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Abstract: A computational simulation of Williamson fluid flowing around a spherical shape in the
case of natural convection is carried out. The Lorentz force and constant wall temperature are taken
into consideration. In addition, upgrader heat transfer catalysts consisting of multi-walled carbon
tubes, molybdenum disulfide, graphene oxide, and molybdenum disulfide are employed. The Keller
box approach is used to solve the mathematical model governing the flow of hybrid Williamson
fluid. To validate our findings, the key parameters in the constructed model are set to zero. Next,
the extent of the agreement between our results and published results is observed. Numerical and
graphical results that simulate the impressions of key parameters on physical quantities related to
energy transmission are obtained, discussed, and analyzed. According to the results of this study,
increasing the value of the Weissenberg number causes an increase in both the fluid temperature and
drag force, while it also leads to a decrease in both the velocity of the fluid and the rate of energy
transmission. Increasing the magnetic field intensity leads to a reduction in the rate of heat transfer,
drag force, and fluid velocity while it has an appositive effect on temperature profiles.

Keywords: free convection; hybrid Williamson nanofluid; magnetized host fluid; spherical surface;
Tiwari–Das model

MSC: 76B99

1. Introduction

Recently, researchers in the field of hydrodynamics have focused their studies on
non-Newtonian fluids because of the latter’s important engineering applications. The
result of this focus is the emergence of many mathematical models that attempt to simulate
the behavior of these fluids. One of the most important non-Newtonian fluid models
considered in several papers is the Williamson fluid model proposed by Williamson [1]. He
presented a governing equation explaining pseudoplastic fluid flow, thereby addressing
the problems of mass transfer of the pseudoplastic, in which the shear-thinning features of
non-Newtonian fluids were highlighted, and laboratory experiments were presented to
examine the proposed approach. Later on, several studies extended the Williamson model
in different directions. Lyubimov and Perminov [2] investigated the tinny film movement
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of a Williamson fluid via an inclined surface in the gravitational field. The authors analyzed
the effect of the tangential and latter vibrations of the solid surface on layer flow and
presented the results of the experiments, showing that a pronounceable average fluid flow
was generated by the vibrations despite the weak gravitational field where the film is at rest.
Nadeem and Akram [3] presented a study on the peristaltic transit of Williamson liquid in
an asymmetric channel. Their study concluded that the curves of the pressure increase for
large values of the Williamson factor are not linear, but for small values of the Williamson
factor, they tend to behave as Newtonian liquids. Under the effects of nanoparticles,
Nadeem and Hussain [4] investigated Williamson fluids’ two-dimensional flow over a
stretching sheet. Nanomaterial chemically reactive flow-outcomes were modelled and
analyzed using the rheological expressions of Williamson fluid by Hayat et al. [5]. The
work considered a nonlinear bidirectional stretching sheet for the simulation. The outcome
of the study shows that for higher values of magnetic parameters, the velocity always
decays in the direction of travel. The Williamson fluid assessment of time-dependent flow
was studied by Subbarayudu et al. [6]. The authors considered the radiative blood flow
of the Williamson fluid against a wedge. Waqas et al. [7] and Hayat et al. [8] looked at
incompressible, steady 2D nonlinear forced or mixed convective Williamson fluid flow on
stretchable or flat surfaces, as well as the heat generation interaction of Williamson fluid
flow in nonlinear forced or mixed convection subjects.

In 1995, Choi and Eastman [9] incorporated nanotechnology into the field of energy
transmission for the first time, and this led to a quantum leap in improving the ability
of the base fluids to transfer energy. Eastman et al. [10] affirmed that copper ultrafine
particles can boost the heat transport properties of ethylene glycol. Chon et al. [11] reported
the effect of temperature and nanoparticle size on the nanofluid’s thermal characteristics.
Xuan and Li [12] identified the most critical factors influencing the rate of heat transfer,
which may also be influenced by the factors addressed by the authors of [13–15]. Re-
cently, Tiwari and Das [16] constructed a mathematical model that included highlighting
the effect of the ultrafine particle-volume fraction on the physical properties relevant to
heat transfer. Subsequently, many of the mathematical models that govern the issues
associated with laminar boundary layers were extensions of the Tiwari and Das model.
Tham et al. [17,18] utilized the Tiwari and Das model to report the combined convection
flow past a sphere and cylinder. Dinarvand et al. [19] applied the Tiwari and Das model to
simulate the magneto-combined convection of nanofluid about a vertical permeable cylin-
der. Swalmeh et al. [20–22] examined the natural convection flow of micropolar nanoliquid
around spherical and cylindrical surfaces. Alwawi et al. [23–27] reported the effect of the
magnetic field on the heat transmission rate of Casson nanofluid employing the Tiwari–Das
model. See also [28–32].

The second leap related to heat transfer has come from upgrading the ultrafine particles
by synthesizing more than one compound to create a hybrid nanomaterial with optimized
thermal features. Turcu et al. [33] are recognized as being among the first to synthesize
hybrid nanomaterials from polypyrrole-CNTs and Fe3O4–MWCNTs. Suresh et al. [34] pro-
duced a hybrid material with improved thermal conductivity, composed of copper and
aluminum oxides. Baghbanzadeh et al. [35] described a technique for combining SiO2 with
MWCNTs to create hybrid ultrafine particles, as well as showing the best SiO2 to MWCNTs
ratio to generate the maximum thermal conductivity for the hybrid synthesis material.
Zhou et al. [36] fabricated a polymer hybrid nanomaterial with excellent thermal conduc-
tivity. Leong et al. [37] presented an interesting review of hybrid nanocomposites, their
synthesis methods, and the most important aspects to be taken into consideration, such as
thermal conductivity, stability of the host fluid, and others. More comprehensive studies are
provided by the authors of [38–41]. Accordingly, several numerical investigations have been
carried out in an attempt to predict the behavior of hybrid nanofluids. Devi and Devi [42]
confirmed in their numerical study of the hybrid nanoliquid flowing around a perme-
able sheet that hybrid nanoparticles of Al2O3-Cu can give water a higher rate of energy
transmission than Cu mono nanoparticles. Hayat and Nadeem [43] highlighted 3D-hybrid
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nanofluid flow over a stretching surface, taking into consideration radiation effects, heat
creation, and chemical reaction. Subhani and Nadeem [44] carried out a computational
analysis comparing the heat transfer rates of a mono and hybrid micropolar nanofluid
flowing in a porous medium on a stretching surface. Khashi’ie et al. [45] simulated the
magneto-mixed convection flow of hybrid nonliquid around a shrinking cylinder with the
assistance of the Tiwari–Das model. Alwawi et al. [46] discussed heat transfer boosters
generated by a transient magnetic field through a hybrid fluid moving around a cylinder.
It is worth mentioning here that these comprehensive studies [47–50] used the second
grade of the ultrafine particles and combined the models of Tiwari–Das and Williamson
to simulate the behavior of these fluids; which behavior is the closest to this study and
one of the reasons that motivated us to proceed with this investigation. As a result of
these massive experimental and numerical studies, we observed the wide-range inclusion
of hybrid particles to enhance heat transfer in conceivable primary applications such as
electronic and manufacturing cooling, solar energy, heat exchangers, etc. [51–53]. In the
case of laminar-boundary layer flow, there are numerous effective approximation methods
for dealing with the problems of heat transfer through fluids [54–58]. The Keller Box ap-
proximation was used in this paper because it is one of the best approximations for dealing
with laminar-boundary layer problems, has many distinguishing characteristics, and has
been widely used for more than three decades.

Based on the above literature, the fabricated molybdenum disulfide nanosolid (MoS2)
on the one hand, and multi-walled carbon nanotubes (MWCNTs) and graphene oxide (GO)
on the other hand, are used to support the thermal feature of the host Williamson fluid,
which flows over a spherical surface. An applied magnetic field is also included because
of its substantial impact on the energy transmission characteristics of hybrid nanofluids
and its unlimited use in many engineering and industrial applications. In addition, the
state of convection produced by natural means is considered. To the best of our knowledge,
there is no study available that investigates this problem. Accordingly, in this report,
the relevant equations are solved by converting PDEs into the dimensionless form using
an appropriate conversion. The implicit Keller box finite difference method is used for
the local similar solution of dimensionless governing equations and the flow and energy
transport characteristics of the Williamson hybrid nanofluid past a sphere. Computational
outcomes are computed, addressed, and analyzed in the form of tables and figures in order
to simulate the effects of key parameters on the Nusselt number, velocity, skin friction
coefficient, and temperature.

2. Problem Description

A convection produced by natural means in an electro-conductive Williamson hybrid
nanofluid flowing over a spherical body under the influence of a magnetic field B0 was
assumed, as shown in Figure 1. The constant wall temperature Tw > T∞ as well as an
applied magnetic field are considered. Tw stands for the wall temperature, T∞ is the
ambient temperature. Additionally, η is the curvilinear coordinate over the sphere border,
measuring its surface’s circumference, and γ is the distance normal to the sphere’s surface.

According to the preceding considerations, governing equations could be formed as
follows (see [23,59,60]):

∂ru
∂η

+
∂rv
∂γ

= 0, (1)

ρHn f

(
ˆ
u ∂u

∂η + v̂ ∂u
∂γ

)
= − ∂P

∂η +
√

2vΓ
(

∂2u
∂γ2

∂u
∂γ

)
+ µHn f

(
∂2u
∂γ2 +

∂2u
∂η2

)
+

ρHn f βHn f g(T − T∞) sin
(

η
a

)
− σHn f B2

0
ˆ
u,

(2)

ρHn f

(
u ∂u

∂η + v ∂u
∂γ

)
= − ∂P

∂γ +
√

2vΓ
(

∂2u
∂γ2

∂u
∂γ

)
+ µHn f

(
∂2u
∂γ2 +

∂2u
∂η2

)
+

ρHn f βHn f g(T − T∞) cos
(

η
a

)
− σHn f B2

0u,
(3)
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u
∂T
∂η

+ v
∂T
∂γ

= αHn f

(
∂2T
∂γ2 +

∂2T
∂η2

)
, (4)
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The constant wall temperature boundary condition of the above governing equations
will be defined as:

u = v = 0, T = Tw at γ = 0,

u→ 0, T → T∞, p→ p∞ at γ→ ∞, (5)

where u and v are referents for the velocity components along η, γ axes, respectively. r(η)
is called the radial distance from the symmetrical axis to the surface of the sphere. P is
pressure and Γ is fluid relaxation time.

To convert the dimensional governing equations to the non-dimensional, we utilize
the following non-dimensional variables, as follows:

ω =
(

η
a

)
γ = Gr1/4

(
γ
a

)
, u =

(
a

ν f

)
Gr−1/2u , v =

(
a

ν f

)
Gr−1/4v

θ = T− T∞
Tw− T∞

, p = p̂− p∞
ρ f (v2

f /a2)
,

(6)

where Gr is determined physically as a non-dimensional number and symbolizes the ratio of
the buoyancy forces to the viscous forces, and it can also be defined as Gr = gβ f (Tw−T∞) a3

ν2
f

(see [61]). Pr is non-dimensional quantity, and it is a particular physical feature of fluids
only. It is examined by considering the proportion of the velocity against the thermal
of boundary layer thickness. On the other hand, the Prandtl number law is equal to
momentum diffusivity over thermal diffusivity (Pr =

v f
α f

) (see [62]).
Table 1 presents the thermo-physical characteristics of the hybrid nanofluids and mono

nanofluids on which this study is based.

Table 1. Thermo-physical characteristics [49].

Properties of the Mono Nanofluid Properties of the Hybrid Nanofluid

ρn f = (1−v)ρ f + vρs, ρHn f = (1−v2)[(1−v1)ρ f + v1ρs1] + v2ρs2,(
ρcp
)

n f = (1−v)
(
ρcp
)

f + v
(
ρcp
)

s,
(
ρcp
)

Hn f = (1−v2)[(1−v1)(ρCp) f + v1(ρCp)s1] + v2(ρCp)s2,
βn f = (1−v)β f + vβs βHn f = (1−v2)[(1−v1)β f + v1βs1] + v2βs2.

µn f =
µ f

(1−v)2.5 , µhn f =
µ f

(1−v1)
2.5(1−v2)

2.5 ,

kn f
k f

=
(ks+2k f )−2v(k f−ks)
(ks+2k f )+v(k f−ks)

, kHn f
kb f

=
ks2+2kb f−2v2(kb f−ks2)
ks2+2kb f +v2(kb f−ks2)

, kb f
k f

=
ks1+2k f−2v1(k f−ks1)
ks1+2k f +v1(k f−k2)

,

αn f =
kn f

(ρcp)n f

, αHn f =
kHn f

(ρcp)Hn f
,

σn f
σf

= 1 + 3(σ−1)v
(σ+2)−(σ−1)v , σ = σs

σf

σHn f
σb f

= [
σs2+2σb f−2v2(σb f−σs2)

σs2+2σb f +v2(σb f−σs2)
], σb f

σf
= [

σs1+2σf−2v1(σf−σs1)

σs1+2σf +v1(σf−σs1)
]
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Here v, ρ, (ρcp), β are called nanoparticle volume fraction, density, heat capacity,
and thermal expansion, respectively. In addition, µ, k, α, σ refer to dynamic viscosity,
thermal conductivity, thermal diffusivity, and electrical conductivity, respectively. Fur-
thermore, the subscripts s, f, nf, hnf symbolize solid, host fluid, nanoliquid, and hybrid
nanoliquid, respectively.

Using Equation (6), the described hybrid nanofluid properties in Table 1, and the
useful boundary layer approximations technique (Gr → ∞), we obtain (∂p/∂η) = 0 and
(∂p/∂γ) = 0. In other words, this provides the next equations, those containing Williamson
hybrid nanofluid effects and the magnetic field at the momentum equation:

∂ru
∂η

+
∂rv
∂γ

= 0 (7)

u ∂u
∂η + v ∂u

∂γ =
ρ f

ρHn f

(
1

(1−v1)
2.5(1−v2)

2.5

)
∂2u
∂γ2 + We

(
∂2u
∂γ2

∂u
∂γ

)
+ 1

ρHn f

(
(1−v2)[(1−v1)ρ f + v1

ρs1βs1
β f

] + v2
ρs2βs2

β f

)
θ sin η − ρ f

ρHn f

σHn f
σf

Mu,
(8)

u ∂θ
∂η + v ∂θ

∂γ

= 1
Pr

[
kHn f /k f

(1−v2)[(1−v1)+v1(ρCp)1/(ρCp) f ]+v2(ρCp)s2/(ρCp) f

]
∂2θ
∂γ2 ,

(9)

In the previous system of equations, We is a non-dimensional parameter measuring

the Fluid relaxation time Γ, and it is described as We = Γη Gr3/4

a3 . M =

(
σf B2

0 a2Gr−1/2

ρ f v f

)
is

the magnetic parameter. Substituting the properties in Table 1 and Equation (6) yields the
following non-dimensional form of boundary condition:

u = v = 0, θ = 1, at γ = 0,
u→ 0, θ → 0, p→ 0, as γ→ ∞.

(10)

The following transformation variables are effective in solving Equations (7)–(10),
which are described as: (see [47])

ψ = η f (η, γ), θ = θ(η, γ), (11)

this is consistent with the following formula:

u =
∂ψ

∂γ
and v = −∂ψ

∂η
(12)

that satisfies the continuity equation, where ψ is the stream function.
Thus, the reduction in the governing partial differential equations by substituting the

transformation variables (11) and (12) is completed as shown below:

ρ f
ρHn f

(
1

(1−v1)
2.5(1−v2)

2.5

)
∂3 f
∂γ3 + We ∂3 f

∂γ3
∂2 f
∂γ2 + (1 + η cot η) f ∂2 f

∂γ2 −
(

∂ f
∂γ

)2
+

1
ρHn f

(
(1−v2)[(1−v1)ρ f + v1

ρs1βs1
β f

] + v2
ρs1βs2

β f
.
)

sin η
η θ − ρ f

ρHn f

σHn f
σf

M ∂ f
∂γ

= η
(

∂ f
∂γ

∂2 f
∂2 −

∂ f
∂η

∂2 f
∂γ2

) (13)

1
Pr

[
kHn f /k f

(1−v2)[(1−v1)+v1(ρCp)1/(ρCp) f ]+v2(ρCp)s2/(ρCp) f

]
∂2θ
∂γ2

+(1 + η cot η) f ∂θ
∂γ = η

(
∂ f
∂γ

∂θ
∂η −

∂ f
∂η

∂θ
∂γ

)
,

(14)
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subject to:
f = ∂ f

∂γ = 0, θ = 1 at γ = 0,
∂ f
∂γ → 0, θ → 0, as γ→ ∞.

(15)

Assuming that $ is approximately equal to 0 (at the stagnation point), Equations
(13)–(15) are modified as follows:

ρ f
ρHn f

(
1

(1−v1)
2.5(1−v2)

2.5

)
∂3 f
∂γ3 + We ∂3 f

∂γ3
∂2 f
∂γ2 + 2 f ∂2 f

∂γ2 −
(

∂ f
∂γ

)2
+

1
ρHn f

(
(1−v2)[(1−v1)ρ f + v1

ρs1βs1
β f

] + v2
ρs1βs2

β f
.
)

θ − ρ f
ρHn f

σHn f
σf

M ∂ f
∂γ = 0,

(16)

1
Pr

[
khn f /k f

(1−ϑ2)[(1−ϑ1)+ϑ1(ρCp)1/(ρCp) f ]+ϑ2(ρCp)s2/(ρCp) f

]
∂2θ
∂γ2

+2 f ∂θ
∂γ = 0

(17)

with the modified boundary conditions:

f (0, γ) = f ′(0, γ) = 0, θ(0, γ) = 1 as γ = 0,
f ′(0, γ)→ 0, θ(0, γ)→ 0 as γ→ ∞,

(18)

Our attention focuses on the skin friction Cf and Nusselt number Nu, which are closely
related to energy transfer Cf and Nu given by Swalmeh [59] as:

C f =

(
τw

ρ f U2
∞

)
, Nu =

(
aqw

k f (Tw − T∞)

)
, (19)

where

τw = µHn f

(
∂u
∂γ

+

[
Γ√
2

(
∂u
∂γ

)2
])

γ= 0

, qw = − kHn f

(
∂T
∂γ

)
γ= 0

(20)

Cf and Nu are reformulated into the following forms, using Equations (6) and (10):

C f = Gr−1/4 1

(1−v1)
2.5(1−v2)

2.5 ω

(
∂2 f
∂γ2 (η, 0) +

We
2

(
∂ f
∂γ

(η, 0)
)2
)

, Nu = −Gr1/4 kHn f

k f

∂θ

∂γ
(ω, 0), (21)

All parameters and symbols are shown in the nomenclature list.

3. Numerical Techniques

In this section, an efficient numerical procedure called the Keller box method is used
for obtaining numerical solutions to Equations (13)–(15). Firstly, the Keller box method
involves a finite difference scheme that reduces the order of PDEs to the system of first-order
equations. Now, we begin by introducing the independent functions:

u(η, γ) = f ′(η, γ), v(η, γ) = f ′′ (η, γ), s(η, γ) = θ(η, γ), (22)

f ′ = u, (23)

u′ = v = f ′′ , (24)

θ′ = t, (25)
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Using the above transformation, Equations (13)–(15) can be represented in the follow-
ing form:

ρ f
ρHn f

(
1

(1−v1)
2.5(1−v2)

2.5

)
v′ + We v′v + (1 + η cot η) f v− (u)2+

1
ρHn f

(
(1−v2)[(1−v1)ρ f + v1

ρs1βs1
β f

] + v2
ρs1βs2

β f
.
)

sin η
η s− ρ f

ρHn f

σHn f
σf

M u

= η
(

u ∂u
∂η −

∂ f
∂η v
)

,

(26)

1
Pr

[
kHn f /k f

(1−v2)[(1−v1)+v1(ρCp)1/(ρCp) f ]+v2(ρCp)s2/(ρCp) f

]
θ′′

+(1 + η cot η) f ∂θ
∂γ = η

(
f ′ ∂θ

∂η −
∂ f
∂η θ′

)
,

(27)

where the primes symbol indicates differentiation of the variable γ. In addition, the
boundary conditions (16) are transformed into:

f (η, 0) = 0, f (η, 0) = 0, θ = 1,
f ′(η, ∞) = 0, θ(η, ∞) = 0,

(28)

To make the steps mesh points in a two-dimensional η-γ plane, define kn and hn of the
related step distances in η and γ orientations, respectively, as shown in Figure 2.

Mathematics 2022, 10, 3823 8 of 21 
 

 

( ,0) 0, ( ,0) 0, 1,
( , ) 0, ( , ) 0,
f f
f

η η θ
η θ η

= = =
′ ∞ = ∞ =

 (28)

To make the steps mesh points in a two-dimensional η-γ plane, define kn and hn of 
the related step distances in η and γ orientations, respectively, as shown in Figure 2. 

 
Figure 2. The rectangle of difference method. 

The mesh points are indicated below: 

0 1
0 1

, 0,1, 2, 3, ..., .

, 0,1, 2, 3, ..., .

0, ,

0,
i i i J
i i i i

i J

i N

h

k

γ γ γ γ γ

η η η η
− ∞

−

=

=

= = + =

= = = +  
(29)

For any independent quantities, midpoint and first derivative in the η-direction and 
γ-direction, placed by finite difference, is employed as follows: 

( ) ( ) ( ) ( ) ( )( )1 2 1 1
1 2 1 1

1
4

n n n n n
j j j j j
− − −
− − −= + + +  

( ) ( ) ( ) ( ) ( )( )
1 2

1 1
1 1

1 2

1
2

n
n n n n
j j j j

jj hγ

−
− −

− −
−

∂ 
= − + − ∂ 

 (30)

( ) ( ) ( ) ( ) ( )( )
1 2

1 1
1 1

1 2

1
2

n
n n n n
j j j jn

j kω

−
− −

− −
−

∂ 
= − + − ∂ 

 

The following are finite difference approximations of Equations (23)–(25) and (26)–
(27) about the midpoint (η𝑛, γj−1/2): 

( )1 1/2 ,n n n
j j j jf f h u− −− =  (31)

( )1 1/2 ,n n n
j j j ju u h v− −− =  (32)

( )1 1/2 ,n n n
j j j js s h t− −− =  (33)

( ) ( )( )1 1 12.5 2.5
1 2

2
1 1 1

1 1
1 1/2 1 1/2 1

1 We
(1 ) (1 )

1(1 cot ) ( )( ) ( )
4 4

1 1 1M ( ) ( ) (
2 2 2

f
j j j j j j

Hnf

j j j j j j j j

f nf n n
j j j j j j j j j j j

nf f

v v v v v v

h f f v v h u u

h u u h v f f h f v z

ρ
ρ ϖ ϖ

ξ ξξ η η

ρ σ ξ ξ
ρ σ

− − −

− − −

− −
− − − − −

 
− + + − +  − − 

+ + + + + − + − 
 

+ +   + + + − +   
   

( ) ( ) ( )
1

1
1/2

1 2
11 1 1 2

2 1 1 2 1 1/21 2

)

1 sin1 1 [ 1 ] ( )
2 j j

n
j

n l
ns s s s

f j jn l
Hnf f f

f

h s s Lρ β ρ β ηϖ ϖ ρ ϖ ϖ
ρ β β η −

−
−

−
−
−−

+

 
− − + + + =  

 

 (34)

Figure 2. The rectangle of difference method.
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γ0 = 0, γi = γi−1 + hi, i = 0, 1, 2, 3, . . . , J.γ∞ = γJ ,
η0 = 0, ηi = ηi = ηi−1 + ki, i = 0, 1, 2, 3, . . . , N.

(29)

For any independent quantities, midpoint and first derivative in the η-direction and
γ-direction, placed by finite difference, is employed as follows:

()n−1/2
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4
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The following are finite difference approximations of Equations (23)–(25) and (26)–(27)

about the midpoint (ηn, γj−1/2):

f n
j − f n

j−1 = hj

(
un

j−1/2

)
, (31)

un
j − un

j−1 = hj

(
vn

j−1/2

)
, (32)
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sn
j − sn

j−1 = hj

(
tn

j−1/2

)
, (33)

ρ f
ρHn f

(
1

(1−v1)
2.5(1−v2)

2.5

) (
vj − vj−1

)
+ We

(
vj + vj−1

)(
vj − vj−1

)
+

(1 + ξ + η cot η) ξ
4 hj( f j + f j−1)(vj + vj−1)−

(
1+ξ

4

)
hj (uj + uj−1)

2−
1
2

ρ f σn f
ρn f σf

Mhj (uj + uj−1) +
(

1+ξ
2

)
hjvn−1

j−1/2( f j + f j−1) −
(

1+ξ
2

)
hj f n−1

j−1/2(vj + zj−1) f n−1
j−1/2+

1
2

1
ρHn f

(
(1−v2)[(1−v1)ρ f + v1

ρs1βs1
β f

] + v2
ρs1βs2

β f

)
sin ηn−1l2

ηn−1l2 hj(sj
+ s

j−1
) = (L1)

n−1
j−1/2

(34)

1
Pr

[
kHn f /k f

(1−v2)[(1−v1)+v1(ρCp)1/(ρCp) f ]+v2(ρCp)s2/(ρCp) f

](
tj − tj−1

)
−

ξ
4 hj(uj + un

j−1)(sj + sj−1) + (1 + ξ + η cot η) 1
4 hj( f j + f j−1)(tj + tj−1) +

ξ
2 hj(uj + uj−1)s

n−1
j−1/2−

ξ
2 hjun−1

j−1/2(sj + sj−1)−
ξ
2 hj(tj − tj−1) f n−1

j−1/2 +
ξ
2 hjtn−1

j−1/2( f j + f j−1) = (L2)
n−1
j−1/2

(35)

(l1)
n−1
j−1/2 = −hj


ρ f

ρHn f

(
1

(1−v1)
2.5(1−v2)

2.5

) (
vj−vj−1

)
hj

+

We vj−1v′ j−1/2(1− ξ + η cot η) f j−1/2vj−1/2 + (ξ − 1)
(

uj−1/2

)2
− ρ f σn f

ρn f σf
Muj−1/2 +(

(1−v2)[(1−v1)ρ f + v1
ρs1βs1

β f
] + v2

ρs1βs2
β f

)
sin ηn−1l2

ηn−1l2 sj−1/2


n−1

(36)

(l2)
n−1
j−1/2 = −hj

 1
Pr

[
kHn f /k f

(1−v2)[(1−v1)+v1(ρCp)1/(ρCp) f ]+v2(ρCp)s2/(ρCp) f

] (
tj−tj−1

)
hj

+(1 + η cot η − ξ) f j−1/2tj−1/2 + ξuj−1/2sj−1/2


n−1

(37)

where ξ = ηn−1l2

kn
.

The boundary condition can be written as:

f n
0 = un

0 = 0, tn
0 = 1, un

J = sn
J = 0, (38)

Subsequently, the mathematical formula for the previous system (31)–(35) of non-linear
algebraic equations will be linearized, by using Newton’s known method, and then solved
by the block elimination technique. Furthermore, the numerical results are obtained by pro-
gramming the algorithm of a linear system executed by MATLAB software. When we run
the MATLAB program code, it needs to identify some specific computations: the boundary
layer thickness y∞; proper step size ∆y; and the step size ∆x. y∞ is almost constant [63].
Furthermore, when Pr = 6.2, in this study, y∞ suitably lies between 3.5 and 8, to satisfy the
boundary layer convergence. Once we obtain the suitable value of y∞, a sensible option
of step size ∆y and step size ∆x should be determined. So, in the boundary layer flow,
the step size ∆y = 0.02 and ∆x = 0.005 are appropriate to acquire accurate approximate
numerical results. Moreover, these particular values successfully obtain outcomes which
are almost compatible with previous findings, as displayed in Tables 2 and 3.

Table 2. Comparison of the outcomes for Nu at Pr = 7, v1 = v2 = 0, We = 0, and M = 0.

η [64] [65] Present

0 0.9581 0.9595 0.9593
(1/18)π 0.9559 0.9572 0.9568
(1/9)π 0.9496 0.9506 0.9499
(1/6)π 0.9389 0.9397 0.9397
(2/9)π 0.9239 0.9243 0.9242
(5/18)π 0.9045 0.9045 0.9046
(1/3)π 0.8858 0.8801 0.8833
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Table 2. Cont.

η [64] [65] Present

(7/18)π 0.8518 0.8510 0.8526
(4/9)π 0.8182 0.8168 0.8178
(1/2)π 0.7792 0.7792 0.7792

Table 3. Comparison of the outcomes for Cf at Pr = 7, v1 = v2 = 0, We = 0, and M = 0.

η [64] [65] Present

0 0.0000 0.0000 0.0000
(1/18)π 0.0876 0.0875 0.0878
(1/9)π 0.1737 0.1735 0.1737
(1/6)π 0.2566 0.2563 0.2566
(2/9)π 0.3350 0.3345 0.3349
(5/18)π 0.4075 0.4068 0.4076
(1/3)π 0.4727 0.4715 0.4730
(7/18)π 0.5293 0.5380 0.5391
(4/9)π 0.5762 0.5745 0.5760
(1/2)π 0.6123 0.6103 0.6129

4. Results and Discussion

The current section provides an in-depth analysis of natural convection’s physical
aspects produced by a magnetized Williamson hybrid nanofluid flowing around a spherical
shape by highlighting the impressions of ultrafine particle fraction χ, magnetic parameter
M, and Weissenberg number We on physical quantities, as they relate to energy transmis-
sion. The pertinent parameters are chosen in the following ranges: χ = 0.1, 0.15, 0.2;
M = 0.1, 0.5, 1; and We = 0.1, 0.4, 0.5, 0.8, in addition to fixing the Prandtl number at
Pr = 6.2 (the Prandtl number for water) throughout the numerical calculations. Table 4
shows the thermophysical properties of H2O and booster nanosolid as used in this analysis.

Table 4. Thermophysical properties of H2O and booster nanosolid [25,46,66,67].

Physical Properties Water MWCNT GO MoS2

ρ (kg/m3) 997.1 1600 1800 5060
k (W/mK) 0.613 3000 5000 904.4
cp (J/kgK) 4179 796 717 397.21
σ (Sm−1) 5.5 × 10−6 1.9 × 10−4 6.30 × 107 2.09 × 104

β × 10−5 (K−1) 21 44 2.8424

Figure 3 illustrates the extent to which magnetic parameter intensification affects skin
friction of mono and hybrid nanofluids while maintaining the ultrafine particle fraction χ
and Weissenberg number We at constant values. Skin friction values decline as magnetic
parameter values increase. This decline is due to the restriction in fluid flow produced
by a rise in the strength of the magnetic field, which restricts convection and therefore
decreases skin friction. Figure 4 describes the influence of the Weissenberg number on
skin friction. It is noted that skin friction reduces as the Weissenberg number is elevated,
owing to fluid thickening and increased viscous force at high We values. Figure 5 traces
the effect of the ultrafine particle volume fraction on the mono/hybrid nanofluid’s skin
friction, considering that the magnetic parameter and Weissenberg number are fixed values.
It has been observed that increasing the ultrafine particle volume fraction tends to reduce
skin friction, whether for hybrid or mono-nanofluid. The influence of escalating magnetic
parameter values on the Nusselt number is expounded in Figure 6. It indicates that
the ascending value of the magnetic parameter reduces the Nusselt number. In reality,
increasing the intensity of the magnetic field interrupts the fluid movement, which in
turn limits heat transmission. This means a decrease in the Nusselt number. In Figure 7,
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a decline in the Nusselt number is associated with an augmentation in the Weissenberg
number, which seems to indicate that heat is transported from the spherical surface to
the boundary layer, and the temperature is observed to increase with the Weissenberg
number. As a result, the spherical surface is efficiently cooled with higher Weissenberg
number values. Figure 8 conveys the variations of Nusselt number for various values
of the ultrafine particle volume fraction at fixed We = 0.5 and magnetic parameter M = 3.
Obviously, increasing the volume fraction of nanoparticles assists in raising the curve
of the Nusselt number. More specifically, growth in the volume fraction of ultrafine
particles, whether MWCNT or GO, contributes to improving the thermal conductivity
of the mono nanofluid MoS2/water, and as a result, the heat transfer rate increases, and
therefore the Nusselt number increases. Moreover, in terms of energy transfer rate, the
examined hybrid/mono-nano liquids can be arranged in ascending order regardless of
the influencing parameter: MoS2/H2O < GO-MoS2/H2O < MWCNTs-MoS2/H2O. This
superiority of composition of the carbon nanotubes and water in terms of the heat transfer
rate may be due to the superior thermal conductivity of this nanofluidic hybrid. The
behavior of the hybrid nanofluid’s temperature under the effect of M is shown in Figure 9.
The temperature of the hybrid fluid in the boundary laminar layers increases with the
strength of the imposed magnetic field. The main reason behind this dramatic rise in
temperature profiles is the Lorentz force generated by the crossing transverse magnetic
field, which in turn increases the friction and consequently elevates the temperature of
the hybrid nanofluid. The influence of the Weissenberg number We on temperature is
seen in Figure 10. It is worth noting that the temperature of the nanofluid rises as its
values escalate. This occurs due to the higher resistance caused by the increased viscosity.
Figure 11 describes the impression of ultrafine particle volume fraction variation on the
hybrid nanofluid’s temperature. An elevation in the volume fraction of ultrafine particles
produces an increase in heat transmission from the sphere’s surface to the host liquid, which
aids in increasing the thermal boundary layer thickness. Figure 12 contains graphical results
for the critical impact of magnetic parameters on the hybrid nanofluid’s velocity. This is
known as the Lorentz force phenomenon, something which occurs when the magnetic field
crosses a flowing fluid, and where this force restrains the movement of the fluid, slowing it
down. In Figure 13, the flow of the nanofluid is found to diminish when the Weissenberg
number is raised, implying that the velocity of the nanofluid is inhibited. This restriction
in fluid movement is attributed to increased viscosity effects. The variation of velocity
curves together with the ultrafine particle volume fraction values escalated are reported in
Figure 14. The rise in the volume fraction leads to enhanced energy transfer, which in turn
raises the fluid’s velocity.
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5. Conclusions

The energy transfer of Williamson fluid flowing around a spherical shape supported
by upgraded promoter nanosolid in the case of MHD convection produced by natural
means was simulated computationally. It yielded the following meaningful points:

1- The use of hybrid nanosolids stimulates energy transfer through the host fluid;
2- The Weissenberg number has a positive effect on temperature and friction drag, while

it negatively affects energy transfer and fluid velocity;
3- Growing the strength of the magnetic field decreases velocity, friction drag, and energy

transfer rate but raises temperature;
4- Increasing the volume fraction of catalyzed nanomaterials (whether for MWCNTs or

GO) improves energy transfer, raises the fluid temperature, and reduces friction drag;
5- In terms of energy transfer rate, the examined hybrid/mono-nano liquids can be

arranged in ascending order regardless of the influencing parameter as:

MoS2/H2O < GO-MoS2/H2O < MWCNTs-MoS2/H2O.
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Abbreviations
The symbols and their indications:
a Radius of spherical shape
Bo Magnetic field intensity
C f Skin friction
Cp Heat capacity
r(η) Radial distance
g Gravity vector
Gr Grashof number
kf Thermal conductivity
M Magnetic parameter
Nu Nusselt number
Pr Prandtl number
Re Reynold number
T Base liquid temperature
T∞ Surrounding temperature
u η− component of velocity
v γ− component of velocity
vf Kinematic viscosity
We Weissenberg number
α Thermal diffusivity
β Thermal expansion
Γ Fluid relaxation time
σ Electrical conductivity
θ Temperature
µ Dynamic viscosity
ρ Density
ω Volume fraction of nanosolid
τw Wall shear stress
ψ Stream transformation
σ Electrical conductivity
Subscript
f Host liquid
Hnf Hybrid nanoliquid
nf Nanoliquid
ω1 Volume fraction of MWCNTs or GO
ω2 Volume fraction of MoS2
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