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Abstract: Human head attribute classification (HHAC) is a fundamental and substantial research domain in pattern 

recognition and computer vision. However, recent HHAC networks do not consider the correlation of common 

characteristics among the attributes over different regions of the human head. To address the above problem, this study 

proposes a multi-output convolutional neural network to jointly learn the features of human head attributes with 

common characteristics. The proposed network contains two convolutional blocks and five output layers, where each 

output layer learns to predict a specific group of human head attributes. In order to properly learn the correlation among 

the human head attributes, this study divides these attributes into five groups: hair, face, style, accessories, and 

appearance. Extensive experiments showed that the proposed network obtained an average classification accuracy of 

95.29% and 97.93% on the challenging CelebA and LFWA datasets, respectively. Thus, the proposed network is 

approximately 2% and 10% superior to the closest competitor (i.e., PS-MCNN) on both datasets. In addition, the 

proposed network achieved higher classification accuracy compared to the existing networks almost in all human head 

attributes. That findings demonstrate the effectiveness of the proposed network and the attributes grouping method in 

learning the correlations among human head attributes correctly. 

Keywords: Deep learning, Convolutional neural network, Multi-label learning, Human head attribute classification, 

Attribute correlation. 

 

 

1. Introduction 

Human Head Attribute Classification (HHAC) is 

a fundamental and substantial research domain in 

pattern recognition and computer vision. The main 

goal of HHAC is to predict the human head attributes 

of a given image, including gender, age group, 

smiling, attraction, etc.  During recent years, HHAC 

has attracted significant attention due to its 

widespread applications, including object recognition 

[1, 2], face recognition [3, 4], face verification [5, 6], 

face retrieval [7], image retrieval [8], image search 

[9]and recommendation systems [10].  However, 

HHAC remains a challenging problem in practice 

because of the large variability of human head 

appearances in illumination, pose, expression, etc. 

Recently, due to the outstanding performance of 

Deep Learning (DL) networks, especially the 

Convolutional Neural Network (CNN), most HHAC 

networks mainly focus on using DL to predict human 

head attributes. Generally speaking, the HHAC 

networks can be divided into two categories: single-

label learning based networks [11, 12] and multi-

label learning based networks [13-19]. The single-

label learning-based networks firstly employ the 

CNN to extract human head features then predict the 

head attributes using the Support Vector Machine 

(SVM) [20]. In this manner, Zhang, Paluri, Ranzato, 

Darrell and Bourdev [11] proposed the Pose Aligned 

Networks for Deep Attribute modelling (PANDA) by 

combining the deep representations extracted from 

every pose region of a human head with deep 

representations of the entire human head to train the 

SVM classifier for HHAC. Liu, Luo, Wang and Tang 

[12] employ Localization Networks (LNets) for face 

localization and Attribute Network (ANet) for feature 
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extraction, then employs a single SVM classifier for 

each face attribute. However, these networks 

consider the classification of every human head 

attribute as an individual and independent problem, 

thus ignoring the correlations between attributes. In 

addition, these networks use DL for feature extraction 

and require training an external classifier to classify 

human head attributes. 

Alternatively, multi-label learning-based 

networks, predict multiple head attributes 

simultaneously in an end-to-end DL network. These 

networks use the lower layers of CNN to extract the 

shared features of the head attributes and learn the 

head attributes on the upper layers of CNN. Rudd, 

Günther and Boult [13] proposed a novel Mixed 

Objective Optimization Network (MOON) with a 

loss function that mixes multiple-task to address the 

different distribution of attribute labels. He, Wang, 

Fu, Feng, Jiang and Xue [14] proposed the 

Adaptively Weighted Multi-task CNN (AW-CNN) to 

jointly learn multi-attributes with the validation loss 

trend algorithm that updates the weights of the 

weighted loss layer automatically. Guo, Fan and 

Wang [15] proposed the Class Activation Map 

(CAM) network to highlight the relevant image 

regions of each head attribute. Mahbub, Sarkar and 

Chellappa [16] proposed the Normalized Score 

Aggregation (NSA) which utilize keypoints to 

directly segment faces into several image patches that 

fed into two-step CNN for feature extraction and 

learning prediction. Xu, Chen, Li, Shen, Lv, Zhou 

and Ji [17] combined the Bio-inspired Facial 

Aesthetic Ontology (Bio-FAO) and CNN to predict 

the human head attribute. Huang, Li, Cheng, Zhang 

and Hauptmann [19] propose a Greedy Neural 

Architecture Search (GNAS) for automatically 

discovering the optimal tree-like architecture to 

predict multi-attributes. Zhuang, Yan, Chen and 

Wang [18] proposed a Multi-task Framework of 

Cascaded CNN termed (MCFA), which comprised of 

three cascaded sub-networks to jointly learn multiple 

tasks (i.e., face detection, face landmark & 

localization, and face attribute classification). 

However, these networks treated the head attributes 

equally during the training phase, ignoring the 

various learning complexities of these attributes. 

Therefore, the performance of these networks may 

not be optimal since the correlations between the 

head attributes are not effectively exploited. 

Moreover, several multi-label learning-based 

networks [21-24] proposed to divide head attributes 

into several groups. For instance, Hand and 

Chellappa [21] proposed to divide the head attributes 

into 9-groups according to their locations on a human 

head and learn the relationships between the 

attributes in these locations. Accordingly, they 

proposed the Multi-task CNN (MCNN) combined 

with an Auxiliary Network (AUX), which benefit 

from the attribute relationships and an improved 

classification. Han, Jain, Wang, Shan and Chen [22] 

proposed to divide the head attributes according to 

the heterogeneity (i.e., ordinal vs. nominal and 

holistic vs. local) in terms of data type and semantic 

meaning. Accordingly, they later proposed the Deep 

Multi-Task Learning (DMTL) which consist of 4 

structurally identical sub-networks for each group of 

attributes with separate loss functions for each one. 

On the other hand, Cao, Li and Zhang [23] proposed 

to divide the head attributes into 4 groups (i.e., upper, 

middle, lower, and whole image) according to their 

locations on the human head image. They proposed  

Partially Shared Multi-task CNN (PS-MCNN), 

which is composed of 4 sub-networks where each one 

corresponds to a specific attributes group and a single 

shared sub-network for HHAC. Mao, Yan, Xue and 

Wang [24] which proposed to divide the 40 

categories into two groups: objective categories and 

subjective categories. They proposed Deep Multi-

task Multi-label CNN (DMM-CNN), which involved 

two networks for feature extraction and a novel 

dynamic weighting scheme to automatically specify 

the loss weight for each category. All the stated 

studies presented several criteria to group the human 

head attributes but have not considered the common 

characteristics among the attributes. Therefore, this 

study aims to address these challenges and propose: 

1) a novel grouping method that classify human head 

attributes into five groups: hair, face, style, 

accessories and appearance; and 2) a deep Multi-

Output Convolutional Neural Network (MOCNN) to 

learn the joint features among the attributes based on 

the proposed groups. The proposed network contains 

two convolutional blocks and five output layers, 

where each output layer learns to predict a specific 

group of human head attributes. 

The rest of the article is organized as follows. 

Section 2 presents a brief Background on 

convolutional neural network. Section 3 shows the 

mechanism of datasets understanding and attribute 

grouping. The proposed network with the parameters 

used in building the layers of the networks is detailed 

in Section 4. In Section 5, experimental results of the 

proposed network are reported. Finally, Section 6 

presents the conclusion. 

2. Background 

This section includes brief explanation on 

Convolutional Neural Network (CNN) which is the 

fundamental architecture in the study. CNN was  
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Figure. 1 Architecture of CNN (adapted from [36, 37]) 

 

proposed in 1980 by Fukushima [25], and it was later 

revised by LeCun [26]. Recently, CNNs achieved 

outstanding performance over many fields such as 

object recognition [1], face recognition [27], scene 

recognition [28] and natural language processing [29]. 

Due to the availability of large-scale labeled datasets 

such as ImageNet [30] and the high-performance 

Graphics Processing Units (GPUs), training complex 

models and huge dataset becomes possible. In this 

context, several networks have been proposed, such 

as AlexNet [31], VGGNet [32], GoogleNet [33], 

Residual Networks (ResNet) [34], and DenseNet [35]. 

A typical CNN architecture consists of two main 

parts, namely, the convolutional base and classifier, 

as shown in Fig. 1.  

The convolutional base is composed of a 

convolutional stack and pooling layers. Convolution 

is a mathematical procedure for integrating two sets 

of input, namely, an image matrix with a dimension 

of ℎ × 𝑤 × 𝑑 and a filter (kernel) with a dimension 

of 𝑓ℎ × 𝑓𝑤  × 𝑑 , to produce a feature map with a 

volume dimension of (ℎ −  𝑓ℎ + 1) × (𝑤 −  𝑓𝑤 +
1) × 1. This procedure is formulated by Eq. (1). 

 

𝑋𝑗
𝑙 = 𝑓 [∑ (𝑋𝑖

𝑙−1 ∗ 𝐾𝑖𝑗
𝑙 + 𝑏𝑗

𝑙
𝑖 ∈ 𝑀𝑗

]             (1) 

 

Where:  

𝑋𝑗
𝑙 signifies the 𝑗𝑡ℎ feature-map of the 𝑙 layer, 𝑓[∙

]  signifies the activation function, 𝑀𝑗  signifies the 

input images, ∗ signifies the convolution operation, 

𝑋𝑗
𝑙−1  the 𝑖𝑡ℎ  feature-map of the 𝑙 − 1  layer, 𝐾𝑖𝑗

𝑙  

signifies the convolutional filter linking the 𝑗𝑡ℎ 

feature-map of the 𝑙 layer and the 𝑖𝑡ℎ feature-map of 

the 𝑙 − 1 layer, 𝑏𝑗
𝑙 signifies the bias. 

There are several activation functions that are 

commonly used such as sigmoid, tanh, and ReLU, 

which are formulated as follows: 

 

Figure. 2 CNNs layers 
 

Sigmoid          𝑓(𝑥) =  
1

1+ 𝑒−𝑧                  (2) 

 

Tanh            𝑓(𝑥) =  
𝑒𝑧 − 𝑒−𝑧

𝑒𝑧 + 𝑒−𝑧                (3) 

 

ReLU        𝑓(𝑥) = max (0, 𝑥)              (4) 

 

The pooling layers refer to a sample-based 

discretization process usually performed after the 

convolutional layers to reduce dimensionality. The 

goal of pooling layers is to downsample the 

representation of input (i.e., input matrix, hidden 

layer, and output matrix) through decreasing the total 

number of parameters, which then reduces the 

training time and avoids overfitting. Pooling layers 

can perform various functions, such as maxpooling or 

average-pooling. The former selects the maximum 

value in a certain filter area, whereas the latter selects 

the average value in a filter area. The pooling layers 

is formulated by Eq. (5). A CNN classifier is 

composed of fully connected layers, which learn how 

to use the features produced by earlier convolutional 

layers to achieve the explicit expression of 

classification. Fig. 2 illustrates the basic layers of 

CNNs architecture. 

 

𝑋𝑗
𝑙 = 𝑓[𝛽𝑗

𝑙 𝑑𝑜𝑤𝑛(𝑋𝑖
𝑙−1 + 𝑏𝑗

𝑙)]               (5) 

 

Where:  

𝑋𝑗
𝑙 signifies the 𝑗𝑡ℎ feature-map of the 𝑙 layer, 𝑓[∙

]  signifies the activation function, 𝛽  signifies the 

subsampling coefficient, 𝑑𝑜𝑤𝑛(∙)  signifies the 

subsampling function, 𝑋𝑗
𝑙−1  the 𝑖𝑡ℎ  feature-map of 

the 𝑙 − 1 layer, 𝑏𝑗
𝑙 signifies the bias. 

3. Understanding datasets and attribute 

grouping 

The training process of a dataset is considered 

critical for building, testing, and subsequently 
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Figure. 3 Regions of human head 

 

creating a successful DL network. Therefore, 

understanding content of the dataset is essential. This 

study investigates two widely used datasets (i.e., 

Large-scale CelebFaces Attributes (CelebA) [38] and 

Labeled Faces in the Wild-a (LFWA) [39]) of Human 

Head Attribute Classification (HHAC). Both datasets 

classify a human head into a set of categories (i.e., 

labels), where each category corresponds to an 

attribute of the human head. The CelebA dataset has 

40 categories, while the LFWA dataset has 73 

categories in which each one of them differs in its 

training, for example, training a network to classify 

the “Wearing-Eyeglasses,” may be easier than 

training it to classify “Pointy Nose”. In this study, the 

work focuses on analyzing 40 categories in both 

datasets and determine type of correlation between 

the categories in accordance with their locations on 

the human head. The categories in the datasets are 

distributed over three different regions of the human 

head; hair, face and neck & upper chest region, as 

shown in Fig. 3. 

The hair region includes three sets of categories: 

1) Hair colour (Black Hair, Blond Hair, Brown Hair, 

Gray Hair, Bald), 2) Hair style (Straight Hair, Wavy 

Hair, Receding Hairline, Bangs) and 3) Accessories 

(Wearing Hat). On the other hand, the face region 

details eight sets of categories: 1) Eyebrows (Arched 

Eyebrows, Bushy Eyebrows), 2) Eyes (Narrow Eyes, 

Bags under Eyes), 3) Nose (Big Nose, Pointy Nose), 

4) Mouth (Big Lips, Mouth Slightly Open), 5) Bones 

(Double Chin, High Cheekbones, Oval Face), 6) 

Beard style (5 O'clock Shadow, Goatee, Mustache, 

No Beard, Sideburns), 7) Makeup (Heavy Makeup, 

Wearing Lipstick, Rosy Cheeks, Pale Skin), and 8) 

Accessories (Eyeglasses, Wearing Earrings). The 

final region which is the neck & upper chest region 

only include Accessories (Wearing Necklace, 

Wearing Necktie). We can observe that each set 

involves several categories with similar criteria in 

which each category belongs to a specific attribute of 

the human head. Moreover, there are several 

categories (i.e., Attractive, Blurry, Chubby, Male, 

Smiling and Young) which does not belong to any 

region of the human head regions nor to any set of  
 

 
Figure. 4 Distribution of categories on human face 

 

categories that have mentioned. These categories are 

considered global categories where each one 

represents a specific theme of human appearance. Fig. 

4 illustrates distribution of the categories based on 

human head regions. 

After studying the categories, it has been found 

that they are varied, concerning to the essential 

ingredients of the human head such as hair, eyes, nose, 

etc., regardless the artificial categories which are 

human-made accessories such as “Wearing Hat”, 

“Eyeglasses”, “Wearing Lipstick”, and the like. 

Moreover, many of these categories have common 

characteristics as some of them belong to the same 

kind, location, or they are sometimes having both 

characteristics concerning to the kind and locations. 

For example, the categories of hair color and hairstyle 

describe the characteristics of the human head hair, 

as well these categories are located in the same region 

of the human head. On the other hand, although the 

categories of eyebrows, eyes, nose, mouth, bones, 

beard style and makeup are located on the face region, 

they have different characteristics. While the 

categories of eyebrows, eyes, nose, mouth, and bones 

describe the characteristics of the whole human face, 

the beard style and makeup describe the style 

characteristics of the human face. In addition, 

although categories such as Wearing Hat, Eyeglasses, 

Wearing Earrings, Wearing Necklace, and Wearing 

Necktie are distributed in all regions of the human 

head, these categories have common characteristics 

where they describe the accessories. Furthermore, the 

global categories such as gender and age group also 

have common characteristics where they describe the 

general appearances of the human. 

In the final analysis, this study found that there is 

a disparity ratio in the learning of categories because 

each one has its own complexity. Hence, the 

classification accuracy among the categories is also 

different as some categories get lower classification 

accuracy than others. In contrast, there are many 
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categories that may be strongly correlated according 

to their common characteristics or locations on the 

human head, and they are sometimes having both 

correlations. Therefore, exploiting intrinsic 

correlations among categories could lead to 

extracting the optimal features and boosting 

classification accuracy. Subsequently, based on the 

assumption that many categories are strongly 

correlated as they have common characteristics the 

study splits all the 40 categories into five groups as 

they are explained below: 

1- Hair Categories (Black Hair, Blond Hair, Brown 

Hair, Gray Hair, Bald, Bangs, Straight Hair, Wavy 

Hair, Receding Hairline).  

2- Face Categories (Arched Eyebrows, Bushy 

Eyebrow, Narrow Eyes, Bags Under Eyes, Big Nose, 

Pointy Nose, Big Lips, Mouth Slightly Open, Double 

Chin, High Cheekbones, Oval Face).  

3- Style Categories (5 o Clock Shadow, Goatee, 

Mustache, No Beard, Sideburns, Heavy Makeup, 

Wearing Lipstick, Rosy Cheeks, Pale Skin).  

4- Accessories Categories (Eyeglasses, Wearing 

Earrings, Wearing Hat, Wearing Necklace, Wearing 

Necktie).  

5- Appearance Categories (Attractive, Blurry, 

Chubby, Male, Smiling, Young).  

4. Proposed approach  

The proposed network consists of sixteen layers 

with one input layer, two convolutional layers, two 

pooling layers, one flattens layer, five fully connected 

layers, and five output layers. All of the convolutional 

layers of the proposed network involve ReLUs units 

to implement the linear transformation and the 

nonlinear mapping. The central concept in 

constructing this network is the deployment of filters 

with different sizes, where a larger filter was used in 

the first convolutional layer to extract shallow 

features, and a smaller filter was used in the second 

convolutional layer to extract deeper features. 

The input layer of the proposed network is fed by 

images of size (178 × 218 × 3 or 256 × 256 × 3) 

pixels, where each image was preprocessed by the 

procedure described in section 5.1. In addition, a 5×5 

convolutional filter was designed in the first 

convolutional layer to implement the convolution 

operations and extract the shallow features. Next, a 

2 × 2 top pooling layer has been used to reduce the 

dimensionality of the convolutional layer outputs. 

Then, the outputs of the Maxpooling layer fed into 

the second convolutional layer to implement its 

convolution operations. In the second convolutional 

layer, a 3 × 3 convolutional filter has been designed 

to implement the convolution operations and produce  
 

 
Figure. 5 Structure of the proposed network 

 

the feature maps. A Maxpooling layer of size 2×2 was 

deployed following the second convolutional layer to 

reduce the dimensionality of the produced feature 

maps. The samples of the learned convolutional 

filters to implement the convolution operations of 

convolutional layers and the samples of the produced 

features are illustrated in Fig. 5 and 6 sequentially. 

Moreover, a flatten layer has been used to flatten 

outputs of the Maxpooling layer into a 1-dimensional 

vector. Then, the extracted features through the 

convolutional and pooling layers are passed into the 

fully connected layers. Since this study has proposed 

to divide the categories of datasets into five groups 

(Hair Categories, Face Categories, Style Categories, 

Accessories Categories and Appearance Categories), 

the proposed network included five fully connected 

layers, each one connected to an output layer. In 

addition, each output layer employed a Sigmoid 

classifier to implement the multi-category 

classification task. The exact structure of the 

proposed network is illustrated in Fig. 5. 

5. Experiment results and discussions 

This section covers the experiments performed to 

evaluate the effectiveness of the proposed HHAC 

networks. First, in Subsection 5.1, the datasets and 

parameter settings used for the evaluation are 

described. In subsection 5.2, the experiment settings 

are presented. Finally, in subsection 5.3, the 

performance of the proposed network is compared 

against several state-of-the-art networks. 
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5.1 Datasets and parameter settings 

The experiments have been conducted on two 

challenging, large-scale Human Head Attribute 

datasets, namely CelebA and LFWA. CelebA dataset 

[18] includes 202,599 images of 10,177 celebrities' 

identities; each celebrity has approximately an 

average of 20 images. In addition, each head image 

of the CelebA dataset was provided with 40 binary 

attribute annotations. The CelebA dataset is split into 

three portions training, validation, and testing. The 

training set includes 162,770 images, validation set 

with 19,867 images, and the testing set includes 9,962 

images. On the other hand, the LFWA dataset is built 

upon 13,233 images of 5,749 identities, where 1,680 

identities have two or more images. Besides, each 

image of the LFWA dataset is provided with 73 

binary attribute annotations. However, the LFWA 

dataset does not contain any validation images. 

Furthermore, the number of images it quite small and 

not superabundant to train an accurate DL network. 

Thus, this study proposes to: 1) deploy augmentation 

techniques to increase the number of images in 

LFWA dataset. Augmentation techniques include, 

rotation, scaling, flipping, shifting and zoom, as 

shown in Fig. 6; and 2) deploy transfer learning 

technique that will fine-tune the network trained on 

CelebA dataset to be used on LFWA dataset. After 

performing the data augmentation techniques, the 

LFWA dataset has over 25,000 images for training, 

6,880 images for testing and 0.2% of the training 

images were used for validation. This study uses the 

same 40 categories of CelebA and LFWA in the 

experiments. 

5.2 Experiment settings 

The proposed network is implemented based on 

the open-source DL platform TensorFlow 2.0, where 

Intel Core i7-6700 CPU, 64 Gigabyte RAM and 

NVIDIA GEFORCE RTX 3090 GPU is used to train 

the networks for ten epochs with the batch size of 32. 

The learning rate for both networks is set to 0.0001 

with a decay rate of 1 × 10−6. The parameters of the 

input layer for each network are changed to fit the 

size of the images of each dataset, 178 × 218 × 3 for 

CelebA dataset and 256 × 256 × 3  for LWFA 

dataset. This study employed a binary cross-entropy 

loss for each categories group to implement the 

training. 

5.3 Performance results on CelebA and LFWA 

dataset 

In this subsection, we evaluate the effectiveness 

of the proposed network by comparing its  
 

 
Figure. 6 Five techniques for data augmentation 

 

performance against several state-of-the-art HHAC 

networks on CelebA and LFWA datasets sequentially. 

The performance of the proposed network has been 

compared with eleven networks on CelebA datasets 

including the PANDA [11], LNets+ANet [12], 

MOON [13], NSA [16], MCNN-AUX [21], MCFA 

[18], GNAS [19], AW-CNN [34], PS-MCNN [23], 

DMM-CNN [24] and DMTL [22]. In addition, the 

proposed network has been also compared with nine 

networks on LFWA datasets includes PANDA  [11], 

LNets+ANet [12], NSA [16], MCNN-AUX [21], 

MCFA [18], GNAS [19], PS-MCNN [23], DMM-

CNN [24] and DMTL [22].  

The classification accuracy of each category on 

the CelebA and LFWA datasets is reported in Table 

1 and 2, respectively. Fig. 7 and 8 show that the 

proposed Network outperforms the contend networks 

and achieves the average accuracy of 95.29% and 

97.93% on CelebA and LFWA datasets, respectively. 

Compared with PANDA and LNets+ANet that used 

a single SVM classifier for each category, Network 

achieves superior performance by exploiting the 

multi-label learning with improvements of 9.86%, 

7.96%, 16.9% and 14.3% on CelabA and LFWA 

datasets, respectively. The proposed Network also 

achieves better performance than NSA, GNAS and 

MCFA on both datasets; it achieves a gain of 4.68%, 

3.66%, and 4.06% on CelebA dataset, respectively, 

while outperforming NSA by 12.11%, GNAS by 

11.56%, and MCFA by 14.3% on LFWA dataset, 

respectively. In addition, The MOON and AW-CNN 

networks did not provide results on the LFWA 

dataset; therefore, the comparison is conducted only 



Received:  April 25, 2022.     Revised: June 21, 2022.                                                                                                      225 

International Journal of Intelligent Engineering and Systems, Vol.15, No.5, 2022           DOI: 10.22266/ijies2022.1031.20 

 

on the CelebA dataset for these networks. As a result, 

the proposed Network achieves better performance 

than MOON and AW-CNN by a difference of 4.35% 

and 3.49%, respectively.  

The proposed network leverages from dividing 

40 datasets categories into five groups (i.e., hair, face, 

style, accessories, and appearance). It jointly learns 

features of each group of attributes independently 

according to their species, location or both together. 
 

 

Table 1. The classification accuracy (in %) achieved by all the contend networks on the CelebA dataset. The accuracy of 

each category achieved by the proposed network is highlighted in bold. '-' indicates that the network does not provide the 

corresponding result of the category 
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] 

P
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p
o
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etw
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5 o’clock Shadow 88 91 94.03 93.1 94.51 94 94.76 - 96.6 94.84 95 97.34 

Arched Eyebrows 78 79 82.26 82.6 83.42 83 84.25 - 85.77 84.57 86 91.41 

Attractive 81 81 81.67 82.8 83.06 83 83.06 - 84.39 83.37 85 89.06 

Bags Under Eyes 79 79 84.92 84.9 84.92 85 85.87 - 87.29 85.81 85 91.73 

Bald 96 98 98.77 98 98.9 99 98.96 - 99.41 99.03 99 99.63 

Bangs 92 95 95.8 95.7 96.05 96 96.2 - 98 96.22 99 98.6 

Big Lips 67 68 71.48 69.3 71.47 72 71.79 - 73.13 72.93 96 86.91 

Big Nose 75 78 84 83.8 84.53 84 85.1 - 86.4 84.78 85 91.44 

Black Hair 85 88 89.4 89 89.78 89 90.24 - 91.66 90.5 91 94.75 

Blond Hair 93 95 95.86 95.8 96.01 96 96.11 - 97.93 96.13 96 98.28 

Blurry 86 84 95.67 96 96.17 96 96.42 - 98 96.4 96 98.04 

Brown Hair 77 80 89.38 88.3 89.15 88 89.75 - 91.03 89.46 88 92.03 

Bushy Eyebrows 86 90 92.62 92.7 92.84 92 92.99 - 94.51 93.01 92 95.93 

Chubby 86 91 95.44 94.9 95.67 96 95.93 - 97.66 95.86 96 98.26 

Double Chin 88 92 96.32 95.8 96.32 96 96.48 - 98.29 96.39 97 98.68 

Eyeglasses 98 99 99.47 99.5 99.63 100 99.69 - 99.85 99.69 99 99.9 

Goatee 93 95 97.04 96.7 97.24 97 97.59 - 97.74 97.63 99 98.91 

Gray Hair 94 97 98.1 97.5 98.2 98 98.37 - 98.66 98.27 98 99.4 

Heavy Makeup 90 90 90.99 91.6 91.55 92 91.82 - 93.31 91.85 92 96.17 

High Cheekbones 86 88 87.01 87.6 87.58 87 88.05 - 89.5 87.73 88 92.85 

Male 97 98 98.1 98 98.17 98 98.5 - 98.81 98.29 98 99.36 

Mouth Open 93 92 93.54 93.8 93.74 93 94.16 - 95.99 94.16 94 97.36 

Mustache 93 95 96.82 95.9 96.88 97 97.03 - 98.56 97.03 97 99.07 

Narrow Eyes 84 81 86.52 86.9 87.23 87 87.66 - 89.07 87.73 90 94.78 

No Beard 93 95 95.58 96.2 96.05 96 96.3 - 98.03 96.41 97 98.34 

Oval Face 65 66 75.73 74.9 75.84 75 75.57 - 77.43 75.89 78 84.06 

Pale Skin 91 91 97 97 97.05 97 97.24 - 98.84 97 97 98.95 

Pointy Nose 71 72 76.46 76.5 77.47 77 78.24 - 79.32 77.19 78 85.22 

Receding Hairline 85 89 93.56 92.3 93.81 94 93.94 - 95.85 94.12 94 97.04 

Rosy Cheeks 87 90 94.82 94.8 95.16 95 95.01 - 96.92 95.32 96 98.16 

Sideburns 93 96 97.59 97.2 97.85 98 97.96 - 98.22 97.91 98 99.26 

Smiling 92 92 92.6 92.7 92.73 93 93.24 - 94.85 93.22 94 96.86 

Straight Hair 69 73 82.26 80.4 83.58 85 84.77 - 85.96 84.72 85 88.17 

Wavy Hair 77 80 82.47 81.7 83.91 85 84.52 - 86.39 86.01 87 89.00 

Wearing Earrings 78 82 89.6 89.4 90.43 90 90.98 - 92.66 90.78 91 93.83 

Wearing Hat 96 99 98.95 98.7 99.05 99 99.12 - 99.43 99.12 99 99.76 

Wearing Lipstick 93 93 93.93 93.2 94.11 94 94.41 - 95.7 94.49 93 97.14 

Wearing Necklace 67 71 87.04 85.6 86.63 88 87.61 - 88.98 88.03 89 93.05 

Wearing Necktie 91 93 96.63 96.1 96.51 97 96.76 - 98.52 97.15 97 98.76 

Young 84 87 88.08 88 88.48 88 88.89 - 90.54 88.98 90 94.21 

Accuracy (average)   85.43 87.33 90.94 90.6 91.29 91.23 91.63 91.8 92.98 91.7 92.6 95.29 
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Table 2. The classification accuracy (in %) achieved by all the contend networks on the LFWA dataset. The accuracy of 

each category achieved by the proposed network is highlighted in bold. '-' indicates that the network does not provide the 

corresponding result of the category 
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5 o’clock Shadow 84 84 77.6 77.06 75 - 78.17 79.18 80 95.54 

Arched Eyebrows 79 82 81.7 81.78 79 - 83.53 82.7 86 96.76 

Attractive 81 83 80.2 80.31 77 - 81.84 81.1 82 96.23 

Bags Under Eyes 80 83 82.6 83.48 79 - 86.74 82.7 84 96.85 

Bald 84 88 91.9 91.94 91 - 92.6 91.96 92 99.45 

Bangs 84 88 90.7 90.08 89 - 91.45 91.3 93 99.52 

Big Lips 73 75 79 79.24 75 - 82.7 79.82 77 96.08 

Big Nose 79 81 83.1 84.98 81 - 86.48 83.67 83 97.76 

Black Hair 87 90 92.5 92.63 91 - 92.96 91.55 92 99.63 

Blond Hair 94 97 97.5 97.41 97 - 98.51 97.17 97 99.88 

Blurry 74 74 86.4 85.23 86 - 87.2 87.58 89 98.45 

Brown Hair 74 77 80.9 80.85 77 - 81.87 81.56 81 97.33 

Bushy Eyebrows 79 82 84.3 84.97 76 - 85.72 85.33 80 96.8 

Chubby 69 73 76.1 76.86 74 - 78.11 77.66 75 95.88 

Double Chin 75 78 80.5 81.52 77 - 86.7 80.98 78 96.39 

Eyeglasses 89 95 91.5 91.3 91 - 92.78 92.83 92 99.42 

Goatee 75 78 83 82.97 80 - 84.11 82.82 86 96.85 

Gray Hair 81 84 88.5 88.93 88 - 91.04 89.38 88 99.37 

Heavy Makeup 93 95 95.4 95.85 94 - 96.6 95.68 95 99.48 

High Cheekbones 86 88 88.3 88.38 85 - 88.77 88.13 89 98.18 

Male 92 94 92.6 94.02 93 - 95.18 94.14 93 99.22 

Mouth Open 78 82 82.5 83.51 78 - 84.6 84.45 86 95.44 

Mustache 87 92 93 93.43 91 - 94.47 94.46 95 99.38 

Narrow Eyes 73 81 82.8 82.86 78 - 83.51 83.67 82 96.65 

No Beard 75 79 80.8 82.15 79 - 82.01 82.48 81 97.18 

Oval Face 72 74 76.8 77.39 74 - 77.9 76.94 75 95.74 

Pale Skin 84 84 91 93.32 82 - 94.97 91.86 91 99.64 

Pointy Nose 76 80 84.2 84.14 80 - 87.52 84.51 84 97.86 

Receding Hairline 84 85 84.9 86.25 85 - 87.5 86.3 85 98.88 

Rosy Cheeks 73 78 87.1 87.92 85 - 88.81 86.44 86 98.97 

Sideburns 76 77 81.8 83.13 78 - 84.42 82.99 80 96.88 

Smiling 89 91 90.8 91.83 88 - 92.7 92.24 92 98.95 

Straight Hair 73 76 78.9 78.53 77 - 79.65 79.2 79 96.07 

Wavy Hair 75 76 78.3 81.61 79 - 83.35 79.87 80 97.12 

Wearing Earrings 92 94 94.8 94.95 93 - 95.54 94.14 94 99.38 

Wearing Hat 82 88 90.2 90.07 91 - 91.21 90.84 92 99.52 

Wearing Lipstick 93 95 94.1 95.04 94 - 95.7 95.11 93 99.59 

Wearing Necklace 86 88 89.6 89.94 89 - 90.92 89.47 91 99.02 

Wearing Necktie 79 79 81.4 80.66 82 - 82.18 81.28 81 98.02 

Young 82 86 85.7 85.84 87 - 86.88 88.94 87 98.08 

Accuracy (average)   81.03 83.85 85.8 86.31 83.63 86.37 87.67 86.56 86.15 97.93 

 

In contrast, the NSA, GNAS, MCFA, MOON, and 

AW-CNN learn the standard features among the 40 

categories. Compared to MCNN-AUX, PS-MCNN-

LC, DMTL, and DMM-CNN adopt different criteria 

(i.e., location, relationship or heterogeneity) to divide 

the datasets categories. The proposed network 

outperformed the benchmark networks on all 

categories, which validates the effectiveness of the 

grouping method used in this study. For the CelebA 

dataset, the proposed network outperformed the  
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Figure. 7 Performance comparison between contend 

networks on the CelebA dataset 

 
Figure. 8 Performance comparison between contend 

networks on the LFWA dataset 
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Figure. 9 Comparison of CelebA dataset accuracy based on groups: (a) hair, (b) face, (c) style, (d) accessories, and (e) 

appearance 
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(e) 

Figure. 10 Comparison of LFWA dataset accuracy based on groups: (a) hair, (b) face, (c) style, (d) accessories, and (e) 

appearance 
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MCNN-AUX by 4%, PS-MCNN-LC by 2.31%, 

DMTL by 2.69% and DMM-CNN by 3.59%, and the 

corresponding accuracy improvements on LFWA 

dataset are 11.62%, 10.26%, 11.78% and 11.37%, 

respectively. 

To further demonstrate the effectiveness of the 

proposed network, the study compared the 

performance of the network on the categories of each 

group with the performance of contending networks. 

Fig. 9 and 10 presents the performance comparison 

on the categories of each group for all the contending 

networks on CelebA and LFWA datasets, 

respectively. On the CelebA dataset, the proposed 

Network outperforms the contending networks in all 

categories groups, except the DMTL network, which 

obtained a higher accuracy for two categories only 

(i.e., bangs and big lips). In contrast, the proposed 

Network significantly outperforms the contending 

networks in all categories groups without exception 

on the LFWA dataset. The significant performance of 

the network on LFWA is due to the techniques (i.e., 

data augmentation and transfer learning) used in 

training the proposed Network. Furthermore, the 

proposed Network shows strength in appearance 

categories such as attractive, chubby and young, and 

fine-grained categories such as pointy nose, five o 

clock shadow, and Mustache. 

6. Conclusions 

This paper presents a new multi-output deep 

learning network for HHAC. The proposed network 

can effectively improve the performance of existing 

HHAC by learning the joint features among the 

attributes according to their common characteristics. 

Based on the proposed attributes groups (i.e., hair, 

face, style, accessories, and appearance), the 

proposed network is built upon two convolutional 

blocks of feature learning and five output layers to 

predict the attributes of each group. Extensive 

experiments on the CelebA and LFWA benchmark 

datasets showed that the proposed network achieved 

superior performance over recent HHAC networks. 

The proposed network achieved an average accuracy 

of 95.29% on and 97.93% on the CelebA and LFWA 

datasets, superior by 2% and 10% to the competition's 

HHAC networks. Moreover, the proposed network 

outperforms the competition's networks in the 

classification accuracy of almost all human head 

attributes. Finally, it is noteworthy to note that the 

outstanding performance of the proposed network is 

due to the attributes grouping method and the 

structure of the proposed network. The attributes 

grouping allows learning the explicit correlations 

between the attributes with similar components and 

extracting their common features, which helps 

improve classification accuracy. Besides, the 

structure of the proposed network includes a single 

output layer for each group of attributes, allowing 

feature learning and attributes prediction for each 

group independently. In the future, this study can 

extend to develop assistive visual recognition 

applications such as visually impaired systems and 

robotic vision systems. 
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