e.g., Brennan & Resnick, 2013; Maloney et al., 2010;
Meerbaum-Salant et al., 2013; Resnick et al., 2009; Wolz et al., 2008) and allows
beginners or novices to quickly create the games, animations, and interactive stories
without the need to have basic programming syntax knowledge (Zaharija et al., 2013).
Based on the findings and recommendations from the studies mentioned earlier, we
decided that Scratch� is the best tool to use.

Computational Thinking

Learning programming concepts is almost always associated with general miscon-
ceptions about the tasks and the field (Clancy, 2004; Qian & Lehman, 2017;
Kaczmarczyk et al., 2010). Problem-solving and CT are the keys to a programming
language (Wong & Cheung, 2018), which requires concentrating on the syntax and
semantics in understanding abstract concepts and learners must grasp its patterns of
evidence (Kazimoglu et al., 2012). Educators have utilised various approaches to
integrate CT concepts into computer programming, such as using computer game
creation to engage students in the CT (Werner et al., 2012) or visual programming tools
to teach programming, which is attractive and motivational (Kazimoglu et al., 2012);
impact/foster creativity among students (Bennett et al., 2011); allow children to do
more program manipulation (Rose et al., 2017). Visual programming tools are also
frequently considered ideal as they enable learners to generate multiple abstractions
quickly without the need for extreme program coding. Ioannidou et al.’s (2011) study

Othman et al. 5

indicate an evident transfer between game design and science simulation design; it
suggests that the CT components used to build the games could develop science
simulations.

The Computer Science Teacher Association (CTSA) divided CT into six dimen-
sions: formulating problems in a way that machines can help to solve, processing data
in a logical way, representing data abstractly, algorithmising the automated solutions,
and problems in an efficient way, and transferring knowledge and skills in solving other
issues (CSTA, 2011), whilst Brennan and Resnick (2012) classified the CT into three
constructs: computational concepts (sequence, loops, events, parallelism, conditionals,
operators, data), computational practice (experimenting and interpreting, testing, and
debugging, reusing, and mixing abstraction, and modulation) and computational
perspectives (expressing, connecting, questioning).

However, Wing (2006) explained that CT integrates all vital skills related to
problem-solving and proposed primary constructs of CT ranging from Abstraction and
Decomposition; Representation; Problem reformation and Problem reformulation;
Recursion; Parallelism; Generalisation; Systematic testing; Prevention, Protection, and
Recovery. Similarly, Kazimoglu et al. (2012) proposed five core CT skills for a
computer science course: problem-solving, algorithm building, debugging, simulation,
and socialising whilst Selby and Woollard (2013) described the CT components as
abstraction, evaluation, decomposition, algorithmic thinking, and generalisation.
However, Romero et al. (2017) identified six CT competency components in the #
5c21 framework model: problem identification, modelling, programming, and eval-
uation (related to Collaborative Problem Solving), code literacy and technological
literacy.

Romero et al. (2016, 2017) identified five levels of learning to code activities as
follows: (1) Instructor-centred descriptions and lessons; (2) Practical, step-by-step
programming; (3) content creation programming individually; (4) co-creation content
programming; (5) participatory co-creation of knowledge through programming.
Students undergo a passive learning phase in typical learning, moving toward a more
social constructivist experience. Drawing from these levels, we used the levels as
markers in the experiment to determine how passive/active the participants were
engaged in the assigned tasks. These levels inform the criteria for participant selection
and how the actual investigation sessions are planned. Participants are led through each
level of learning to code on the assumption that they have zero knowledge of pro-
gramming and no available resources at home or school to learn to code. Participants
are expected to work in teams to co-create actively at the end of the experience to
illustrate their ability to collaborate on a programming task when guidance is reduced.

It is essential to evaluate the success of CT skills integration using computer
language; thus, it is not simple to design the tools or measurements to assess CT. There
have been various attempts to create CT measurement instruments. For instance, a
framework to examine children’s CT development through their ScratchTM pro-
gramming products (Brennan & Resnick, 2012), a web-based tool to measure CT and
programming skills called Dr ScratchTM (Moreno-León & Robles, 2015a, 2015b), and

6 Journal of Educational Computing Research 0(0)

a CT assessment framework (Seiter & Foreman, 2013). While numerous frameworks
have been used to characterise the fundamental components of CT, these varied ap-
proaches to evaluating CT skills point to a propensity to concentrate on analysing the
results of creative learning activities. The proposed definition of the CTwords required
the inclusion of concepts thoroughly defined in the literature.

Methodology

Research Design

Many CT research focuses on quantitative and experimental design in elementary,
middle, high school or higher education institutions. However, this study uses the
qualitative research method, which adopted the critical inquiry or transformative
paradigm suggested by Riyami (2015) to understand the CT skills in co-creation
activities amongst young sub-urban students in Malaysia. The researchers need to
understand contemporary issues such as CTskills among underprivileged students from
limited technological backgrounds (both at home and school) with zero knowledge/
limited knowledge of programming language. In addition, they are less likely to be
exposed to technical knowledge and skills such as digital games and animation, much
less to the construct of such technology. This approach will help researchers understand
how the co-creation activities of the unbalanced socio-economic students performed in
such a disadvantaged society.

Participants

A total of 36 students aged between 10–12 years old took part in this study (11 boys and
25 girls), and were recruited using a purposive sampling method. An email and social
media were used to distribute a recruitment poster to parents living in a sub-urban
district near the University. Participants were recruited based on several criteria, in-
cluding residence and zero/limited programming knowledge. None of the participants
was known to researchers, personally or professionally. The University’s research
ethics policies have been adequately followed throughout the research procedure
because this study involved human subjects. Additionally, parental approval (consent)
was requested.

The study was conducted in four separate sessions (one session of a pilot study and
three sessions of the main study) within 4 months. The pilot study was conducted with
five participants, while the remaining three sessions were conducted with 8–16 par-
ticipants. They were further divided into smaller teams of two to four participants.
Three researchers participated as facilitators during the experiment, while the other two
participated as participant observers. It is essential to highlight that all facilitators were
limited to guiding the construction process instead of giving instruction, feedback, and
interventions during all sessions. Two of the facilitators are University lecturers with a
background in animation and virtual reality, and another facilitator is a graduate

Othman et al. 7

research student. The facilitator guided the participant to brainstorm the idea and
provided assistance if problems arose during the co-creation process or if they had
issues with the tool. Furthermore, the facilitators also acted if there were issues between
the participants.

Apparatus and Materials

IBM computer Laptop equipped with Scratch� programming software and iSpring
screen recorder software. Scratch� was selected for this study because it represents a
simplified visual approach to programming by combining the coloured command
blocks to execute the 2-D graphical objects on the background screen called a stage.
Also, the visual cues within Scratch� were considered sufficient to provide ample
input for the participants. Besides, it helps ease the novices in programming as the
coloured code blocks have been categorised according to their function, such as
variables, sounds, controls, and sensing. The Scratch game design tutorials were shown
on the portable projector screen placed in front of the participants. The introductory
tutorial modules used in this workshop include Getting Started Module, Chatbot
Module, Memory Module, and Brain Game Module. Three video cameras and two
GoPro were used to record the activities. These cameras were placed to surround the
participants and were unobtrusive. In addition, each group were provided with a pen
and paper.

Development of Instrument

The CT skills instruments in this study were developed by performing document
analysis and can be divided into two main phases; (1) systematic literature review
following guidelines by Kitchenham (2004) and reported and adapted using a PRISMA
flow diagram as suggested by Moher et al. (2009) (refer to Figure 1), and (2) document
analysis involving three researchers.

Phase 1: Systematic literature review analysis

Phase 1 involved three main activities: Identification, Screening and Eligibility (in-
cluded), as depicted in Figure 1. During the process, the review protocol, the inclusion
and exclusion criteria, and analysing of the relevant literature/database were deter-
mined. In this phase, an extensive literature review was conducted to analyse the
current state of the art in CT, focusing on peer-reviewed articles using keywords such as
Computational Thinking and Scratch Programming using Google Scholar and yielded
2877 articles. Furthermore, the literature review led to several databases/publishers
where the topic is mainly published, such as ACM, IEEE Xplore Digital Library, ERIC,
Wiley, ScienceDirect, and others (published between 2006 and 2021). Since our study
is based on Wing (2006), we have decided that the search should begin with literature
from 2006.

8 Journal of Educational Computing Research 0(0)

However, due to overwhelming results, we filtered the articles based on several
criteria: peer-reviewed articles/conference proceedings; their availability (inaccessible
articles were excluded), duplication (same authors published similar topic/content or
the same article but was published with different journal issues, i.e. some articles were
initially published online after acceptance in 2019 but was recently given a new volume
and issue number in 2022), only articles with more than 20 citations in google scholar
were included. Furthermore, we excluded editorial, books, meetings and reviews. Also,
only articles in English were considered. We then used snowball sampling for the
articles based on the key (critical) articles and further expanded our search. Fur-
thermore, a quick skim of the articles was made to ensure they fit our focus.

As a result, the following key literature was identified (i.e. Anderson., 2016; Angeli
et al., 2016; Atmatzidou & Demetriadis, 2016; Barr & Stephenson, 2011; Bers et al.,
2014; Berland & Lee, 2011; Chen et al., 2017; Curzon et al., 2014; Dierbach et al.,
2011; Grover, 2011; Lee et al., 2011; Kazimoglu et al., 2012; Perković et al., 2010;
Repenning et al., 2016; Romero et al., 2017; Rose et al., 2017; Selby &Wollard, 2013;
Shute et al., 2017; Wing; 2006). These also aid in the development of a study checklist
of CT skills.

Phase 2: Document Analysis

Phase 2 involved three researchers analysing the relevant literature eligible for analysis
in phase 1 to produce a new checklist to ensure no overlapping CT skills on the final
checklist.

Figure 1. PRISMA flow diagram.

Othman et al. 9

Inter-rater reliability analysis was conducted during the process. Three researchers
discussed and debated, and any conflicts were resolved during the group discussions
until the final agreement was made. Based on key (critical) literature, we summarised
the key findings from the analysis as illustrated in Table 1.

Based on the CT Skills Model/framework/definition/concept documented in this
phase (Table 1), we looked at the pattern in previous literature. Those CT Skills model/
framework/definition/concepts with similar terms and definitions were merged and
considered a category. As a result, 18 categories of CT skills emerged. We were
combining the terms with similar definitions, which led to eliminating some CT Skills
Model/framework/definition/concept, eventually revealing the 18 new CT skills as
illustrated in Appendix 1.

Subsequently, we have further analysed these CT skills (Appendix 1) to develop
narrower CT skills to enable the mapping process between the skills and the digital
game co-created by the children during the study. The justification for including or
excluding 18 CT skills is based on definition, usage and similarity across the literature.
The resulting terminology reflects the skills in the literature while eliminating those less
clearly defined. The skills which had similar definitions were also unified. After several
iterations of eliminating and finalising the CT skills, we have agreed that the final
checklist of CTskills consists of ten core skills: abstraction, decomposition, algorithmic
thinking, generalisation, representation, socialisation, code literacy, automation, co-
ordination, and debugging, as illustrated in Table 2.

For this study, we defined the ten core skills of CT as follows:

1. Abstraction: Break a problem into smaller parts to reduce complexity by
removing unnecessary details

2. Decomposition: Break problems down by functionality
3. Algorithmic Thinking: Step-by-step procedures or instructions (commands)
4. Generalisations: A capability to make deductions from a specific to broader

applicability.
5. Representation: Expressing problems and their workable solutions via a model

or a formula.
6. Socialisation: Involve multiple parties with different resources during the

process.
7. Code Literacy: Ability to perform computation due to programming language

knowledge.
8. Automation: Ability to execute a set of repetitive tasks.
9. Coordination: Ability to control computational timing.

10. Debugging: Determining problems to fix malfunctioning rules and algorithms.

Data Analysis

Our study has analysed each Scratch code created by participants to ensure that it can be
mapped to the ten core CT skills checklist produced in the first stage of our studies.

10 Journal of Educational Computing Research 0(0)

Table 1. Summarise of CT skills model/framework/definition/concept across literature.

Literature
Number of CT
Skills

Details of CT Skills, Model/Framework/Definition/
Concept

Dierbach et al. (2011) 4 Problem identification, algorithm building, model
development, and evaluation

Perković et al. (2010) 7 Computation (algorithm execution), communication
(information transmission), coordination
(computational timing control), Recollection (data
organisation), automation, evaluation, design
(abstraction, decomposition, system organisation)

Berland and Lee (2011) 5 Conditional logic, algorithm building, debugging,
simulation, and distributed computation

Lee et al. (2011) 3 Analysis, abstraction, and automation
Kazimoglu et al. (2012) 5 Problem-solving, algorithm building, debugging,

simulation, and socialising
Selby and Wollard
(2013)

5 Abstraction, decomposition, algorithmic thinking,
evaluation, and generalisation

Repenning et al. (2016) 3 Abstraction, analysis, and automation
Angeli et al. (2016) 4 Abstraction, algorithm, decomposition, and

generalisation
Curzon et al. (2014) 5 Algorithmic thinking, decomposition, generalisation,

abstraction, and evaluation
Romero et al. (2017) 6 Problem identification, organisation/modelling, code

literacy, technological literacy, programming, and
evaluation

Barr and Stephenson
(2011)

9 Data collection, analysis, representation, problem
decomposition, abstraction, algorithm &
procedures, automation, Parallelization, and
simulation

Shute et al. (2017) 6 Debugging, iteration, algorithm, abstraction,
decomposition, generalisation

Bers et al. (2014) 3 Abstraction, generalisation, and, Trial and error
activities

Anderson (2016) 5 Decomposition, pattern recognition, abstraction,
algorithm design, evaluation

Wing (2006) 8 Abstraction and decomposition; representation;
problem reformation and problem reformulation;
Recursion; parallelism; generalisation; systematic
testing; Prevention, Protection, and Recovery

Chen et al. (2017) 5 Syntax, algorithm, data organisation, representation,
Effectiveness/Efficiency

Atmatzidou &
Demetriadis (2016)

5 Abstraction, generalisation, Modularity,
decomposition, algorithm

(continued)

Othman et al. 11

When narrative and observation data were collated during the co-creation, the focus
was on identifying the CT skills demonstrated in actions, behaviours, and artefacts (a
digital game). The co-creation process was observed using a video camera and a screen
recorder, and all data was consolidated and analysed by five researchers (facilitators,
participants’ observers, and authors). Similar to the method in producing the checklist,

Table 1. (continued)

Literature
Number of CT
Skills

Details of CT Skills, Model/Framework/Definition/
Concept

Grover (2011) 7 Computational thinking language (CTL), abstraction,
task breakdown, conditional logic, representation,
algorithm, and debugging

Rose et al. (2017) 7 Abstraction and generalisation; algorithm and
procedures; data collection, analysis and
representation; decomposition; parallelism;
debugging, testing and analysis; control structures

Table 2. Newly proposed CT skills and their justification.

Newly Proposed
CT

Status (From Phase 2 Document
Analysis, Table 1) Justification

Abstraction Keep the term (1) Keep the widely used term
Decomposition Keep the term (2) Keep the widely used term
Algorithmic
thinking

Combined algorithmic thinking (4),
conditional logic (9) and evaluation
(18)

Keep the widely used term in
literature and combine the
conditional logic term as part of
algorithmic thinking

Generalisation Keep the term (5) Keep the widely used term
Representation Combined problem identification (3),

Organising/ Modelling (6),
representation (7), analysis (17)

Keep the most appropriate term to
explain these CT skills

Socialisation Rename the term distributed
computation (10)

Socialisation is a preferable term to
explain the different terms
(communication, socialising,
distributed computation) used in
literature

Code literacy Combined code literacy (11),
technological system literacy (12),
and programming (13)

Keep the most appropriate term to
explain these CT skills

Automation Keep the term (14) Keep the relevant term
Coordination Keep the term (15) Keep the relevant term
Debugging Combined simulation (8) and

debugging/Iteration (16)
Keep the most appropriate term to
explain these CT skills

12 Journal of Educational Computing Research 0(0)

the analysis was conducted in two stages, first individually and followed by a
group. Any conflicts during the group discussions were resolved before the final
mapping was made.

Pilot Study

A pilot study was conducted with five students, and participants were divided into
groups of three and two. The pilot study was conducted over 2 days (8 hours each day).
The young children came from urban and suburban backgrounds. Three researchers
acted as facilitators, while another two participated as participant observers. The pilot
study was conducted to ensure the applicability of selected research apparatus and
materials, such as the screen recorder software, camera, screen projector, and laptop
arrangement. These coordination aspects are essential to ensure the data collected is
usable and can be analysed. Also, the 10 CT skills checklist was used primarily in the
pilot study to assess the instrument’s validity and reliability.

Narrative data from the pilot study suggested that all 10 CTskills were visible during
the co-creation activities (digital game artefacts and co-creation activities) as they were
actively engaged (Figure 2). We had learned that some participants recruited for the
pilot study already had a basic knowledge of Scratch� before the session, which we did
not anticipate. However, this has not affected the outcome as the pilot study aims to
assess the instruments’ validity and reliability. Furthermore, having some participants
with basic knowledge of Scratch� benefited the researchers as they provided excellent
input for consideration in the next stage of the experiment. Hence we strictly enforced
the requirements of no basic Scratch� knowledge in the main study. These findings
lead to the improvements such as the reliability of screen recorder software in recording
screen activities and other physical arrangements, such as the room’s layout for ex-
perimentation. Participants’ feedback was also considered mainly on the length of the
sessions, as the allocated time was too lengthy. Hence, the actual experiment was
shortened to only 1 day per session instead of two consecutive days.

Figure 2. Co-creation of digital games during the pilot study.

Othman et al. 13

Research Procedure

To ensure sufficient data about CT skills patterns while the young participants co-
construct their digital games, the procedures to conduct each session were curated to be
replicated.

1. Briefing Session: When the participants arrived with their parents, they were
briefed about the project. Participants were divided into groups of two to four,
and parents and participants were asked to complete the consent form. Par-
ticipants were asked to sit at the designated table randomly; hence, there is a
mixture of group formation, all-female, all-male, and mixed genders.

2. Ice-Breaking Session: Participants were introduced to computer programming
concepts and asked questions to trigger interest in learning programming
concepts. For example, who likes to play games? What kind of games do you
play? Who wants to create their games? It aims to warm them toward con-
structing digital games. The session was conducted in a small group activity to
facilitate the collaborative process and help them get to know them. One in-
structor was assigned to each group to facilitate the session like an ice-breaking
session.

3. Design Workshop on Scratch� (Training Session): The participants were in-
troduced to Scratch� programming for 3 hours. Each participant was provided
with an IBM laptop equipped with Scratch� 2.0 software. Although only
3 hours of Scratch� programming training was given to the participants, it
covered all the ten CT skills needed in this study. They were introduced to the
different features of the Scratch software to ensure they could demonstrate the
ten CT skills required and co-create a digital game during the competition
session. Also, the laptop was equipped with screen recording software to record
participants’ activities throughout the session. The iSpring Free Cam screen
recorder software was installed on the laptop to observe the co-designing of the
digital game among the participants and the digital game coding designed by the
participants. Similar to the ice-breaking session, one instructor was assigned to
each group to facilitate the session. Each participant was equipped with a laptop
during this session, as shown in Figure 3.

4. Design Workshop on Digital Games Creation Session (Competition Session):
They were assigned to work as a team to challenge the participants. A timeline
was given to ensure they could achieve measurable steps throughout the co-
creation process. Each team produced a digital game and was provided with
necessary tools, such as stationery for the brainstorming session and storyboard
creation Figure 4. Also, the facilitators guided the participants in co-creating the
digital game. Only one laptop per group was given during this session to ensure
the interaction between participants occurred on a single screen, as illustrated in
The idea and storyboard created at this stage were then translated into a digital

14 Journal of Educational Computing Research 0(0)

game using Scratch�. Examples of ideas and sketches made by some par-
ticipants during the co-creation activities are shown in Figure 5.

5. Debriefing Session: We used specific questions to ask participants about their
experience constructing the games. Participants are informed of their contri-
bution to understanding how young children co-create digital games and we
thank them for their participation.

Figure 3. Participants’ arrangements during the training session.

Figure 4. Participants’ arrangements during brainstorming sessions and storyboard creation.

Othman et al. 15

Findings

Descriptive Analysis

A total of 36 children participated in this study, including 11 boys and 25 girls. The
children’s ages ranged from 10 to 12 years old, with a mean age of 11.14 years
(SD = 0.93).

CT Skills Analysis

We analysed the game artefacts and co-creation process to answer Objective 2. The
digital games created were analysed using the 10 CT skills checklist and can be
summarised in Table 3. The composition of each team, digital game completion status,
and digital game types are also illustrated in Table 3. Table 3 summarises the different
CT skills achieved by participants in this study, and three CT skills of socialisation,
debugging, and algorithmic thinking were visible in each group.

Overall, four groups of participants demonstrated eight and seven CT skills; two
groups demonstrated six skills, respectively, while two demonstrated five CT skills.
None of the groups demonstrated between nine and ten CT skills. Nine groups
completed their game within the time allocated, whilst three did not finish their game.
Table 3 also shows that all students in the male group demonstrated 7 CT skills, whilst
all the female group demonstrated between 6 and 8 CT skills. However, the mixed-
gender group demonstrated between 5 and 8 CT skills.

Additionally, four groups developed dual-player digital games, and eight developed
single-player digital games. The digital games created by the participants were analysed
by looking at the Scratch� programming codes and were mapped with the nine CT
skills (refer to Table 4), whilst one CT skill (socialisation) was analysed through video

Figure 5. The participants’ ideas and sketches using the stationery.

16 Journal of Educational Computing Research 0(0)

recording of co-creation activities. Interestingly, the two groups who demonstrated the
most CT skills did not complete their digital game.

Although we allowed participants to sit and form the group randomly, one issue with
collaboration appeared in one group throughout the process. During the discussion, one
of the children in the red shirt pushed her chair away, facing a different direction from
the other group members, as shown in Figure 6 (left). One of the facilitators quickly
intervened, and they completed their digital game despite collaboration issues. Sur-
prisingly, the group attained 8 CT skills.

Table 5 shows an example of digital games created by two teams. These examples
illustrate the different levels of CT skills attained during their co-creation activities.

Discussion

CT Skills Checklist

This study has successfully achieved its first aim to develop a new instrument (CTskills
checklist) for learning programming concepts using document analysis. Our analysis of
the recent literature on CT skills has provided an understanding of various efforts to
describe and categorise CT skills. However, various researchers’ use of different terms
or definitions made the classification difficult. For example, the widely used term in CT
is abstraction and is defined by Wing (2008) as deciding what details we need to

Table 3. Summary of CT skills used in digital games’ co-creation.

The Session,
Group, and
Number of
Participants

CT Skills Demonstrated
Game
Completion
(Yes/No)

Digital Games
Type (Single or
Dual Player)AB DC G R S C D CL AT A

SESSION 1
S1, G1 (3M) ̸ ̸ ̸ ̸ ̸ ̸ ̸ Yes Dual player
S1, G2 (3F) ̸ ̸ ̸ ̸ ̸ ̸ ̸ ̸ Yes Single-player
S1, G3 (2F, 1M) ̸ ̸ ̸ ̸ ̸ ̸ Yes Single-player
S1, G4 (3F) ̸ ̸ ̸ ̸ ̸ No Single-player
SESSION 2
S2&G1 (3F) ̸ ̸ ̸ ̸ ̸ ̸ ̸ Yes Single-player
S2&G2 (3M) ̸ ̸ ̸ ̸ ̸ ̸ ̸ Yes Single-player
S2&G3 (4F) ̸ ̸ ̸ ̸ ̸ Yes Single-player
S2&G4 (2F,1M) ̸ ̸ ̸ ̸ ̸ ̸ ̸ ̸ No Dual player
S2&G5 (3F) ̸ ̸ ̸ ̸ ̸ ̸ Yes Single-player
SESSION 3
S3&G1 (1M, 2F) ̸ ̸ ̸ ̸ ̸ ̸ ̸ ̸ Yes Dual player
S3&G2 (3F) ̸ ̸ ̸ ̸ ̸ ̸ ̸ ̸ No Single-player
S3&G3 (2M) ̸ ̸ ̸ ̸ ̸ ̸ ̸ Yes Dual player

Othman et al. 17

Table 4. Mapping of CT skills with digital games coding.

CT Skills Digital Game Co-Design Task Digital Games Coding Extract

Abstraction Creating clones performing similar actions
and behaviour

Decomposition Decompose the parts of the game design
into several parts, which can be the
character’s life-like motion and rules
about how users can interact with the
characters

Algorithmic
thinking

Writing instructions to execute a set of
blocks several times depends on the given
situation to achieve the desired effect

Using the repeat until block

Generalisation The student’s understanding of the axis
allows them to apply it to the characters’
movements

(continued)

18 Journal of Educational Computing Research 0(0)

Table 4. (continued)

CT Skills Digital Game Co-Design Task Digital Games Coding Extract

Representation Storing information on a variable to modify
the attributes of the characters in solving a
problem

Code literacy Apply interactivity by moving the characters,
which can help to shape and reshape
information about the characters. The use
of conditional logic, the if-then-else
construct

Automation The repeat block instructs the computers to
execute the repetitive task

Coordination Synchronise characters to make them
perform specific behaviour in the
intended order. The use of the wait until
block in designing the game

Debugging Use the when green flag clicked block to
recognise any possible errors in the logic
formed. The debugging process checks if
the rules or algorithms work or
malfunction and compare them with the
digital games created

Othman et al. 19

Figure 6. Collaboration issues (left) and how the instructor fosters collaboration within the
group (middle and right).

Table 5. Different examples of digital games created and their description.

Highest CT Skills Demonstrated (8 Skills)

Screenshot Game description
(Dodge, the Goalie)
This game was not successfully constructed since
the original notion enabled dual players, but a
player must control both balls. The player must
shoot both balls without touching the
goalkeeper. The player had to be aware of their
movements and find the best time to shoot the
ball because both the ball and the goalkeeper
were constantly moving

Lowest CT skills demonstrated (5 skills)

Screenshot Game description
(Goal)
The student did not complete the game.
However, the idea was to let the player shoot
the ball into the goal without touching the
goalkeeper (a constantly moving Avatar). Thus,
the score gained will depend on the success in
shooting the ball into the goal. The default lives
for each player are 64

20 Journal of Educational Computing Research 0(0)

highlight and what details we can ignore. However, Perković et al. (2010) explained in
their framework that the design is an organisation (using abstraction, modularisation,
aggregation, decomposition) of a system, process, object, etc. whilst it was viewed as a
part of the design principle’ simplicity by Dennings (2003). Angeli et al. (2016)
described abstraction as the skill to decide what information about an entity/object to
keep and what to ignore based on Wing’ (2006).

We further consolidated these different terms and definitions and provided a new
checklist to understand CT skills better. It is argued that the final checklist is valid as
three researchers discussed and debated, and any conflicts were resolved during the
group discussions until the final agreement was made. Furthermore, our findings show
that this checklist is adequate and valuable in mapping CT skills for co-creation ac-
tivities, although none of the groups exhibited all ten skills.

Instrument Validation Through Co-Creation Activities

A recent literature review by Tikva and Tambouris (2020) provided a comprehensive
analysis of different methods used to assess CT and disagreed on what and how to
evaluate CT. They further explained that pre-test/post-test, observation, self-report, and
artefact analysis are widely used. Furthermore, Fagerlund et al. (2021) summarised the
various studies that involved different methods, contents/activities, and taxonomy/
rubrics for assessing Scratch programming in K-9. However, our study combined
artefact (digital game) analysis and observation in analysing the CT during co-creation
activities. The digital games were analysed to determine the CT skills utilised by
participants as they co-created digital games. We have selected two digital games
(Table 5) which portray the most and least used CT skills to explain the different CT
skills utilised in the co-creation activities.

Scratch� programming software allows participants in this study to actively co-
create digital games. It provides an enjoyable and straightforward way of creating
digital games because it does not require learners to grasp all the basic ideas of
programming constructs. However, although none of the groups demonstrated all ten
CTskills in the co-creation of digital games, all ten CTskills were present in their digital
games. This can be related to Sung et al. (2010), which explained that game creation/
development requires significant knowledge of computer graphics and digital game-
play; and time and effort to develop the digital game. Furthermore, this study also
suggested that the performance of students between gender are varied and cannot be
generalised based on the CTskills attained. These findings are parallel with Ardito et al.
(2020), Anuar et al. (2020) and Atmatzidou and Demetriadis (2016), which suggested
that the boys, girls or mixed-gender groups have their strengths and weaknesses in CT
skills and further analysis are required to understand this phenomenon.

It is also vital to highlight in this study that, unlike other CTskills, socialisation skills
were observed during the co-creation process, and all the groups could show these
skills. In addition, participants could discuss and integrate different ideas during the co-
creation process. In this study, participants were tasked with designing a functional and

Othman et al. 21

interactive digital game using these programming constructs. Perković et al. (2010)
described the process as crucial, which defines the computational process involving
implementing algorithms via a sequence of phases until the goal is achieved. It is
connected to one of the CT skills discussed in the result section, algorithmic thinking,
where the participants must provide step-by-step processes to achieve a goal. The
results showed that all groups were able to demonstrate algorithmic thinking skills.
When the participants find ways to achieve the goal, it also promotes their ability to
think in abstraction and decomposition. Participants, for example, can divide problems
into smaller parts to reduce their complexity; thus, they can consider an abstraction.

In this study, participants practised abstractions when creating clones performing
similar behaviour and actions during co-creation. They executed the intended in-
structions by clicking on a green flag icon at the top of the Scratch� design interface.
This feature of the Scratch� programming tool enables participants to detect the
issues to be fixed. This action of validating the abstractions has resulted in debugging,
one of the CT skills in this study. Participants could assess the potential faults in their
solutions using the debug key to obtain the most efficient and effective combination
of steps and resources (Kazimoglu et al., 2012). During co-creation in this study,
participants practised abstractions by making clones that exhibited comparable
behaviour and actions. By tapping the green flag icon at the top of the Scratch�
design interface, they carried out the expected instructions. Participants can identify
the problems that need to be fixed thanks to this function of the Scratch� pro-
gramming tool. Debugging, one of the CT abilities in this study is the outcome of the
abstractions being validated. Using the debug key, participants could evaluate po-
tential flaws in their ideas and develop the best possible workflow and resource allocation
(Kazimoglu et al., 2012). The given debuggingmechanism aids in the participants’ analysis
of the issue. It encourages them to use their abstraction skills, as Scratch� offers automatic
feedback through direct visual simulation of their solutions rather than technical pro-
gramming terms.

Furthermore, incorporating CT into teaching and learning to promote problem-
solving skills must be considered a mental process. The potential continuation of this
study would consider the allocation of intervention time and see how it will impact
students’ performance and promote CT skills. Although the CT skills attained amongst
the participants are diverse, it demonstrates that co-creation of the digital game can
positively promote students’ CT skills using Scratch� programming software. Thus, it
provides a perspective on CT skills regarding whether they should be restricted to
programming or computer science. A recent study by Chang et al. (2018) suggested that
education should be re-conceptualised and take an alternative view of CT, as com-
putation is essential in all areas, not limited to computer science or programming. It is
evident from this study that although none of the groups demonstrated all ten CT skills,
they could develop digital games successfully in a short time and how these CT skills
can be analysed beyond programming constructs.

22 Journal of Educational Computing Research 0(0)

Conclusion and Future Work

Various instruments are available to measure CT skills, and this study extensively
reviewed and consolidated existing instruments; and subsequently proposed ten CT
skills: abstraction, decomposition, algorithmic thinking, generalisation, representation,
socialisation, code literacy, automation, coordination, and debugging. This checklist
can help future researchers analyse CT skills for learning programming concepts
without using multiple instruments or checklists. Subsequently, we validate the
checklist with the digital game’s artefacts developed by suburban children. This study
provides empirical proof of how young children create digital games using their CT
skills. The co-creation of digital games with students has gotten less attention, despite
the fact that utilising digital games to measure CT skills is widespread in the literature
and it has been hypothesised that it aids in the development of CT. Therefore, it is
crucial to ascertain whether CT development utilising ScratchTM programming tools is
significantly impacted by the co-creation of digital games.

The work presented in this study validated the proposed ten CT skills identified
through document analysis. It can be considered the most plausible way to measure
the digital games co-created with students using Scratch�. This study provides
important insights into CT focusing on sub-urban children with no programming
knowledge.

Furthermore, although the collaboration issues between group members are only
visible in one group, future work must foster collaboration between team members
before moving to co-creation activities to overcome the issues highlighted in this study.
However, in this study, we can mitigate the problem as it happened during the
brainstorming session.

This study’s generalizability may be hampered by one of its limitations, which was
the small number of participants. In order to create a comprehensive description of CT
capabilities, additional generalizable studies including more participants are required in
the future. However, because the instrument (CT skills checklist) employs the qual-
itative method, the current sample size is adequate to validate it.

Future research will concentrate on validating the instruments with bigger groups
and groups from different socioeconomic backgrounds to assess their abilities and
potential to employ CT skills and to better understand how CT skills manifest
themselves or evolve through co-creation activities. Finally, a research extension would
develop a pedagogical framework enabling educators to integrate computer skills into
subjects other than computer science, so broadening and enhancing CT skills across the
national curriculum.

Othman et al. 23

Appendix 1

New Categories of CT Skills.

Newly Proposed CT Definition CT Skills and Article

Abstraction Breaks a problem into smaller components
that are easier to understand, program, and
debug in solving problems. Also, a process of
generalisation from specific instances

Abstraction (Selby & Woollard,
2013)

Abstraction (Lee et al., 2011)
Design (Perković et al., 2010)
Abstraction (Curzon et al.,
2014)

Abstraction (Rose et al., 2017)
Abstraction (Wing, 2006)
Abstraction (Barr & Stephenson,
2011)

Abstraction (Shute et al., 2017)
Abstraction (Bers et al., 2014)
Abstraction (Anderson, 2016)
Abstraction (Atmatzidou &
Demetriadis, 2016)

Abstraction (Shute et al., 2017)
Abstraction (Grover, 2011)

Decomposition A process of breaking problems down by
functionality, especially for complex
problems and tasks

Decomposition (Selby &
Woollard, 2013)

Decomposition (Curzon et al.,
2014)

Problem decomposition (Barr &
Stephenson, 2011)

Decomposition (Shute et al.,
2017)

Decomposition (Anderson,
2016)

Decomposition (Wing, 2006)
Decomposition (Atmatzidou &
Demetriadis, 2016)

Decomposition (Shute et al.,
2017)

Task breakdown (Grover, 2011)
Decomposition (Rose et al.,
2017)

(continued)

24 Journal of Educational Computing Research 0(0)

(continued)

Newly Proposed CT Definition CT Skills and Article

Problem identification The capability to recognise the parts of a
situation and its structure. Also, the process
of analysing and representing the situation
encountered

Syntax (Chen et al., 2017)
Problem identification (Romero
et al., 2017)

Problem identification
(Dierbach et al., 2011)

Problem-solving (Kazimoglu
et al., 2012)

Data collection (Barr &
Stephenson, 2011)

Pattern Recognition (Anderson,
2016)

Problem reformulation and
reformation (Wing, 2006)

Modularity (Atmatzidou &
Demetriadis, 2016)

Data collection, analysis and
representation (Rose et al.,
2017)

Algorithmic thinking A step-by-step procedure or instructions
(commands) to accomplish a task

Parallellism (Rose et al., 2017)
Algorithmic thinking (Selby &
Woollard, 2013)

Algorithm building (Berland &
Lee, 2011)

Computation (Perković et al.,
2010)

Algorithm building (Dierbach
et al., 2011)

Algorithm building (Kazimoglu
et al., 2012)

Algorithmic thinking (Curzon
et al., 2014)

Algorithm & procedures (Barr &
Stephenson, 2011)

Algorithms (Shute et al., 2017)
Algorithm design (Anderson,
2016)

Algorithm (Atmatzidou &
Demetriadis, 2016)

Parallelization (Barr &
Stephenson, 2011)

Algorithm (Grover, 2011)
Algorithm and procedures
(Rose et al., 2017)

Recursive (Wing, 2006)
Parallelism (Wing, 2006)
Algorithms (Chen et al., 2017)

(continued)

Othman et al. 25

(continued)

Newly Proposed CT Definition CT Skills and Article

Generalisation The capability to make deductions from a
specific to broader applicability

Generalisation (Shute et al.,
2017)

Generalisation (Selby &
Woollard, 2013)

Generalisation (Curzon et al.,
2014)

Generalisation (Bers et al., 2014)
Generalisation (Atmatzidou &
Demetriadis, 2016)

Generalisation (Rose et al.,
2017)

Generalisation (Wing, 2006)
Organising/Modelling The capability to manage and represent the

situation proficiently
Recollection (Perković et al.,
2010)

Organising/ Modelling (Romero
et al., 2017)

Data Organization (Chen et al.,
2017)

Models development (Dierbach
et al., 2011)

Representation A modelling process demonstrates problems
and solutions using different ways, such as a
replica or formula

Representation (Chen et al.,
2017)

Representation (Barr &
Stephenson, 2011)

Representation (Grover, 2011)
Representation (Wing, 2006)

Simulation A process of modelling or assessing algorithms
or logic. It is applied in debugging to find
problems and uses algorithm building to test
a model. It is also defined as the
representation of algorithms or plans

Simulation (Barr & Stephenson,
2011)

Simulation (Berland & Lee, 2011)
Simulation (Kazimoglu et al.,
2012)

Conditional logic Use of the if-then-else concept. It needs a
student to reason at a macro level about the
outcome of the truth-value of the statement

Conditional logic (Berland & Lee,
2011)

Conditional logic (Grover,
2011)

Control structures (Rose et al.,
2017)

Distributed
computation

An application of rule-based actions. The
contingencies and strategy formation will
include numerous groups with diverse
knowledge resources

Socialising (Kazimoglu et al.,
2012)

Distributed computation
(Berland & Lee, 2011)

Communication (Perković et al.,
2010)

Code literacy A capability to perform computation because
of having programming language knowledge

Code literacy (Romero et al.,
2017)

(continued)

26 Journal of Educational Computing Research 0(0)

(continued)

Newly Proposed CT Definition CT Skills and Article

Technological system
literacy

Having knowledge and practical familiarity with
hardware, software, peripherals, and
network components related to information
systems

Technological literacy (Romero
et al., 2017)

Computational thinking language
(CTL) Grover (2011)

Programming Skills to make a computer program Programming (Romero et al.,
2017)

Automation A process of performing a group of recurring
tasks rapidly and effectively

Automation (Lee et al., 2011)
Automation (Barr &
Stephenson, 2011)

Automation (Perković et al.,
2010)

Coordination
(synchronisation)

Ability to control computational timing Coordination (Perković et al.,
2010)

Debugging/ Iteration It is determining problems to fixmalfunctioning
rules and algorithms. It is an iterative process

Debugging (Kazimoglu et al.,
2012)

Iteration (Shute et al., 2017)
Trial and Error activities (Bers
et al., 2014)

Debugging (Shute et al., 2017)
Debugging (Berland & Lee, 2011)
Debugging (Grover, 2011)
Prevention, protection and
recovery (Wing, 2006)

Analysis A reflective practice to validate whether the
abstractions made are correct

Analysis (Lee et al., 2011)
Analysis (Barr & Stephenson,
2011)

Evaluation Evaluating the effectiveness and the efficiency
of algorithmic processes

Evaluation (Selby & Woollard,
2013)

Evaluation (Romero et al., 2017)
Effectiveness/Efficiency (Chen
et al., 2017)

Evaluation (Perković et al., 2010)
Evaluation (Dierbach et al.,
2011)

Evaluation (Curzon et al., 2014)
Evaluation (Anderson, 2016)
Systematic testing (Wing, 2006)

Acknowledgments

We gratefully acknowledge the grant from Universiti Malaysia Sarawak (F04/SpMYRA/
1657/2018).

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship,
and/or publication of this article.

Othman et al. 27

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship,
and/or publication of this article: This study is supported by Universiti Malaysia Sarawak (F04/
SpMYRA/1657/2018).

ORCID iDs

Mohd Kamal Othman https://orcid.org/0000-0001-5401-2515
Fitri Suraya Mohamad https://orcid.org/0000-0003-4460-8061

References

Adams, J. C. (2010). Scratching middle schoolers’ creative itch. In Proceedings of the 41st ACM
technical symposium on Computer science education. ACM. (pp. 356-360). https://doi.org/
10.1145/1734263.1734385

Anderson, N. D. (2016). A call for computational thinking in undergraduate psychology.
Psychology Learning & Teaching, 15(3), 226–234. https://doi.org/10.1177/
1475725716659252

Angeli, C., Voogt, J., Fluck, A.,Webb,M., Cox,M., Malyn-Smith, J., & Zagami, J. (2016). A K-6
Computational Thinking Curriculum Framework: Implications for teacher knowledge.
Journal of Educational Technology & Society, 19(3), 47–57.

Anuar, N. H., Mohamad, F. S., & Minoi, J. L. (2020). Art-integration in computational thinking
as an unplugged pedagogical approach at A rural Sarawak primary school. International
Journal of Academic Research and Social Sciences, 10(17), 21–39. http://dx.doi.org/10.
6007/IJARBSS/v10-i17/8328

Ardito, G., Czerkawski, B., & Scollins, L. (2020). Learning computational thinking together:
Effects of gender differences in collaborative middle school robotics program. TechTrends,
64(3), 373–387. https://doi.org/10.1007/s11528-019-00461-8

Armstrong, D., Gosling, A., Weinman, J., & Marteau, T. (1997). The place of inter-rater reli-
ability in qualitative research: An empirical study. Sociology, 31(3), 597–606. https://doi.
org/10.1177/0038038597031003015

Arnab, S., Clarke, S., & Morini, L. (2019). Co-creativity through play and game design thinking.
Electronic Journal of e-Learning, 17(3), 184–198. https://doi.org/10.34190/JEL.17.3.002

Atmatzidou, S., & Demetriadis, S. (2016). Advancing students’ computational thinking skills
through educational robotics: A study on age and gender relevant differences. Robotics and
Autonomous Systems, 75, 661–670. https://doi.org/10.1016/j.robot.2015.10.008

Balanskat, A., & Engelhardt, K. (2014). Computing our future: Computer programming and
coding-priorities. School Curricula and Initiatives Across Europe. European Schoolnet,
3(50), 1.

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: What is involved
and what is the role of the computer science education community? ACM Inroads, 2(1),
48–54. https://doi.org/10.1145/1929887.1929905

Bennett, V. E., Koh, K. H., & Repenning, A. (2011). CS education Re-kindles creativity in public
schools. In Proceedings of the 16th annual joint conference on innovation and technology in

28 Journal of Educational Computing Research 0(0)

https://orcid.org/0000-0001-5401-2515
https://orcid.org/0000-0001-5401-2515
https://orcid.org/0000-0003-4460-8061
https://orcid.org/0000-0003-4460-8061
https://doi.org/10.1145/1734263.1734385
https://doi.org/10.1145/1734263.1734385
https://doi.org/10.1177/1475725716659252
https://doi.org/10.1177/1475725716659252
http://dx.doi.org/10.6007/IJARBSS/v10-i17/8328
http://dx.doi.org/10.6007/IJARBSS/v10-i17/8328
https://doi.org/10.1007/s11528-019-00461-8
https://doi.org/10.1177/0038038597031003015
https://doi.org/10.1177/0038038597031003015
https://doi.org/10.34190/JEL.17.3.002
https://doi.org/10.1016/j.robot.2015.10.008
https://doi.org/10.1145/1929887.1929905

computer science education. ACM. (pp. 183–187). https://doi.org/10.1145/1999747.
1999800

Berland, M., & Lee, V. R. (2011). Collaborative strategic board games as a site for distributed
computational thinking. International Journal of Game-Based Learning (IJGBL), 1(2),
65–81. https://doi.org/10.4018/ijgbl.2011040105

Bers, M. U., Flannery, L., Kazakoff, E. R., & Sullivan, A. (2014). Computational thinking and
tinkering: Exploration of an early childhood robotics curriculum. Computers & Education,
72, 145–157. https://doi.org/10.1016/j.compedu.2013.10.020

Blummer, B. (2008). Digital literacy practices among youth populations: A review of the lit-
erature. Education Libraries: Children Resources, 31(1), 38–45. https://doi.org/10.26443/
el.v31i3.261

Boe, B., Hill, C., Len, M., Dreschler, G., Conrad, P., & Franklin, D. (2013). Hairball: Lint-
inspired static analysis of scratch projects. In Proceeding of the 44th ACM technical
symposium on Computer science education (pp. 215–220). https://doi.org/10.1145/
2445196.2445265

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the devel-
opment of computational thinking. In Proceedings of the 2012 annual meeting of the
American educational research association (p. 25).1

Brennan, K., & Resnick, M. (2013). Stories from the scratch community: Connecting with ideas,
interests, and people. Proceedings of the 44th ACM technical symposium on Computer
science education’13. ACM (pp. 463–464).

Brown, N. C. C., Kölling, M., Crick, T., Peyton Jones, S., Humphreys, S., & Sentance, S. (2013).
Bringing computer science back into schools: Lessons from the UK. Proceeding of the 44th
ACM technical symposium on Computer science education. ACM. (pp. 269-274) https://
doi.org/10.1145/2445196.2445277

Chang, Z., Sun, Y., Wu, T.Y., & Guzaini, M. (2018). Scratch analysis tool (SAT): A modern
scratch project analysis tool based on ANTLR to assess computational thinking skills. In
14th international wireless communications & mobile computing conference (IWCMC)
(pp. 950–955). IEEE. https://doi.org/10.1109/IWCMC.2018.8450296

Chen, G., Shen, J., Barth-Cohen, L., Jiang, S., Huang, X., & Eltoukhy, M. (2017). Assessing
elementary students’ computational thinking in everyday reasoning and robotics pro-
gramming. Computers & Education, 109, 162–175. https://doi.org/10.1016/j.compedu.
2017.03.001

Clancy, M. (2004). Misconceptions and attitudes that interfere with learning to program. In S.
Fincher & M. Petre (Eds), Computer science education research (pp. 95–110).

CSTA (2011). Operational definition of computational thinking for Ke12 education. CSTA.
http://www.csta.acm.org/Curriculum/sub/CompThinking.html

Curzon, P., Dorling, M., Ng, T., Selby, C., & Woollard, J. (2014). Developing computational
thinking in the classroom: A framework, swindon, gb. http://eprints.soton.ac.uk/id/eprint/
369594

de Araujo, A. L. S. O., Andrade, W. L., & Guerrero, D. D. S. (2016). A systematic mapping study
on assessing computational thinking abilities. In IEEE frontiers in education conference
(FIE) (pp. 1–9). IEEE. https://doi.org/10.1109/FIE.2016.7757678

Othman et al. 29

https://doi.org/10.1145/1999747.1999800
https://doi.org/10.1145/1999747.1999800
https://doi.org/10.4018/ijgbl.2011040105
https://doi.org/10.1016/j.compedu.2013.10.020
https://doi.org/10.26443/el.v31i3.261
https://doi.org/10.26443/el.v31i3.261
https://doi.org/10.1145/2445196.2445265
https://doi.org/10.1145/2445196.2445265
https://doi.org/10.1145/2445196.2445277
https://doi.org/10.1145/2445196.2445277
https://doi.org/10.1109/IWCMC.2018.8450296
https://doi.org/10.1016/j.compedu.2017.03.001
https://doi.org/10.1016/j.compedu.2017.03.001
http://www.csta.acm.org/Curriculum/sub/CompThinking.html
http://eprints.soton.ac.uk/id/eprint/369594
http://eprints.soton.ac.uk/id/eprint/369594
https://doi.org/10.1109/FIE.2016.7757678

Denner, J., Werner, L., & Ortiz, E. (2012). Computer games created by middle school girls: Can
they be used to measure understanding of computer science concepts? Computers &
Education, 58(1), 240–249. https://doi.org/10.1016/j.compedu.2011.08.006

Denning, P. J. (2003). Great principles of computing. Communications of the ACM, 46(11),
15–20. https://doi.org/10.1145/948383.948400

Dierbach, C., Hochheiser, H., Collins, S., Jerome, G., Ariza, C., Kelleher, T., et al (2011). A
model for piloting pathways for computational thinking in a general education curriculum.
In Proceedings of the 42nd ACM technical symposium on Computer science education).
ACM (pp. 257–262 https://doi.org/10.1145/1953163.1953243

Ezeamuzie, N. O., & Leung, J. S. (2022). Computational thinking through an empirical lens: A
systematic review of literature. Journal of Educational Computing Research, 60(2),
481–511. https://doi.org/10.1177/07356331211033158

Fadjo, C. L., Hallman, G. Jr, Harris, R., & Black, J. B. (2009b). Surrogate embodiment,
Mathematics instruction and video game programming. EdMedia+ innovate learning
(pp. 2787–2792). Association for the Advancement of Computing in Education (AACE).

Fadjo, C. L., Lu, M. T., & Black, J. B. (2009a). Instructional embodiment and video game
programming in an after school program EdMedia+ innovate learning. Association for the
Advancement of Computing in Education (AACE) (pp. 4041-4046).

Fagerlund, J., Häkkinen, P., Vesisenaho, M., & Viiri, J. (2021). Computational thinking in
programming with scratch in primary schools: A systematic review. Computer Applications
in Engineering Education, 29(1), 12–28. https://doi.org/10.1002/cae.22255

Garcı́a-Peñalvo, F. J., & Mendes, A. J. (2018). Exploring the computational thinking effects in
pre-university education. Computers in Human Behavior, 80, 407–411. https://doi.org/10.
1016/j.chb.2017.12.005

Garcı́a-Peñalvo, F. J., Rees, A. M., Hughes, J., Jormanainen, I., Toivonen, T., & Vermeersch, J.
(2016). A survey of resources for introducing coding into schools. In Proceedings of the
fourth international conference on technological ecosystems for enhancing multiculturality
(pp. 19–26). ACM. https://doi.org/10.1145/3012430.3012491

Grover, S. (2011). Robotics and engineering for middle and high school students to develop
computational thinking. Annual meeting of the American educational research association.

Grover, S., Cooper, S., & Pea, R. (2014). Assessing computational learning in K-12. In Pro-
ceedings of the 2014 conference on Innovation & technology in computer science education
(pp. 57–62). https://doi.org/10.1145/2591708.2591713

Grover, S., & Pea, R. (2013). Computational thinking in K–12: A review of the state of the field.
Educational Researcher, 42(1), 38–43. https://doi.org/10.3102/0013189X12463051

Guzdial, M. (2008). Education: Paving the way for computational thinking. Communications of
the ACM, 51(8), 25–27. https://doi.org/10.1145/1378704.1378713

Hambrusch, S., Hoffmann, C., Korb, J. T., Haugan, M., & Hosking, A. L. (2009). A multi-
disciplinary approach towards computational thinking for science majors. ACM SIGCSE
Bulletin, 41(1), 183–187. https://doi.org/10.1145/1539024.1508931

Ioannidou, A., Bennett, V., Repenning, A., Koh, K. H., & Basawapatna, A. (2011). Compu-
tational thinking patterns. Annual meeting of the American educational research associ-
ation. . https://files.eric.ed.gov/fulltext/ED520742.pdf

30 Journal of Educational Computing Research 0(0)

https://doi.org/10.1016/j.compedu.2011.08.006
https://doi.org/10.1145/948383.948400
https://doi.org/10.1145/1953163.1953243
https://doi.org/10.1177/07356331211033158
https://doi.org/10.1002/cae.22255
https://doi.org/10.1016/j.chb.2017.12.005
https://doi.org/10.1016/j.chb.2017.12.005
https://doi.org/10.1145/3012430.3012491
https://doi.org/10.1145/2591708.2591713
https://doi.org/10.3102/0013189X12463051
https://doi.org/10.1145/1378704.1378713
https://doi.org/10.1145/1539024.1508931
https://files.eric.ed.gov/fulltext/ED520742.pdf

Jiang, B., Zhao, W., Gu, X., & Yin, C. (2021). Understanding the relationship between com-
putational thinking and computational participation: A case study from scratch online
community. Educational Technology Research and Development, 69(5), 2399–2421.
https://doi.org/10.1007/s11423-021-10021-8

Kaczmarczyk, L. C., Petrick, E. R., East, J. P., & Herman, G. L. (2010). Identifying student
misconceptions of programming. In Proceedings of the 41st ACM technical symposium on
Computer science education (pp. 107–111). ACM. https://doi.org/10.1145/1734263.
1734299

Kafai, Y. B. (2006). Playing and making games for learning: Instructionist and constructionist
perspectives for game studies. Games and Culture, 1(1), 36–40. https://doi.org/10.1177/
1555412005281767

Kahn, K. (2007). Should LOGO keep going forward 1? Informatics in Education-An Inter-
national Journal, 6(2), 307–321. https://doi.org/10.15388/infedu.2007.20

Kazimoglu, C., Kiernan, M., Bacon, L., & MacKinnon, L. (2012). Learning programming at the
computational thinking level via digital gameplay. Procedia Computer Science. (9),
522–531. https://doi.org/10.1016/j.procs.2012.04.056

Kelleher, C., & Pausch, R. (2005). Lowering the barriers to programming: A taxonomy of
programming environments and languages for novice programmers. ACM Computing
Surveys (CSUR), 37(2), 83–137. https://doi.org/10.1145/1089733.1089734

Kitchenham, B. (2004). Procedures for performing systematic reviews. : Keele University
Technical Report TR/SE-0401Keele University.

Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Malyn-Smith, J., & Werner, L. (2011).
Ericks onComputational Thinking for youth in practice. ACM Inroads, 2(1), 33–37. https://
doi.org/10.1145/1929887.1929902

Lye, S. Y., & Koh, J. H. L. (2014). Review of teaching and learning of computational thinking
through programming: What is next for K-12? Computers in Human Behavior, 41, 51–61.
https://doi.org/10.1016/j.chb.2014.09.012

Malan, D. J. (2010). Reinventing CS50. In Proceedings of the 41st ACM technical symposium on
Computer science education (pp. 152–156). ACM. https://doi.org/10.1145/1734263.
1734316

Malan, D. J., & Leitner, H. H. (2007). Scratch for budding computer scientists. ACM SIGCSE
Bulletin, 39(1), 223–227. https://doi.org/10.1145/1227504.1227388

Maloney, J., Resnick, M., Rusk, N., Silverman, B., & Eastmond, E. (2010). The scratch Pro-
gramming Language and environment. ACM Transactions on Computing Education
(TOCE), 10(4), 1–15. https://doi.org/10.1145/1868358.1868363

Maloney, J. H., Peppler, K., Kafai, Y., Resnick, M., & Rusk, N. (2008). Programming by choice:
Urban youth learning programming with scratch. SIGCSE’08, 40(1), 367–371. https://doi.
org/10.1145/1352135.1352260

McDonald, N., Schoenebeck, S., & Forte, A. (2019). Reliability and inter-rater reliability in
qualitative research: Norms and guidelines for CSCW and HCI practice. In Proceedings of
the ACM on human-computer interaction (3). ACM. https://doi.org/10.1145/3359174

Othman et al. 31

https://doi.org/10.1007/s11423-021-10021-8
https://doi.org/10.1145/1734263.1734299
https://doi.org/10.1145/1734263.1734299
https://doi.org/10.1177/1555412005281767
https://doi.org/10.1177/1555412005281767
https://doi.org/10.15388/infedu.2007.20
https://doi.org/10.1016/j.procs.2012.04.056
https://doi.org/10.1145/1089733.1089734
https://doi.org/10.1145/1929887.1929902
https://doi.org/10.1145/1929887.1929902
https://doi.org/10.1016/j.chb.2014.09.012
https://doi.org/10.1145/1734263.1734316
https://doi.org/10.1145/1734263.1734316
https://doi.org/10.1145/1227504.1227388
https://doi.org/10.1145/1868358.1868363
https://doi.org/10.1145/1352135.1352260
https://doi.org/10.1145/1352135.1352260
https://doi.org/10.1145/3359174

McNerney, T. S. (2004). From turtles to tangible programming bricks: Explorations in physical
language design. Personal and Ubiquitous Computing, 8(5), 326–337. https://doi.org/10.
1007/s00779-004-0295-6

Meerbaum-Salant, O., Armoni, M., & Ben-Ari, M. (2013). Learning computer science concepts
with scratch. Computer Science Education, 23(3), 239–264. https://doi.org/10.1080/
08993408.2013.832022

Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for
systematic reviews and meta-analyses: The PRISMA statement. PLoS Medicine, 6(7),
e1000097. https://doi.org/10.1371/journal.pmed.1000097

Moreno-León, J., & Robles, G (2015a). Analyse your scratch projects with Dr Scratch and assess
your computational thinking skills. Scratch conference (pp. 12–15).

Moreno-León, J., & Robles, G. (2015b). Dr Scratch: Aweb tool to automatically evaluate scratch
projects. In Proceedings of the workshop in primary and secondary computing education
(pp. 132–133). https://doi.org/10.1145/2818314.2818338

Noh, J., & Lee, J. (2020). Effects of robotics programming on the computational thinking and
creativity of elementary school students. Educational Technology Research and Devel-
opment, 68(1), 463–484. https://doi.org/10.1007/s11423-019-09708-w

Papavlasopoulou, S., Giannakos, M. N., & Jaccheri, L. (2018). Discovering children’s com-
petences in coding through the analysis of Scratch projects. In IEEE global engineering
education conference (EDUCON) (pp. 1127–1133). IEEE. https://doi.org/10.1109/
EDUCON.2018.8363356

Perković, L., Settle, A., Hwang, S., & Jones, J. A. (2010). A framework for computational
thinking across the curriculum. In Proceedings of the fifteenth annual conference on In-
novation and technology in computer science education (pp. 123–127).

Qian, Y., & Lehman, J. (2017). Students’ misconceptions and other difficulties in introductory
programming: A literature review. ACM Transactions on Computing Education (TOCE),
18(1), 1–24. https://doi.org/10.1145/3077618

Qualls, J. A., & Sherrell, L. B. (2010). Why computational thinking should be integrated into the
curriculum. Journal of Computing Sciences in Colleges, 25(5), 66–71.

Repenning, A., Basawapatna, A., & Escherle, N. (2016). Computational thinking tools. In IEEE
symposium on visual languages and human-centric computing (VL/HCC) (pp. 218–222).
IEEE. https://doi.org/10.1109/VLHCC.2016.7739688

Resnick, M., Kafai, Y., & Maeda, J. (2003). A networked. Media-rich programming environment
to enhance technological fluency at after-school centers in economically disadvantaged
communities. Proposal to the National Science Foundation.

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., et al
(2009). Scratch: Programming for all. Communication ACM, 52(11), 60–67. https://doi:10.
1145/1592761.1592779

Resnick, M., & Silverman, B. (2005). Some reflections on designing construction kits for kids. In
Proceedings of the 2005 conference on Interaction design and children (pp. 117–122).
ACM. https://doi.org/10.1145/1109540.1109556

Riyami, A., (2015). Main approaches to educational research. International Journal of Inno-
vation and Research in Educational Sciences, 2(5), 412–416.

32 Journal of Educational Computing Research 0(0)

https://doi.org/10.1007/s00779-004-0295-6
https://doi.org/10.1007/s00779-004-0295-6
https://doi.org/10.1080/08993408.2013.832022
https://doi.org/10.1080/08993408.2013.832022
https://doi.org/10.1371/journal.pmed.1000097
https://doi.org/10.1145/2818314.2818338
https://doi.org/10.1007/s11423-019-09708-w
https://doi.org/10.1109/EDUCON.2018.8363356
https://doi.org/10.1109/EDUCON.2018.8363356
https://doi.org/10.1145/3077618
https://doi.org/10.1109/VLHCC.2016.7739688
https://doi:10.1145/1592761.1592779
https://doi:10.1145/1592761.1592779
https://doi.org/10.1145/1109540.1109556

Romero, M., Arnab, S., De Smet, C., Mohamad, F., Abdelouma, S., Minoi, J. L., et al (2018). Co-
creativity assessment in the process of game creation. European conference on games based
learning (pp. 549–XXI). Academic Conferences International Limited.

Romero, M., Davidson, A.-L., Cucinelli, G., Ouellet, H., & Arthur, K. (2016). Learning to code:
From procedural puzzle-based games to creative programming. CIDUI proceedings.
Learning and teaching innovation impacts. ACUP.

Romero, M., Lepage, A., & Lille, B. (2017). Computational thinking development through
creative programming in higher education. International Journal of Educational Tech-
nology in Higher Education, 14(1), 42. https://doi.org/10.1186/s41239-017-0080-z

Rose, S., Habgood, J., & Jay, T. (2017). An exploration of the role of visual programming tools on
the development of young children’s computational thinking. Electronic Journal of
E-Learning, 15(4), 297–309. https://doi.org/10.34190/ejel.15.4.2368

Rose, S. P., Habgood, M. J., & Jay, T. (2019). Using pirate plunder to develop children’s ab-
straction skills in scratch. In Extended abstracts of the 2019 CHI conference on human
factors in computing systems (pp. 1–6). https://doi.org/10.1145/3290607.3312871

Rovegno, I., & Dolly, J. P. (2006). Constructivist perspectives on learning. In D. Kirk, D.
MacDonald, & M. O’Sullivan (Eds), The Handbook of physical education (pp. 242–261).

Runco, M. A., & Jaeger, G. J. (2012). The standard definition of creativity. Creativity Research
Journal, 24(1), 92–96. https://doi.org/10.1080/10400419.2012.650092

Seiter, L., & Foreman, B. (2013). Modeling the learning progressions of computational thinking
of primary grade students. In Proceedings of the ninth annual international ACM conference
on International computing education research (pp. 59–66). ACM https://doi.org/10.1145/
2493394.2493403

Selby, C., & Woollard, J. (2013). Computational thinking: The developing definition. https://
eprints.soton.ac.uk/356481/1/Selby_Woollard_bg_soton_eprints.pdf

Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational thinking. Edu-
cational Research Review, 22, 142–158. https://doi.org/10.1016/j.edurev.2017.09.003

Sivilotti, P. A., & Laugel, S. A. (2008). Scratching the surface of advanced topics in software
engineering: Aworkshop module for middle school students. ACM SIGCSE Bulletin, 40(1),
291–295. https://doi.org/10.1145/1352322.1352235

Sung, K., Hillyard, C., Angotti, R. L., Panitz, M. W., Goldstein, D. S., & Nordlinger, J. (2010).
Game-themed programming assignment modules: A pathway for gradual integration of
gaming context into existing introductory programming courses. IEEE Transactions on
Education, 54(3), 416–427. https://doi.org/10.1109/TE.2010.2064315

Tang, X., Yin, Y., Lin, Q., Hadad, R., & Zhai, X. (2020). Assessing computational thinking: A
systematic review of empirical studies. Computers & Education, 148, 103798. https://doi.
org/10.1016/j.compedu.2019.103798

Tedre, M. (2017). Many paths to computational thinking. [Paper presentation] 3 TACCLE.

Tekdal, M. (2021). Trends and development in research on computational thinking. Education
and Information Technologies, 26(5), 6499–6529. https://doi.org/10.1007/s10639-021-
10617-w

Othman et al. 33

https://doi.org/10.1186/s41239-017-0080-z
https://doi.org/10.34190/ejel.15.4.2368
https://doi.org/10.1145/3290607.3312871
https://doi.org/10.1080/10400419.2012.650092
https://doi.org/10.1145/2493394.2493403
https://doi.org/10.1145/2493394.2493403
https://eprints.soton.ac.uk/356481/1/Selby_Woollard_bg_soton_eprints.pdf
https://eprints.soton.ac.uk/356481/1/Selby_Woollard_bg_soton_eprints.pdf
https://doi.org/10.1016/j.edurev.2017.09.003
https://doi.org/10.1145/1352322.1352235
https://doi.org/10.1109/TE.2010.2064315
https://doi.org/10.1016/j.compedu.2019.103798
https://doi.org/10.1016/j.compedu.2019.103798
https://doi.org/10.1007/s10639-021-10617-w
https://doi.org/10.1007/s10639-021-10617-w

Tikva, C., & Tambouris, E. (2020).Mapping computational thinking through programming in K-
12 education: A conceptual model based on a systematic literature review. Computers &
Education. https://doi.org/10.1016/j.compedu.2020.104083

Ung, L. L., Labadin, J., & Mohamad, F. S. (2022). Computational thinking for teachers: De-
velopment of a localised E-learning system. Computers & Education, 177, 104379. https://
doi.org/10.1016/j.compedu.2021.104379

Vee, A. (2013). Understanding computer programming as a literacy. Literacy in Composition
Studies, 1(2), 42–64. https://doi.org/10.21623/1.1.2.4

Werner, L., Campe, S., & Denner, J. (2012). Children learning computer science concepts via
alice game-programming. In Proceedings of the 43rd ACM technical symposium on
computer science education (pp. 427–432). ACM https://doi.org/10.1145/2157136.
2157263

Wilson, A., Connolly, T., Hainey, T., & Moffat, D. (2011). Evaluation of introducing pro-
gramming to younger school children using a computer game making tool. In Proceedings
of the fifth European conference on games based learning (pp. 639–649).

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35. https://
doi.org/10.1145/1118178.1118215

Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,
366(1881), 3717–3725. https://doi.org/10.1098/rsta.2008.0118

Wolz, U., Hallberg, C., & Taylor, B. (2011). Scrape: A tool for visualising the code of Scratch
programs. [Poster presentation]. 42nd ACM Technical Symposium on Computer Science
Education.

Wolz, U., Maloney, J., & Pulimood, S. M. (2008). Scratch’ your way to introductory CS. ACM
SIGCSE Bulletin, 40(1), 298–299. https://doi.org/10.1145/1352322.1352239

Wong, G. K.W., & Cheung, H. Y. (2018). Exploring children’s perceptions of developing twenty-
first-century skills through computational thinking and programming. Interactive Learning
Environments, 28(4), 438–450. https://doi.org/10.1080/10494820.2018.1534245

Zaharija, G., Mladenović, S., & Boljat, I. (2013). Introducing basic programming concepts to
elementary school children. Procedia - Social and Behavioral Sciences, 106, 1576–1584.
https://doi.org/10.1016/j.sbspro.2013.12.178

Zhang, L.C., & Nouri, J. (2019). A systematic review of learning computational thinking through
Scratch in K-9. Computers & Education, 141, 103607. https://doi.org/10.1016/j.compedu.
2019.103607

Authors Biographies

Mohd Kamal Othman is an Associate Professor in the Faculty of Cognitive Sciences
and Human Development at Universiti Malaysia Sarawak. He received his PhD in
Computer Science from the University of York UK, and his research interests span the
fields of HCI, museum studies, tourism, digital technology and education.

Syazni Jaslan is a Digital Analytic trainee at Maybank concurrently pursuing MSc. in
Data Science at Universiti Kebangsaan Malaysia. An enthusiast when it comes to

34 Journal of Educational Computing Research 0(0)

https://doi.org/10.1016/j.compedu.2020.104083
https://doi.org/10.1016/j.compedu.2021.104379
https://doi.org/10.1016/j.compedu.2021.104379
https://doi.org/10.21623/1.1.2.4
https://doi.org/10.1145/2157136.2157263
https://doi.org/10.1145/2157136.2157263
https://doi.org/10.1145/1118178.1118215
https://doi.org/10.1145/1118178.1118215
https://doi.org/10.1098/rsta.2008.0118
https://doi.org/10.1145/1352322.1352239
https://doi.org/10.1080/10494820.2018.1534245
https://doi.org/10.1016/j.sbspro.2013.12.178
https://doi.org/10.1016/j.compedu.2019.103607
https://doi.org/10.1016/j.compedu.2019.103607

learning ever-changing methods on how to fill in the gaps between problems and
solutions. She always believes that data-driven decisions play a fundamental role in
progressing or breaking businesses.

Fatin Afiqah Yamin is a System Analyst at the biggest financial services in Malaysia.
She has been involved in maintaining and analysing a system where it helps users
identify insiders who are exercising market abuse. She portrays adaptability and open-
mindedness throughout her involvements as a System Analyst. She believes by
practising the values, she can build harmonies with others and progress as an individual.
She received her BSc in Cognitive Science from Universiti Malaysia Sarawak.

Shaziti Aman is a Senior Lecturer whose research focuses on children, digital
technology, museums and learning. She received her MA in Learning Sciences from
Northwestern University.

Fitri Suraya Mohamad (ORCID ID 0000–0003-4460–8061) is an Associate Pro-
fessor at the Department of Cognitive Sciences, University Malaysia Sarawak. Fitri
Suraya does research in Pedagogic Theory, Higher Education Teaching and Learning
and Educational Technology. She is currently working on gameful learning design for
indigenous collaboration between communities in Sarawak.

Nurfarahani Norman Anuar is a UX Researcher at a tech company currently
pursuing MSc. in Cognitive Sciences at Universiti Malaysia Sarawak (UNIMAS). She
received her B.Sc. in the same field. She designed and developed a cultural heritage
game-based learning application for children as part of her undergraduate program. She
extends her interest in digital heritage to her postgraduate research.

Abdulrazak Yahya Saleh is a senior lecturer in the Faculty of Cognitive Sciences and
Human Development at the Universiti Malaysia Sarawak. He received his PhD in
Computer Science from the University Teknologi Malaysia (UTM), and his research
interests focus on using Artificial Intelligence in various fields.

Ahmad Azaini Abdul Manaf (ORCID ID 0000–0003-0689–3949) is an Associate
Professor in the faculty of creative Arts and Heritage at Universiti Malaysia Kelantan.
He received his PhD in Service Design from Dongseo University, Busan, South Korea.
His research interest is in the field of creative digital content, animation and game art
and design education.

Othman et al. 35

	Mapping Computational Thinking Skills Through Digital Games Co
	Introduction
	Motivation/Rationale
	Literature Review
	Digital Games Development

	Computational Thinking

	Methodology
	Research Design
	Participants
	Apparatus and Materials
	Development of Instrument
	Phase 1: Systematic literature review analysis
	Phase 2: Document Analysis
	Data Analysis
	Pilot Study
	Research Procedure

	Findings
	Descriptive Analysis

	CT Skills Analysis
	Discussion
	CT Skills Checklist
	Instrument Validation Through Co-Creation Activities
	Conclusion and Future Work

	Appendix 1
	New Categories of CT Skills.
	Acknowledgments
	Declaration of conflicting interests
	Funding
	ORCID iDs
	References
	Authors Biographies

