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Abstract: Over the past three decades, more than 8000 pedestrians have been killed in Australia due
to vehicular crashes. There is a general assumption that pedestrians are often the most vulnerable
to crashes. Sustainable transportation goals are at odds with the high risk of pedestrian fatalities
and injuries in car crashes. It is imperative that the reasons for pedestrian injuries be identified if
we are to improve the safety of this group of road users who are particularly susceptible. These
results were obtained mostly through the use of well-established statistical approaches. A lack of
flexibility in managing outliers, incomplete, or inconsistent data, as well as rigid pre-assumptions,
have been criticized in these models. This study employed three well-known machine learning
models to predict road-crash-related pedestrian fatalities (RCPF). These models included support
vector machines (SVM), ensemble decision trees (EDT), and k-nearest neighbors (KNN). These models
were hybridized with a Bayesian optimization (BO) algorithm to find the optimum values of their
hyperparameters, which are extremely important to accurately predict the RCPF. The findings of this
study show that all the three models’ performance was improved using the BO. The KNN model had
the highest improvement in accuracy (+11%) after the BO was applied to it. However, the ultimate
accuracy of the SVM and EDT models was higher than that of the KNN model. This study establishes
the framework for employing optimized machine learning techniques to reduce pedestrian fatalities
in traffic accidents.

Keywords: road-crash-related pedestrian fatalities; Bayesian optimization algorithm; hyperparameters;
sustainable safety of pedestrians

1. Introduction

Undoubtedly, pedestrians are among the most vulnerable of all road users. Pedestrians
are equally essential to the sustainable development of transportation systems. They are,
however, prone to traffic accidents, which clashes with the goal of sustainable mobility.
Pedestrian injuries in traffic accidents have significant socioeconomic impacts. This is
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especially significant in light of the continuous efforts made by developed economies to
improve road safety. Pedestrians account for the vast majority of all road users, owing to
the fact that almost anybody may be one at any moment. Individuals walk for a number
of purposes, including leisure, travelling to work or school, or visiting local businesses,
as well as connecting to other forms of transport. A vulnerable road user category is
specified for pedestrians in the National Road Safety Strategy. Contrary to other road users,
they receive extremely little protection in the event of a crash [1]. There have been over
50,000 fatalities on Australian roads in the previous 30 years; 15.6% of those deaths are
pedestrians, despite the fact that pedestrians travel less kilometers than any other kind
of road user [2]. Over the previous three decades, the number of pedestrian deaths has
been reduced by 57%. Pedestrians make up a big part of the deaths in Australian crashes
involving heavy vehicles and buses. At least 30 percent of those that were killed in bus
crashes are pedestrians. A total of 25% of all truck fatalities include pedestrians, motorcycle
riders, and pedal cyclists [3].

A decrease in pedestrian deaths from road accidents has not deterred scholars from
looking for new ways to learn more about the variables that influence crash possibility in
order to better predict pedestrian-involved crashes and implement policies and preven-
tion measures to reduce the number of road-crash-related pedestrian fatalities (RCPF) in
Australia [4–7].

Research on RCPF has been plagued by a number of severe data problems. Insufficient
specifications may lead to incorrect predictions of pedestrian collision probabilities and
inferences regarding the causes of accidents. A number of problems, such as inaccuracies in
the crash location and time, difficulties in data linkage (such as with traffic data), severity
misclassification, inconsistencies and imperfections in the demographic information of
those affected by the event, and the incorrect discovery of accident contributing factors,
are among these [8]. The variability inherent in pedestrian collision data, which derives
from unobservable features that cops do not track and cannot be acquired from incident
reports, makes it difficult to identify and examine the causes of pedestrian crash fatalities.
Parameter estimation could be distorted due to this variability, resulting in potentially
erroneous results [9–11].

Conventional, widely used discrete choice modeling approaches were used to look
at the crash data. These included mixed logit models, multinomial logit models, ordered
logit/probit models, and partial proportional odds logit models. However, most of the
methods listed above depend largely on presumptions. Without prior assumptions, ma-
chine learning (ML) approaches may efficiently examine noisy data, extreme values, and
incomplete information without the need for prior knowledge of the inputs [12–18]. Data-
driven approaches such as ML are significant examples of how accident-related data
processing and predictions may be made more efficient and precise. Previous studies used
a variety of ML algorithms to predict the severity and likelihood of pedestrian-involved
collisions and found that these approaches are quite versatile, and they can surpass tra-
ditional methods in terms of accuracy. Therefore, three ML-based techniques optimized
using the Bayesian optimization (BO) algorithm were chosen for this research to examine
data linked with road-crash-related pedestrian fatalities (RCPF).

The use of support vector machines (SVM), ensemble decision trees (EDT), and k-
nearest neighbours (KNN) in computer science is on the rise, thanks to recent developments.
These models were able to accurately forecast the outcomes of nonlinear and difficult
situations, indicating their relevance in tackling these issues. However, the determination
of hyperparameters for SVM, EDT, and KNN is frequently complicated and has an impact
on the model’s accuracy and generalizability [13,19]. For SVM, the kernel function, box
constraint level (C) and multiclass method are the most important hyperparameters; for
EDT, the ensemble method, maximum number of splits, number of learners, and learning
rate; for KNN, the number of neighbors (K), distance metric, and distance weight are the
most important hyperparameters. Hyperparameters in software and tools are often set
to default values, resulting in suboptimal results across a wide range of research areas.
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Random, grid, or evolutionary algorithms have been employed in several investigations
to find the best hyperparameters for a given situation. However, there are apparent
limitations to these optimization approaches when it comes to assessing RCPF. Because
both random and grid searches are blind, they take a long time to complete. Genetic
algorithms (GAs) have a tendency to fall into local optimality, which has a negative impact
on overall effectiveness.

The main aim of this paper is to see how effective the BO algorithm is at optimizing
the ML models for the prediction of RCPF. To reach the goal of the study, three ML models,
including SVM, EDT, and KNN, are optimized with the BO algorithm and tested using
information about pedestrians who died in road accidents in Australia. Several performance
metrics were used to compare the models in this research.

The rest of this paper is designed as follows. The next section provides a comprehen-
sive literature review on road-crash-related pedestrian fatalities (RCPF). Section 3 presents a
summary of the data collection and preparations. In Section 4, the design of the research is pro-
vided. Input selection and model development procedures are presented in Sections 5 and 6.
The models’ performance is presented in Section 7. A summary of this research is presented
in Section 8.

2. Literature Review

In the vast number of pedestrian-involved collision prediction investigations, con-
ventional statistical approaches have been used. The ordered probit model [20–24], the
binary logit model [25], and the multinomial logit model (MNL) [23,26–30] were among
the models examined. It was commonly accepted that MNL could be used to examine
pedestrian accidents, but critics pointed out that it depends on the premise that inde-
pendent factors have the same effect in all cases, which might be challenged if there are
unobserved data heterogeneities to consider. In part, this is because the data on traffic
accidents is insufficient, which implies that the effects may vary in various situations.
Consequently, the mixed logit model was used to avoid the constraint enforced by the
independence of irrelevant alternatives (IIA) property by dispersing the parameters across
different observations [26,30–33]. Additional models, such as partial proportional odds
(PPO), were used to study collisions involving pedestrians in addition to the mixed logit
model, which solves the shortcomings of the MNL model [34–38]. When modelling the
severity of pedestrian collision injuries, the PPO model’s parameter estimations might have
varying impacts on a response variable. Even while traditional statistical approaches are
commonly applied to forecast pedestrian-related fatalities, their usefulness and precision
may make them obsolete. Regression-based methods, on the other hand, assume linear or
nonlinear relationships between input variables and the response variable, which has a
number of problems. Models that do not meet these conditions might lead to inaccurate
results [39]. It is becoming more common to employ machine learning (ML) to tackle
transportation-related problems as the result of technological advances and as the quantity
of data has grown. Non-parametric ML approaches, in contrast to classic statistical tech-
niques, are less constrained by presumptions about the relationships between fatal collision
results and significant contributors [40].

There are a number of popular ML algorithms for analyzing accident data, including
neural network (NN), random forest (RF), support vector machine (SVM), decision tree (DT),
and gradient boosting (GB). Table 1 provides a list of research that used ML approaches
to analyse pedestrian collision data. Identifying contributory factors in road collisions
is typically a multi- or binary-class issue in road safety studies. DT-based models, such
as classification and regression trees (CART), XGBoost, and random forest (RF), were the
most commonly employed ML approaches for pedestrian accident data. On the other
hand, strong models such as SVM and KNN were seldom utilized to analyse collision
data including pedestrians, e.g., [41]. The models mentioned above have a number of
hyperparameters that should be tuned to yield a more accurate result. To the best of the
authors’ knowledge, so far, no study has employed an optimization algorithm to find the
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best value for the SVM, KNN, and EDT hyperparameters models to predict the RCPF.
The advantages of ML models over conventional statistical approaches, in addition to
the improvements made by hybridizing the Bayesian optimization algorithm into SVM,
KNN, and EDT, it is important to assess whether the optimized models can be employed to
forecast RCPF well and whether they tackle the standard form of the ML methods.

Table 1. Some investigations have used ML approaches to predict pedestrian accidents.

Study Study Objective ML Technique Used

Das, et al. [42] Use ML techniques to categorize crash types based
on unstructured textual inputs.

random forest, support vector machines,
extreme gradient boosting

Ding, et al. [43] In order to provide an alternative viewpoint on the
consequences of pedestrian accidents. multiple additive Poisson regression trees

Guo, et al. [44]
For the purpose of emulating the difficulty in

determining severity levels in earlier pedestrian
traffic accidents.

extreme gradient boosting

Mokhtarimousavi [45] The goal is to estimate the extent of injury to
pedestrians in an accident.

support vector machines,
multinomial logit model

Pour, et al. [46]
To find out whether the severity of

vehicle–pedestrian accidents is affected by factors
such as time, location, and individual characteristics.

decision tree, kernel density estimation
(no report)

Rahimi, et al. [47] To find trends in pedestrian/bike fatalities
caused by large trucks. random forest, decision tree

Saha and Dumbaugh [48]
To examine the correlations between built

environment factors and pedestrian accident
rates at the census-block-group level.

gradient boosting, decision tree,
generalized additive model

Tao, et al. [49]
To assess the feasibility of the use of Bayesian neural

networks to predict pedestrian related crashes
in Australia.

Bayesian neural networks

Zhu [41] To investigate the factors that contribute to the
intensity of pedestrian–vehicle incidents at crossings.

classification and regression trees, gradient
boosting, random forest, artificial neural

network, support vector machines

3. Data Collection and Preparation

The data for this study came from the Australian Road Deaths Database (ARDD) [2].
The police in Australia report monthly to state and local road safety organizations on
the number of people killed or seriously injured in car accidents around the country. In
Australia, the ARDD gathers data on the demographics and circumstances of the deaths of
those killed in automobile accidents. It is called a road death when a person dies within
30 days after an automobile collision due to the effects of the injuries they experienced. If
a pedestrian is killed in a crash, it is considered a “pedestrian crash” for the purposes of
this database. A total of 13 of the ARDD’s 24 columns/variables are useful in forecasting
the likelihood of a pedestrian collision. In light of this, it is important to note that the
data used in this research were gathered between 1989 and 2021. In this dataset, there are
52,843 records, and 1200 of these records were utilized to predict pedestrian deaths. The
factors employed in this study are listed in Table 2. The RCPF’s fundamental information
is included in this dataset. Nevertheless, these factors enable us to accomplish the purpose
of this work, which is to hybridise the BO algorithm with several ML models, such as SVM,
KNN, and EDT, in order to forecast pedestrian accident data. Using datasets with a greater
number of factors, future research may expand on this topic.
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Table 2. List of variables.

Variable and Sub-Variable Description Value

Age Person’s age 1–101
Gender Person’s sex (1) Male, (2) female
Month The month in which the crash occurred 1–12

Day of week When the crash occurred: this value indicates
whether it was a weekday or a weekend. (0) Weekend, (1) weekday

Time of day When the crash occurred: this value indicates
whether it was during the day or at nighttime. (0) Night, (1) day

Christmas Period Indicates whether the accident occurred during
the 12-day period beginning on 23 December. (0) Yes, (1) no

Easter Period If the accident occurred within 5 days of Good
Friday, it is indicated. (0) Yes, (1) no

Speed limit The posted speed limit in the area where the
accident occurred. 10–130 km

National Road Type

(0) Access road, (2) pedestrian thoroughfare,
(3) undetermined, (4) access road, (5) local

road, (6) national or state highway, (7) arterial
road, (8) collector road, (9) sub-arterial road

Crash Type Number of cars involved (0) Multiple, (1) single

Bus involvement This clearly indicates that a bus was a factor in
the collision. (1) Yes, (2) no

Heavy Rigid Truck Involvement Reveals that the crash was caused by a large
rigid truck. (0) Yes, (2) no

Road User * Road user kind of fatality. (0) Non-pedestrian, (1) pedestrian

* Target variable.

It is important to note that input variables were converted and normalized as described
in the following:

• The arrangement of nominal variables was altered to place the smallest class first and
the biggest class last.

• For null values in continuous variables, the mean was replaced.
• For null values in nominal variables, the mode was replaced.
• For null values in ordinal variables, the median was replaced.
• The independent variable was originally nominal. The categories of this variable were

driver, motorcycle pillion passenger, motorcycle rider, passenger, pedal cyclist, and
pedestrian. This variable was then converted into binary. The new variable includes
pedestrian fatalities and non-pedestrian fatalities.

4. Study Design

In this study, the BO algorithm is applied to three well-known ML techniques, in-
cluding SVM, EDT, and KNN, to predict the RCPF. As previously mentioned, the data
for the development of this study were derived from the ARDD. A total of 1200 samples
were randomly chosen to develop these models. A total of 80% of the data was randomly
used to train the models, and 20% of the remaining data was used to test the models. In
addition, a 5-fold cross validation technique was used to train the models and prevent
overfitting. The distribution of variables in the training and testing datasets is shown in
Figures 1 and 2. The models developed in this study were evaluated using the models’
accuracy, ROC curves, and AUC. Figure 3 shows the flowchart of this study.
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It is important to note that the imbalance ratio of the training and testing datasets is
5.15 and 6.14 (major class/minor class). Most ML techniques have difficulty predicting
the target variable of an imbalanced dataset. A dataset with a larger imbalance ratio is
normally assumed to be more difficult to forecast [50]. Thus, if a new model outperforms
other current models on this dataset, the superiority of the new model may be shown.
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5. Input Selection

The cornerstone of pedestrian safety research is the ability to anticipate pedestrian
deaths in certain situations. To effectively anticipate the RCPF and prevent injuries and
fatalities in road incidents, numerous variables influencing the RCPF must be extensively
taken into account. It is acknowledged that all the input factors shown in Table 2 help
with the forecasting of RCPF. However, the relevance of every input parameter is uncertain
and requires additional investigation. The machine learning models also work well with a
smaller group of input variables.

The mutual information test method [51] was used to figure out the importance of the
inputs to RCPF in order to study and evaluate how different factors affect RCPF. Mutual
information (MI) is a screening method that can be utilized to find out how each attribute is
connected to the target variable. It assesses the interconnectedness of variables and reveals
the magnitude of the relationship between them. The information gained may be used to
estimate the MI’s magnitude between two variables:

Gain(M, N) = Ent(M)
P

∑
p−1

|Mp|
|M| Ent(Mp) (1)
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where all potential values for N are represented by the number p, and Mp denotes the set of
M that exists when N has the value np. The stronger the relationship between N and M,
the greater the value of Gain(M, N).

It has now been found that RCPF can be predicted by an input variable that has a
high mutual information value. According to the findings, as depicted in Figure 4, factors
such as the Christmas and Easter seasons, heavy rigid truck involvement, national road
type, and gender had no effect on the ability to forecast RCPF. Rather, the time of day, bus
involvement, day of the week, age, crash type, and speed limit all had non-zero gain scores.
RCPF may be best predicted by the speed limit. All variables with a non-zero gain score are
included in the SVM, KNN, and ensemble DT models, as well as their optimized variations.
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6. Models’ Development
6.1. Development of the RCPF Prediction Models

Using the dataset collected from ARDD, the RCPF predictive models were developed,
and their performance was assessed utilizing MATLAB. The models were trained using
three ML-based techniques: SVM, KNN, and ensemble DT. These models were chosen since
previous research studies had shown their reliability and effectiveness in predicting the
RCPF and crash analysis. For example, Das, Le, and Dai [42] employed EDT for categorizing
crash types based on unstructured textual inputs. Mokhtarimousavi [45] employed SVM
to predict the extent of injury to pedestrians in an accident. Additionally, Wali et al. [52]
utilized KNN to analyze the crash severity of vulnerable road users. However, studies on
optimizing these models using the BO algorithm to forecast road-crash-related pedestrian
fatalities are still rare. These models’ optimized variations have been effectively employed
in different study disciplines, e.g., [53–56]. Thus, by investigating the effectiveness of
optimized versions of SVM, KNN, and ensemble DT models in predicting pedestrian
deaths in traffic accidents, this work adds to the body of knowledge.

Six of the non-zero input variables identified by the gain score were used to develop
these models. For the development of these models, eighty percent of the data was utilized
for training and twenty percent for testing. In addition, a 5-fold cross-validation approach
was used to train the data in order to avoid overfitting. The models’ performances were
evaluated using the accuracy, ROC curve, and AUC. It should also be mentioned that the
search range for the optimal parameters’ values was the MATLAB toolbox’s default values,
since such parameter values are often effective on many classification and prediction tasks
in different research domains, e.g., [57,58].
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6.2. Tree-Ensemble-Based Prediction Model

The ensemble DT technique is an ML approach that uses several DTs derived from
the provided data. Various strategies, including bagging and boosting, are viable for
assembling DTs (Figure 5). Bagging arbitrarily selects training dataset data to form many
sets, each of which is employed to train its own DTs. Early learners are used to successively
train a number of weak learners in the boosting strategy by fitting basic models to data. For
further analysis, the weights are increased to account for any errors. Using the average and
projected values of many groups of trained trees reduces overfitting and reduces forecasting
variance more than using a single DT. For the tree ensemble regression, the final predicted
value is found by taking the average of each DT’s prediction (called “bagging”) or the
predicted value of a strong learner made up of many weak learners (called “boosting”).
Each DT’s structure is modeled using hyperparameters such as the ensemble method,
maximum number of splits, and number of learners, and the learners can be modified by
adjusting hyperparameters such as the learning rate. BO was performed for the EDT-based
RCPF prediction model for five hyperparameters: the ensemble method, maximum number
of splits, number of learners, and learning rate (Table 3). An ensemble of DT with boosting
was the most efficient technique to obtain an accurate RCPF outcome from the provided
learning data. The best number of decision splits in an EDT structure was six. The optimal
performance of the EDT model was obtained by using a learning rate of 0.209%.
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Figure 5. The schematic system of the ensemble DT models.

Table 3. Hyperparameters for the EDT’s optimization.

Hyperparameter Description Search Range Optimized Value

Ensemble method The regressor’s
ensemble architecture

Bag, GentleBoost,
LogitBoost, AdaBoost,

RUSBoost
AdaBoost

Maximum number
of splits

Number of possible
splits in a decision 1–799 6

Number of learners Number of base learners 10–500 22

Learning rate Learning rate
for reduction 0.001–1 0.209

6.3. Support Vector Machines (SVM)

In SVM, margin and support vectors are used to divide the data into linear and
nonlinear structures in order to produce an effective decision boundary. The margin
reflects the spacing between the boundary and the data; the SVM divides the data into
several groups based on the margin with the greatest value (Figure 6). With respect
to other machine learning approaches, SVM is quicker and simpler. Developers may
pick kernel functions by intuition and establish ideal boundary conditions by changing
the hyperparameters, making it easier for them to implement their ideas. Using data
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distribution, this hyperparameter defines the extent of the margin and kernel that constitute
the border shape.
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In order to enhance the effectiveness of the SVM prediction model, Bayesian optimiza-
tion was carried out on three hyperparameters: kernel function, box constraint level, and
multiclass method. An ideal arrangement of hyperparameters is indicated in Table 4. Cubic
and 0.0152 were selected as the optimal kernel function and box constraints (C) for the
purpose of learning the distributed feature of the data.

Table 4. SVM optimization hyperparameters.

Hyperparameter Description Search Range Optimized Value

Kernel function The kind of kernel function
utilized in the conversion.

Gaussian, linear,
quadratic, cubic Cubic

Box constraint
level (C)

Maximize the margin at the
expense of as little training
error as possible.

0.001–1000 0.0152

Multiclass method

Developing binary classifiers
that discriminate between
one label and the rest
(one-versus-all) or between
every pair of classifications
(one-versus-one).

One-vs-all,
one-vs-one One-vs.-all

6.4. K-Nearest Neighboyrs (KNN)

One of the most often used classification algorithms is KNN, which use a similarity
metric to classify new data or instances (Figure 7). Most often, it is employed to classify data
points based on the classification of their neighbours. The number of closest neighbours
to include in a majority vote is expressed as a parameter, K, in KNN. K is based on the
similarity of the features of each object. In order to improve accuracy, it is necessary to
choose the correct value of K, which is termed parameter tuning. Smaller values for K are
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more susceptible to errors and will have a greater impact on the final outcome. Smoother
decision boundaries are associated with higher K values, and they also entail reduced
variance but more bias. This is also a time-consuming process. Besides K, there are two
other KNN hyperparameters that are required to be optimized, including the distance
metric and distance weight. The optimized values of these hyperparameters are shown in
Table 5.
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Table 5. KNN optimization hyperparameters.

Hyperparameter Description Search Range Optimized Value

Number of
neighbours (K)

The number of nearest
neighbors to include in
the majority of the
voting process.

1–400 22

Distance metric

In computing the degree
of similarity between two
sets of data, a distance
metric is used.

City block, Chebyshev,
Correlation, Cosine,

Euclidean, Hamming,
Jaccard, Mahalanobis,
Minkowski, Spearman

Spearman

Distance weight

To classify an object, it
sets the maximum
number of neighbors that
must be surveyed.

Equal, inverse,
squared inverse Equal

7. Comparison of Models Developed

The SVM, KNN, and EDT models were iterated 100 times. Figure 8 shows the progress
of the SVM, KNN, and EDT hyperparameter optimizations, including the optimal point.
For SVM, KNN, and EDT models, the scores for the minimum classification errors observed
of 0.11625, 0.12375, and 0.1125 were observed at 63, 80, and 97 iterations, respectively. Thus,
the SVM model converged earlier than other models as a result of optimization by the
BO algorithm.

The models developed in this study were compared using several performance criteria.
Table 6 shows the accuracy of the standard forms of the models and their optimized
variants. Additionally, this table provides information on how the BO method affected the
accuracy of the DT, SVM, and KNN models. As can be seen, the SVM model shows the
most improvement during the training phase (5.4%), followed by the KNN model (5.2%).
However, during the testing phase, the KNN model shows the most improvement (11%).
In addition, the training times of the eight models developed in this study are compared
in Figure 9. As can be seen, the optimized variant of SVM requires the highest time to be
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built (785.43 s), while the optimized KNN model has the lowest training time among the
optimized models (204.36).
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Table 6. The accuracy of the models developed in the study and their changes due to the optimiza-
tion process.

Standard Models Optimized Models Changes (%)

A
cc

ur
ac

y
(%

)

Boosted
DT

Bagged
DT SVM KNN DT SVM KNN DT SVM KNN

Train 87 87.6 83 82.4 88.4 88.4 87.6 +0.8/+1.4 +5.4 +5.2
Test 86.5 86.5 83 73.5 87 86 84.5 +0.5 +3 +11
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The models were also compared with respect to their ROC curve and AUC values
from the testing phase (Figure 10). All optimized models achieved an AUC greater than
0.7, which is assumed to be a desirable value. In addition, it could be seen that the BO
algorithm improved the AUC of all standard models. The BO improved the performance
of the SVM, KNN, and boosted DT/bagged DT by 0.05, 0.16, and 0.06, respectively. The
outcomes of this analysis along with the achieved accuracies show that despite the fact
that the optimized SVM and optimized EDT models achieved a higher accuracy than the
optimized KNN model, the BO algorithm could improve the performance of the standard
KNN model more substantially than the two other models.

The testing performance of the optimized variants of the SVM, EDT, and KNN models
was also compared with that of some of the well-known machine learning algorithms,
including artificial neural networks (ANNs), random forest, and extreme gradient boosting
trees (XGBT). The outcome of this comparison is shown in Figure 11. As can be seen, the
optimized SVM, KNN, and EDT models outperformed the ANN, RF, and XGBT models for
predicting road-crash-related pedestrian fatalities.

An important aspect of the BO algorithm’s performance is its ability to utilize past
iterations’ data to determine the best future parameter option [59,60]. This might be the
major reason why the BO could improve the performance of the SVM, KNN, and EDT
algorithms to predict the RCPF. BO keeps track of the results of previous assessments to
make a probabilistic model that turns hyperparameters into objective function scores. This
technique constantly updates the surrogate probability model after each assessment of
the goal function in order to become “less incorrect” with more evidence. Indeed, BO is
effective since it makes informed decisions about the subsequent hyperparameters. The
primary concept behind BO is to devote a little more effort to picking the subsequent
hyperparameters to reduce the number of calls to the objective function. In reality, the time
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devoted to choosing the subsequent hyperparameters is negligible in comparison to the
time invested in the objective function.
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In addition, the fact that age was found to be an important predictor of RCPF in this
study backs up the results of previous studies, e.g., [61–63] that showed how important this
factor is in pedestrian crashes. The importance of other important factors of this present
study, such as the time of day, bus involvement, day of the week, age, crash type, and speed
limit, also have been confirmed in the previous studies [64–66].
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8. Conclusions

This work developed and optimized three ML-based models (SVM, KNN, and EDT)
to forecast the RCPF by determining the ideal combination of hyperparameters for each
ML approach. Analyses of the models’ performance in making predictions were conducted.
The dataset used in this study was derived from ARDD. The models that were made were
optimized to improve their performance equally, and statistical measures were used to
figure out how accurate their predictions were. Before developing these models, this study
selected the most relevant inputs using the Gain score. Six input variables were selected to
develop the three models and their optimized variants. The outcomes may be summed up
as follows:

• With regards to the iteration process, the SVM model achieved the minimum classifi-
cation error earlier than the other two models. The SVM was followed by the KNN
and EDT, respectively.

• In both training and testing phases, the classification accuracy of all standard SVM,
KNN, and EDT models was improved using the BO algorithm. For training phases, the
SVM model’s accuracy improved more substantially (+5.4%) than the two other models.
In the testing phase, the KNN model showed the greatest improvement (+11%).

• With regards to testing the AUC after the optimization process, the optimized KNN
model had the greatest improvement (+0.16) compared to the two other models. The
KNN model was followed by the SVM (0.05) and EDT (0.06), respectively.

• SVM and EDT models required the higher training time than the KNN model. How-
ever, this higher training time resulted in higher accuracy for these two models. As
a result, we can overlook the longer training times of SVM and EDT models when
compared to KNN models in exchange for their higher accuracy and performance.

This study employed the default search range of MATLAB. The authors believe these
search ranges are sufficient. However, we suggest future studies employ a wider search
range using the same algorithms and dataset. The findings of this paper show that the BO
algorithm effectively improves the performance of the standard ML models to predict the
RCPF. The application of BO to the KNN model yielded a greater improvement. However,
the SVM and EDT models are stronger models compared to the KNN model, and it is
recommended that future studies use these two models first for predicting the RCPF, as
they can produce more accurate results than the KNN model. In addition, in the future, the
BO algorithm can be used with other ML models to predict the RCPF, and the results can
be shared so that all ML models can be compared more thoroughly.
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