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A B S T R A C T

Outbreaks of the COVID-19 pandemic caused by the SARS-CoV-2 infection that started in Wuhan, China, have
quickly spread worldwide. The current situation has contributed to a dynamic rate of hospital admissions.
Global efforts by Artificial Intelligence (AI) and Machine Learning (ML) communities to develop solutions to
assist COVID-19-related research have escalated ever since. However, despite overwhelming efforts from the
AI and ML community, many machine learning-based AI systems have been designed as black boxes. This
paper proposes a model that utilizes Formal Concept Analysis (FCA) to explain a machine learning technique
called Long–short Term Memory (LSTM) on a dataset of hospital admissions due to COVID-19 in the United
Kingdom. This paper intends to increase the transparency of decision-making in the era of ML by using the
proposed LSTM-FCA explainable model. Both LSTM and FCA are able to evaluate the data and explain the
model to make the results more understandable and interpretable. The results and discussions are helpful and
may lead to new research to optimize the use of ML in various real-world applications and to contain the
disease.
1. Introduction

The novel coronavirus (COVID-19), an infectious disease that causes
severe acute respiratory syndrome was discovered for the first time in
Wuhan, China, in November 2019. Ever since the virus has infected and
killed millions of people globally. The first UK COVID-19 cases were
reported on January 31, 2020. Within three months, daily cases rose
sharply to more than 33,000 cases. Other countries that had a spike in
daily cases during the early period were the US, Brazil, Italy, Spain, and
Iran. The figure terrified the globe, and on March 11, 2020, the World
Health Organization (WHO) proclaimed the outbreak a pandemic.

Due to the aggressive number of cases, the entire healthcare system
has to respond and make decisions promptly to ensure it does not
fail. Preventive measures like social distancing, wearing face coverings,
hygienic lifestyle, i.e., hand washing and disinfecting surfaces, and
lockdown are enforced by governments worldwide. Moreover, patients
with positive COVID-19 have to be admitted into an isolation area with
stringent procedures to prevent the disease from spreading. When this
work is carried out, vaccines have been released to the public to contain
the disease. This situation has created opportunities for researchers to
study COVID-19 in any aspect while using COVID-19 datasets that are
publicly available.
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In this study, LSTM algorithm of Machine Learning is used to
demonstrate factors affecting hospital admission in time-series predic-
tion. As machine learning becomes more prevalent in accommodating
and accelerating the decision-making process, it is essential to describe
and understand how the predictions are made while defining and mit-
igating bias. These ML-based decisions have led to the development of
application that improves people’s health, safety, economic well-being,
and other aspects of life [1–3]. An understandable and explainable ML
model is a difficult topic to address due to varieties of machine learning
algorithms and the nature of how machine learning model training
works, yet model interpretability has become a fundamental element in
making model predictions understandable [4,5]. Hence Formal Concept
Analysis (FCA) is used to explain the ML model. This paper is organized
into the following sections: Section 1 outlines the review of previous
work, motivation, and objectives. Section 2 discusses the method used
in this work. The results are presented in Section 3, and discussed in
Section 4. Finally, the paper is concluded in Section 5.

1.1. Exploration and review

In fighting the pandemic, data has shown that the first UK mass
vaccination programme started in early December 2020. [6] reported
vailable online 5 September 2022
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that when 50% of the adult population has been vaccinated, death
tolls are reduced by 95% and hospital admissions are reduced by
80%. [7,8] have reported that a rollout of the Pfizer BioNTech and
Oxford AstraZeneca vaccines has led to a substantial fall in severe
COVID-19 cases requiring hospital admissions in Scotland. The impact
of the lockdown in France and its efficiency in combating COVID-19
has been assessed using a stochastic age-structured transmission model
that includes data on age profile and social relationships [9]. The model
evaluated the impact of lockdown as well as the best options for dealing
with the health crisis after the lockdown was lifted.

A study [10] on hospitalization rates and characteristics of patients
hospitalized reported that the COVID-19 associated hospitalization rate
in the early period of the pandemic in the US was 4.6 per 100,000
population, and that the rate increased with age. While in Iran, a study
on the hospitalization and death rates among patients with multiple
sclerosis has discovered that the rate of hospitalization was 25% higher
than the general population [11]. School re-opening and hospitalization
in the US have not resulted in an increase in COVID-19 hospitalizations
and interestingly, the virus spread among school staff, but not among
students [12]. Furthermore, a study on sociodemographic, clinical and
laboratory factors on admission associated with COVID-19 mortality in
hospitalized patients was conducted to identify associations between
baseline characteristics on hospital admission and mortality in patients
with COVID-19 in Spain [13].

LSTM, which was introduced by [14] in 1997, is a Recurrent Neural
Network (RNN) based architecture that is widely used in natural lan-
guage processing and time series forecasting. LSTM is a neural network
version that addresses the issue in a traditional neural network on
reasoning from previous events. LSTM has networks with loop to pass
information from one step to the next one and support information to
persist. A common LSTM unit is composed of a cell, an input gate, an
output gate and a forget gate (Fig. 1).

Many researchers in AI promote their expertise in understanding
COVID-19 and finding solutions to reduce the worldwide threat to
living society. The focal study of the study’s interest is mostly predictive
analytics towards COVID-19 cases, infections, and spread. Deep learn-
ing seems to be the popular technique used and extensively explored
for prediction. Narinder S. et al. [15] in their study used deep learning
algorithms in predicting COVID-19 cases as well as understanding
the exponential behaviour in a number of cases. Several techniques
such as LSTM, Recurrent Neural Network (RNN), and Support Vector
Regression (SVR) were used.

Similarly, a comparative case study was carried in [16] out across
different countries to learn on the factors causing the COVID-19 besides
predicting the future timeline of the pandemic. The study demonstrated
forecasting of the confirmed and death cases due to COVID-19. A
few of LSTM versions were used in the work and it was found that
Convolutional LSTM performed best in the forecasting. At the point of
the study, it was forecasted that the number of COVID-19 confirmed
and death cases for both countries would increase. The author therefore
suggested some immediate actions for both countries to stop the disease
from widely spreading.

Meanwhile, a different focus of study by [17] predicts COVID-19
progression in countries. Y Li, W Jia et al. studied on lockdown enforce-
ment as the preventive measure in containing the epidemic COVID-19.
They propose a transfer learning approach together with the recurrent
neural network (RNN) to measure the significance of the predictor vari-
able (lockdown) in predicting the disease progression. Their promising
results show that the lockdown measure significantly improves the
prediction performance as compared to other predictive modelling
methods without lockdown. Their proposed method achieved the least
mean absolute percentage error (MAPE) score (0.005) amongst the
other three methods used in the work. The results directly suggest
that lockdown measures and extending the period of lockdown are still
2

necessary in containing COVID-19 from spreading.
A study carried out by Rohitash C. et al. [18] used univariate and
multivariate time series LSTM for forecasting the spread of COVID-
19 infection in India. They employed Bi-directional (BD-LSTM) and
Encoder–decoder (ED-LSTM) in their experiments to obtain long-term
forecasts (of the progression of COVID-19) for two months. The study
found that the univariate LSTM model provides the best performance of
forecasting. Their forecasting results suggest low likelihood of another
wave infection in October and November 2021.

There was a study on forecasting the dates for containing the
COVID-19 disease from spreading using LSTM [19]. The study con-
cerned about the economy and social impact in the countries, thus
having predicted dates in hand that the pandemic will subside helps the
government, policymakers, entrepreneurs and businesses make appro-
priate decisions to recover from the disease impact. The LSTM method
was validated on the New Zealand dataset between April and May
2021, and reported a correct prediction (dates) in containing COVID-
19. However, the predictive model was reported not performing well
in some other countries. The authors claimed that the predictive model
would be more reliable in those countries if restrictions were not lifted.
Having the poor modelling performance due to restrictions is a research
opportunity for this work.

In general, ML approach with the setting of COVID-19 pandemic
has been used to identify patients at high risk, their death rate, and
other abnormalities in order to understand the virus and further predict
the upcoming issue [20]. Recent studies indicate that elderly and
fragile people are affected by COVID-19, but it has also claimed many
young lives. [21] applies machine learning to identify and predict
people based on their vulnerability or resistance to possible COVID-19
infection using genetic variants from asymptomatic, mild, and severe
COVID-19 patients. The ML model produces useful findings that aid
stakeholders in their decision-making.

Using ML approach — LSTM, a study to forecast COVID-19 trans-
mission in Canada, reported that their model has resulted in RMSE
errors of 34.83 and 45.70 for short and long-term prediction [22].
Another study [23] has used various regressors in predicting new cases,
deaths, and recoveries of COVID-19 suggests that LSTM is the second
best method amongst others. [24] in their study of forecasting COVID-
19 infection in India with LSTM, Bi-directional LSTM (BD-LSTM), and
Encoder–Decoder LSTM (ED-LSTM) claims that LSTM model gives the
best performance for more cases compared to BD-LSTM and ED-LSTM.
Their best RMSE values on univariate and multivariate LSTM are 1403
and 4572 respectively.

Obtaining causal linkages in COVID-19 data and presenting them in
a way that makes them easy to use has also received a lot of attention.
Studies have implemented mathematical formalisms of Formal Concept
Analysis (FCA) to discover and represent causal relations of domain
issues [25,26]. The foundation of FCA is in its ability to construct a set
of logical implications from context-specific ideas by applying ordered
set theory and domain-specific knowledge lattices. Other study by [27]
has also used FCA to uncover relationships between vaccines and other
attributes that cause the outbreaks of COVID-19. This study proposes a
rational strategy to design vaccination schemes for curbing the COVID-
19 pandemic. Hence, the result is exclusively based upon the natural
settings of hierarchical ordered data and does not ‘learn’ nor leverage
it to predict future outcomes.

In another study [28], a deterministic approach has been developed
using an SEIR-mathematical modelling framework to explore the con-
cept of optimal and robust interventions across a range of different
non-pharmaceutical interventions (NPI) scenarios. An epidemiological
mathematical model has been proposed in [29] for capturing and
predicting the spread of COVID-19 with a simulation model which is
performed using the two-step generalized exponential time-differencing
method. In general, mathematical formalisms are applied to make
the model more explainable, as per described by [4], since domain
knowledge is an essential part of explainability. It is found that the

main interest from literature was to obtain higher predictive accuracy
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Fig. 1. LSTM components diagram.
to support future decision making. There is a need to identify and ex-
plain the contributing factors to high predictive accuracy. Furthermore,
getting the variables relationship and its magnitude in forecasting
COVID-19 would be able to comprehend the underlying reason of the
high predictive accuracy.

1.2. Motivation

This study is motivated by the urge to address the factors that
contribute to hospital admissions to help in making informed decisions
and to respond quickly in managing the pandemic. Additionally, this
work is also motivated by the availability of massive databases and
current breakthroughs in ML approaches. These successful models are
frequently used in a black box fashion, with no information provided
regarding how they arrive at their conclusions. Lack of transparency
feature can be a severe disadvantage, and due to this, the work aims
to demonstrate a more transparent and interpretable machine learning
model.

1.3. Objectives

The purpose of this study is to find contributing factors to hospital
admissions in the UK due to COVID-19 using the forecasting method
as well as to prove the model-based approach. And they explain the
black-box result of LSTM using Formal Concept Analysis (FCA).

2. Method

This research devised Long–Short Term Memory (LSTM) networks
to find associated and significant variables in predicting hospital admis-
sions in the UK. As depicted in Fig. 7, the cleaned dataset is converted
into time series before 63 datasets ( Table 5) are prepared for LSTM ex-
periments. Multivariate LSTM experiments are carried out in this work
which predict hospital admissions using combinations of six variables.
Whilst univariate experiments are run to set the error tolerance for
the prediction. To explain the model and results obtained by LSTM
experiments, Formal Concept Analysis (FCA) mathematical model is
employed to interpret associating rules to the domain knowledge,
further explanation in Section 2.4.

Empirical experiments are carried out using LSTM, while FCA is
used to support the LSTM results. The hypothesis underlying this
research is that the lower the error rate of LSTM prediction (of hospital
admissions) with the dataset and independent variables, the more
significant the variables in contributing to hospital admissions. This
approach which namely model-based was tested in a few research work
that cluster and classify significant and highly associate variables in
predicting Glaucoma disease based on the model performance [30,31].
3

Table 1
List of variables.

Variable code Variable name Variable type

DV New admissions Dependent variable

IV1 Total cases

Independent variable

IV2 New cases
IV3 Seasons
IV4 National lockdown
IV5 First dose
IV6 Second dose

Therefore, a few sets of experiments extensively investigated on the
combination of the dependent variables that could predict the target
variable with less root means square error (RMSE).

𝑅𝑀𝑆𝐸 =
√

1
𝑛
𝛴𝑛
𝑖=1

(

𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑖 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖
)2

Experiments in this work are divided into several phases to inves-
tigate and observe the empirical experiment results before making any
judgement towards the hypothesis. Each experiment was run 25 times
to obtain consistent results and statistical values. Later in the study,
the method of attribute exploration from FCA is used to explore the
relationship between the attributes and whether they will be able to
explain the LSTM result.

2.1. Dataset

The dataset of hospital admissions due to COVID-19 used in this
work was formed and cleaned from a few sources, including the UK
government and Institute for Government UK organizations. In total,
there were 428 records in the dataset used in the experiment. They (a
total of 7 variables) include new admissions as the predicted variable,
total cases, new cases, seasons, national lockdown, number of people
who have received the first dose vaccine, and second vaccine. The
variables are coded in Table 1. Figs. 2 and 3 show the daily number
of hospital admissions due to COVID-19 and new COVID-19 cases from
March 2020 to May 2021.

Since seasons variable is used in this study, the statistical values
of admissions and new cases are tabulated by seasons (Tables 2 and
3). From Figs. 4 and 5, it is clearly shown that high numbers for both
admissions and new cases were recorded during the winter season.

2.2. LSTM experiment

LSTM networks are parameter dependent, such as optimizers, num-
ber of epochs, number of batches, and data partitioning. As finding the
optimum parameters that best predict the dataset is out of the scope of
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Fig. 2. UK hospital admissions.

Fig. 3. UK COVID-19 new cases.

Table 2
Statistical values for admissions by seasons.

Season Max Min Average

Winter 4576 364 2180
Spring 3565 78 849
Summer 394 72 174
Autumn 2168 340 1316

Table 3
Statistical values for daily new cases by seasons.

Season Max Min Average

Winter 81523 4239 24291
Spring 6196 720 2878
Summer 5318 368 1416
Autumn 35833 5598 18833

the study, the following parameter values are set in the experiments:
Optimizer: Adam, Epoch: 100, Batch size: 35.

Six independent variables are used in this work. Furthermore, the
significant variables that highly contribute to the number of hospital
admissions in the UK are studied in this paper using LSTM. From
4

Fig. 4. Statistical values for admissions by seasons.

Fig. 5. Statistical values for daily new cases by seasons.

Table 4
Univariate LSTM results.

Mean Min Max Std. Dev.

56.06839 54.90627 57.73614 0.851513

these variables ( Table 1), there are 63 variable combinations of LSTM
multivariate experiments as tabulated in Table 5.

2.3. Initial observation

Upon dataset conversion into time series, the Augmented Dickey–
Fuller test was performed on the dataset to find the nature of the time
series (stationarity and

non-stationarity). The result of the test with a 0.05 significant level
found that the time series dataset in hand is non-stationarity. The 𝑝-
value is 0.266137 which is greater than 5% or 0.05 times the input data
has a unit root. This indicates that the time series of hospital admissions
dataset has trend and seasonality effects. Owing to this discovery, the
season variable is included in this investigation.

Preliminary experiments of LSTM have also been run for univariate
time series forecasting (with 25 samples) to test the method on the
dataset. Table 4 and Fig. 6 show the results of the univariate LSTM
experiments (the best RMSE value — iteration 18th). Based on the
initial experiment results, the Residual Mean Square Root (RMSE) tol-
erance is set at 55. Within the formal multivariate LSTM experiments,
only the variable combinations with RMSE values that are less than the
tolerance value are accepted.

2.4. Formal concept analysis

To explain the causality of the LSTM result earlier, Formal Concept
Analysis (FCA) is used. FCA was originally developed as a mathematical
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Fig. 6. LSTM univariate time series forecasting.

Table 5
Combination of variables.

Total variables Variables combinations Number of sets

6

1 6
2 15
3 20
4 15
5 6
6 1

Total experiments 63

paradigm for concept formalization and conceptual reasoning by [32].
FCA examines the relationships between a group of objects and their
properties as stated by [33]. The hierarchical property of concept
lattices in FCA not only describes the relationships between attributes,
but it also serves as a strong foundation for defining the structural
property of the application domain [34]. Generally, FCA produces two
sets of output. The first set of output is a list of all the interdependencies
or rules that exist between the attributes in the attribute set formal
concept – implications set (See Fig. 8). The second set of output is the
hierarchical relationships of objects that exist in the domain – concept
lattice (See Fig. 9). Followings are the list of definitions of FCA used in
this study:

Definition 2.1 (Formal Context).
A succession of three similar things (𝑋, 𝑌 , 𝐼) where objects 𝑋,

attributes 𝑌 and a binary relation 𝐼 between 𝑋 and 𝑌 , i.e., 𝐼 ⊆ 𝑋 × 𝑌 .
(𝑥, 𝑦) ∈ 𝐼 states that the object x has attribute y.

Definition 2.2 (Intent and Extent).
When (X, Y, I) is a context, X’ ⊆ 𝑋 and Y’ ⊆ 𝑌 , the Intent function

maps the objects to the attributes, and the Extent function maps the
attributes to objects:

Intent (X’) = y ∈ 𝑌 ′ | ∀𝑦 ∈ 𝑌 ′, (x,y) ∈ 𝑅
Extent (Y’) = x ∈ 𝑋′ | ∀𝑥 ∈ 𝑋′, (𝑥, 𝑦) ∈ 𝑅
For X’ ⊆ 𝑋, Intent (X’) is the attributes owned by all objects of X’,

and Extent(Y’) is the set of all objects that own the attributes Y’. These
two functions show a Galois connection and formal concepts for the
domain.

Definition 2.3 (Formal Concept).
A Formal Concept C in a context is a pair (X’, Y’) that satisfies Y’ =

Intent (X’) and X’ = Extent(Y’)
i.e., C is a Formal Concept ⇔ for X’ ∈ 𝐶𝑎𝑛𝑑𝑌 ′ ∈ 𝐶, Extent(Intent(X’))

= X’,
5

and symmetrically, Intent(Extent(Y’)) = Y’.

Definition 2.4 (Implications).
An implication A ⇒ 𝐵 holds in (X,Y,I) if and only if B ⊆ 𝐴’’, which

is equivalent to A’ ⊆ 𝐵’. The implications hold the set of all concept
intents

The attribute exploration method from FCA is conducted using data
of hospital admissions due to COVID-19. This exploration manages to
show the relationships between agents’ behaviour when dealing with
COVID-19 pandemic. The data consists of 137 objects (dates range from
January 11th, 2021–March 6th, 2021) and 5 attributes (New Cases,
National Lockdown, First Vaccine, Second Vaccine and Total Admission)
mapped as ‘X’ value into the cross table as formal context. ‘X’ is
mapped in if there is an increase on a day-to-day basis. In a cross-table,
associating an object to the attributes creates a concept hierarchy that
can be visualized using the concept lattice. Fig. 8 shows a cross-table
where formal contexts are mapped with ConExp software using the
hospital admission data. The cross-table describes the formal context
that existed as per the description in Definition 2.1. The little circles in
Fig. 9 represent the 11 concepts of the context, and the ascending paths
of line segments represent the subconcept–superconcept-relations. The
definition of concepts is explained in Definition 2.3.

2.5. Attribute exploration

For the purpose of this study, the formal context is mapped into
a table, named Cross-Table. (See Fig. 8) is conducted according to
the main aim of this study, which is to define the factors in hospital
admission during COVID-19. First, the data ranging from January 11th,
2021 to March 6th, 2021 are selected because that was the first time
when the vaccination programme began. Multiple-valued data is then
transformed into single-valued data. The progress of New Cases, First
Vaccine, Second Vaccine and Total Admission are compared on a day-
to-day basis. Whenever there is a decrease in New Cases and Total
Admission, the X value will be mapped accordingly. And at the same
time, when there is an increase in First Vaccine, Second Vaccine will
also be mapped accordingly. Here, the criteria for the sought rules
vary according to the aim of the study, and the basic knowledge of
the domain data is implicitly gained [35]. Other than that, the concept
lattice as depicted in Fig. 9 explains the hierarchical relationship of all
the established concepts in the domain.

3. Results

As discussed in the experiment and method, the LSTM experiment
was run for each of the variables’ combinations (with a sample of 25
runs). As the tolerance of RMSE is set to 55, there are 7 variables’
combinations with less than the tolerance value presented in the final
results ( Table 6).

Meanwhile, Table 3 shows the results (descending order) for vari-
able combinations with the least significant in predicting hospital
admissions (high values of RMSE). Despite not being in the lowest list,
all six variable combination experiments also have high RMSE values
of 463.306, 752.771, and 174.457 for mean, maximum, and minimum,
respectively, with a standard deviation of 137.981.

Fig. 10 shows the best result (from iteration 9) with the least RMSE
(Mean: 46.568). The amber and green lines from the figures are the pre-
dictions of admissions from training and test datasets, respectively. This
result indicates ‘‘national lockdown’’ is the most significant variable in
predicting hospital admissions. Whilst Fig. 11 exhibits the least best
(from iteration 10) LSTM experiment results (‘‘total cases’’ and ‘‘second
vaccine’’) (see Table 7).
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Fig. 7. High-level LSTM experiment.

Fig. 8. The formal context of the hospital admission.
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Fig. 9. The concept lattice of the hospital admission.
Table 6
List of variables combinations with least RMSE values.

Variables combination RMSE value

Mean Maximum Minimum Standard deviation

national lockdown 46.568 49.432 44.732 1.721

new cases 46.918 49.470 44.691 1.828

first vaccine 48.934 59.408 42.651 4.554

first vaccine
new cases

49.332 58.869 43.121 4.458

new cases
national lockdown

50.183 55.214 46.189 2.226

national lockdown
first vaccine

53.398 67.625 45.713 5.261

first vaccine
national lockdown
new cases

54.983 70.512 45.623 6.938
Table 7
List of variables combinations with high RMSE values.

Variables combination RMSE value

Mean Maximum Minimum Standard deviation

total cases
second vaccine

1215.418 1410.922 1058.166 102.854

national lockdown
second vaccine
new cases

1211.848 1403.473 935.851 123.488

second vaccine
national lockdown

925.632 1127.558 729.070 106.644

second vaccine 873.184 1135.473 640.760 124.075

second vaccine
total cases
national lockdown
first vaccine

700.847 1002.166 438.400 135.524
3.1. Association rules

From the conceptual exploration approach conducted, the depen-
dencies between the attributes, i.e., attribute implications or associa-
tion rules, are generated using ConExp. A total of 9 rules are generated
to show the relationships between the attributes that exist from the
data.
7

• Rule 1 (100%)
Decreases in New Cases, imposes of National Lockdown, increases
Second Vaccine implies increases in First Vaccine

• Rule 2 (100%)
Imposes in National Lockdown and decreases in Total Admission
implies increases in First Vaccine

• Rule 3 (95%)
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Fig. 10. LSTM multivariate time series forecasting with the best RMSE.

Fig. 11. LSTM multivariate time series forecasting with the highest RMSE.

Imposes of National Lockdown and increases in Second Vaccine
implies increases in First Vaccine

• Rule 4 (95%)
Increases in New Cases and imposes of National Lockdown implies
increases in First Vaccine

• Rule 5 (88%)
Increases in New Cases, increases in First Vaccine, decreases in
Total Admission implies increases in Second Vaccine

• Rule 6 (86%)
Decreases in New Cases, decreases in Total Admission implies
increases in Second Vaccine

• Rule 7 (82%)
Decreases in New Cases, increases in Second Vaccine implies
increases in First Vaccine

• Rule 8 (81%)
Decreases in New Cases implies increases in First Vaccine

• Rule 9 (80%)
Decreases in New Cases, imposes of National Lockdown, increases
in First Vaccine, decreases in Total Admission implies increases in
Second Vaccine
8

4. Discussion

The first vaccine variable coincides with [6,8] where vaccination
programme in the UK reduce hospital admissions, and a single dose vac-
cine is effective in preventing hospital admissions. It is also discovered
that predicting hospital admissions using LSTM is best with a single
independent variable (top three from the best results). Whilst pairing
these three variables in LSTM prediction also presents promising results
(below than 55 RMSE). Combining the three variables, however, is
still within the defined tolerance of RMSE. Surprisingly, the season
variable is not listed as one of the variables for LSTM prediction.
Nevertheless, it is found that seasons and the first vaccine are the best
pairing in the LSTM experiment, with RMSE values of 65.736, 76.656,
and 52.631 for mean, maximum, and minimum, respectively (standard
deviation: 5.769). On the contrary, the second vaccine is the least
significant variable in the LSTM prediction as this variable’s presence
in the bottom 5 variable combinations is quite significant.

Through Formal Concept Analysis (FCA) approach, from 9 asso-
ciation rules generated, 2 rules with clear implications between the
attributes in the formal context (with confidence of 100%) are selected,
which are Rule 1 and Rule 2. The implication rules depict factors that
contributed to new cases and hospital admissions in the UK between
January 11th, 2021–March 6th, 2021 as vaccine rollout progresses and
lockdown is imposed by the government. Rule 1 implies that decreases
in New Cases, when Lockdown imposes and increases in Second Vaccine
rollout there is link to First Vaccine rollout. and Rule 2 implies that
decreases in New Cases and government imposing textitLockdown link
to increases in First Vaccine rollout. From both rules, it has been
deduced that Lockdown and First Vaccine have a strong implication in
the number of cases and total admissions in UK hospitals.

The target variables from the LSTM result generated — National
Lockdown, New Cases and First Vaccine and the rules generated by
FCA — National Lockdown, New Cases, First Vaccine and Second Vaccine
have a strong correlation with the total admission number due to
COVID-19 in hospitals in the UK. As has been mentioned earlier, LSTM
has demonstrated factors affecting hospital admission due to COVID-
19 in time-series manner, whereas the natural setting of hierarchical
concept of FCA has pointed out its causal relations. It is important to
emphasize that using FCA to explain LSTM is a preliminary approach
to an understandable and explainable AI.

5. Conclusion

From the study, the utility of methods explained, both LSTM and
FCA are feasible in finding association variables and generating rules
or hypotheses in the data. LSTM, a deep learning approach, has been
employed in this paper to forecast the factors impacting admission due
to COVID-19 and the FCA method of attribute exploration to develop
rules or relationships between the attributes. The novelty aspect of this
study is shown through the implementation of FCA to support the LSTM
results, where the results from FCA have outlined domain knowledge
for the explainability of the model. It has been discovered that this
study is capable of evaluating data and explaining the model in order
to ensure that the outcomes are understandable and interpretable. The
findings and discussions may provide new insights that may result in
the development of new research aimed at controlling the pandemic.

For future works, based on the promising RMSE values in the LSTM
prediction and FCA discoveries, a number of research opportunities can
be considered. The LSTM parameter values can be further explored to
optimize the prediction. With the optimized prediction, a new set of
significant variables or patterns could be found in order to see how
seasons in the UK impact hospitalizations. In addition to the seasons
variable, another empirical experiment can be carried out on a dataset
that stretches a longer period of observations (2 years period that has
covered vaccines and seasons). It should be noted that the experiments
were run on a dataset on which vaccines and seasons were observed
for less than six months. Another interesting future work is testing the

approach on datasets from other countries for the same target variable.
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