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Abstract: In this study, the response surface methodology (RSM) and artificial neural network (ANN)
were employed to study the adsorption process of 2,4-dichlorophenoxyacetic acid (2,4-D) by using
modified hydrogel, i.e., activated carbon poly(dimethylaminoethyl methacrylate) (AC/PDMAEMA
hydrogel). The effect of pH, the initial concentration of 2,4-D and the activated carbon content on the
removal of 2,4-D and adsorption capacity were investigated through the face-centered composite
design (FCCD), optimal design and two-level factorial design. The response surface plot suggested
that higher removal of 2,4-D and adsorption capacity could be achieved at the higher initial con-
centration of 2,4-D and lower pH and activated carbon content. The modeling and optimization
for the adsorption process of 2,4-D were also carried out by different design methods of RSM and
different training methods of ANN. It was found that among the three design methods of RSM, the
optimal design has the highest accuracy for the prediction of 2,4-D removal and adsorption capacity
(R2 = 0.9958 and R2 = 0.9998, respectively). The numerical optimization of the optimal design found
that the maximum removal of 2,4-D and adsorption capacity of 65.01% and 65.29 mg/g, respectively,
were obtained at a pH of 3, initial concentration of 2,4-D of 94.52 mg/L and 2.5 wt% of activated
carbon. Apart from the optimization of process parameters, the neural network architecture was
also optimized by trial and error with different numbers of hidden neurons in the layers to obtain
the best performance of the response. The optimization of the neural network was performed with
different training methods. It was found that among the three training methods of the ANN model,
the Bayesian Regularization method had the highest R2 and lowest mean square error (MSE) with
the optimum network architecture of 3:9:2. The optimum condition obtained from RSM was also
simulated with the optimized neural network architecture to validate the responses and adequacy of
the RSM model.

Keywords: adsorption; response surface methodology; artificial neural network; activated carbon;
adsorption capacity; modeling; optimization

1. Introduction

Recently, water pollution has become one of the most common issues in the world.
Agriculture practices, which contribute about 70% usage of surface water supplies, are one
of the major causes of water pollution due to the usage of herbicides or pesticides by the
farmer [1,2]. Among different types of herbicides, 2,4-dichlorophenoxyacetic acid (2,4-D)
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is the most popular due to its cheaper price [3–5]. Its residue is often found in surface
and groundwater due to its high potential of leach ability, low sorption of soil and poor
biodegradability [5–7]. The International Agency for Research on Cancer has classified 2,4-
D as very toxic due to its possible carcinogen and mutagen impact on humans [8]. Therefore,
several methods such as photocatalytic degradation, advanced oxidation, electrochemical
oxidation, biological treatment, ion exchange, membrane technology and activated carbon
adsorption have been proposed by researchers to remove 2,4-D from water and soils.
Among these methods, adsorption is the most effective and widely utilized in the industry
to remove hazardous organic and inorganic pollutants in water due to its simple, cost-
effective process and high flexibility in design and operation [4,9,10].

Currently, activated carbon (AC) is used as a common adsorbent in the adsorption
process. However, AC adsorbents have high manufacturing costs mainly contributed by
the raw materials and additional agents used to improve their adsorption capacity [4].
Therefore, many studies have been conducted to find a low-cost adsorbent with high
adsorption efficiency. Recently, the use of modified hydrogel adsorbents has been found to
greatly improve the adsorption efficiency and overcome the problem of the high cost of
activated carbon [4,11]. The hydrophilic properties of hydrogel due to its three-dimensional
network and porous structure make them able to adsorb large amounts of water [11,12].
Apart from that, the hydrogel is also able to improve adsorption efficiency by entrapment
of different particles inside its network [11].

In the past few decades, many studies have been conducted based on the conventional
method, one variable at a time (OVAT), which requires a lot of time. This is because a large
number of experiments is needed to screen all variables independently [13]. Consequently,
the study has a high cost due to the high number of tests and runs needed. Therefore,
multivariate statistics techniques such as response surface methodology (RSM) and artificial
neural network (ANN) are preferred nowadays to overcome the limitations of traditional
methods since they offer a lower cost and a smaller number of experiments and are able
to describe the interaction between the independent variables. RSM works by building
an empirical model that fits the best for the quantitative data [14]. It is also useful in the
optimization of processes apart from analyzing the interaction between the independent
variable and dependent variable [13]. Meanwhile, ANN is an attractive approach for the
modeling of multiple nonlinear factors, where it consists of three layers: input, hidden
and output layers [15]. The modeling and optimization of the adsorption process with
different designs and training methods in RSM and ANN, respectively, could offer a variety
of performances in terms of optimum conditions for the process and prediction capability.

Recently, many comparative analyses between RSM and ANN have been conducted
to compare the performance of the adsorption process. Kang et al. [16] compared both
ANN and RSM for the prediction of diclofenac (anti-inflammatory drug) removal rate and
final pH. Both the diclofenac removal rate and the final pH could be predicted using the
developed RSM model (i.e., central composite design) using the quartic formula. From
the ANOVA test, it was revealed that two input parameters (i.e., initial pH and adsorbent
dosage) had a significant impact on both the diclofenac removal rate and the final pH.
Additionally, the developed ANN model with the 4:11:6:2 topology accurately predicted
the diclofenac removal rate and the final pH. From this comparison study, the ANN model
showed better predictability for the diclofenac removal rate and the final pH than the
RSM model. Prasad and Yadav [17] studied the effectiveness of water hyacinth (WH) as
an adsorbent to remove methylene blue dye from colored wastewater by using a three-
level central composite design (CCD) of the RSM model, and Levenberg–Marquardt (LM)
backpropagation algorithms were applied for training the ANN model. Both models
provided good quality prediction for three independent variables (i.e., initial pH, dye
concentration and WH dose). Meanwhile, Sen et al. [18] investigated the optimization and
modeling of RSM and ANN in the biosorption of chromium (VI) ions from an aqueous
solution using cyanobacterial biomass. Both the central composite design of RSM and the
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developed ANN model are able to predict and optimize the removal of chromium (VI) at
various operating conditions with reasonably high accuracy.

Selecting an RSM design is important to get better prediction and optimum results
as there are many different designs in RSM. On top of that, selection of architecture in the
neural network especially the number of hidden layers or nodes could affect the perfor-
mance of the process [19,20]. Nevertheless, none of the reported studies have compared
the performance of the adsorption process with different RSM designs and ANN training
methods. This is because most of the researchers only focused on the predictive capability
between the commonly used design methods and training methods of both RSM and
ANN. In addition, no information exists with respect to the modeling and optimization
of 2,4-D adsorption by using activated carbon poly(dimethylaminoethyl methacrylate)
(AC/PDMAEMA hydrogel), except for the study conducted by Taktak et al. [4]. Taktak
et al. [4], however, only focused on the prediction and optimization of 2,4-D removal
with modified hydrogel by using a face-centered composite design (FCCD) of RSM. It is
important to ensure the optimum condition that can maximize the performance of the
adsorption process by taking into account the selection of the right RSM design and the
ANN training method. Therefore, the key objective of this study was to predict and opti-
mize the 2,4-D removal by modified hydrogel (AC/PDMAEMA hydrogel) using different
RSM designs and ANN training methods by employing the experimental data obtained by
Taktak et al. [4]. The interaction of independent variables (such as pH, initial concentration
of 2,4-D and activated carbon content) toward the removal of 2,4-D and adsorption capacity
were also investigated.

2. Materials and Methods

The experimental data on the batch adsorption of 2,4-D with modified hydrogel by
using a face-centered composite design (FCCD) of RSM were obtained from the study
conducted by Taktak et al. [4]. The modified hydrogel was prepared using activated carbon
(extracted from pomegranate husk), (dimethylamino) ethyl methacrylate (DMAEMA), N,
N’-methylenebisacrylamide and ammonium persulfate. In their study, the percentage
removal of 2,4-D (%) and adsorption capacity of 2,4-D (mg/g) were taken as the responses
and were calculated using the following equations.

Removal of 2, 4 − D (%) =
C0 − Ce

C0
× 100% (1)

Adsorption capacity(mg/g) =
(C0 − Ce)

m
× V (2)

where C0 and Ce are the initial and equilibrium concentrations of 2,4-D (mg/L), respectively,
m is the mass of the hydrogel adsorbent (g), and V is the solution volume (mL).

2.1. Response Surface Modeling

In the present study, the adsorption of 2,4-D was studied to determine the optimum
condition for the maximum removal of 2,4-D and adsorption capacity. The influence of
pH, initial concentration of 2,4-D and activated carbon content on the responses was also
investigated through the RSM study. In general, the independent variable was varied at
two levels, as shown in Table 1. The range for the independent variables was selected based
on the previous study [4].

Table 1. Range of independent variables’ coded and actual values.

Factors
(Independent Variables)

Ranges of Coded and Actual Values
(−1) (+1)

pH 3 9
Initial concentration of 2,4-D (mg/L) 20 100

Activated carbon content (%) 2.5 20
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For the RSM modeling, Design Expert V12.0 (Stat-Ease, Inc., Minneapolis, MN, USA)
software was used, and various design techniques were employed, i.e., face-centered
composite design (FCCD), optimal design and two-level factorial design. Based on the data
inserted in the design matrix, Design Expert V12.0 software generated an empirical model
(i.e., quadratic model) as shown below to describe the relationship between the variables
and the responses [14].

ŷ = β0 +
k

∑
i=1
βixi +

k

∑
i=1
βiix

2
i + ∑k−1

i=1

k

∑
j=i+1

βijxixj + ε (3)

where ŷ is the response or output, xi and xj are the input factors, β0, βi, βii, βij are coef-
ficients for intercept, linear, quadratic and interaction parameters, respectively, and ε is
the residual associated with the experiments [21]. Since different design methods have
different steps in designing the experiment, the details on each of these steps are further
explained in the following sections.

2.1.1. Face-Centered Composite Design (FCCD)

The modeling was carried out by selecting the numeric factors as shown in Table 1.
The generated experimental design matrix in the FCCD (with the coded distance (α) of 1)
consisted of 20 runs where 8 of the runs were the factorial point, 6 of them were the axial
point, and another 6 were the center point.

2.1.2. Optimal Design

In this design, the constraint was built by considering the problem vertex and the
constraint point for each factor. The problem vertex was selected based on the level of
factors that gave low responses. Based on the previous experimental data [4], the responses
were low when a pH of 9, 20 wt% activated carbon and 20 mg/L initial concentration of
2,4-D were used. Hence, these values were chosen as the problem vertex to be excluded
from the design space. Based on the problem vertexes, the constraint points for each factor
were chosen by considering the point that would be feasible to be run by the design. Table 2
summarizes the input parameters for each factor that was required to be inserted in the
constraint tool.

Table 2. Value of input parameters for the building of constraint equation.

Label Factors Low Actual High Actual Vertex < > Skip Constraint Point

A pH 3 9 9 A < 3
B Initial concentration of 2,4-D 20 100 20 B > 100
C Activated carbon content 2.5 20 20 C < 2.5

Based on the value of the input parameters, the constraint equation was built. Equation (4)
below shows the constraint equation generated by the parameters from Table 2.

280A − 21B + 96C ≤ 2340 (4)

Prior to the final step of design, the search method of point and optimality for the design
were chosen such that it could give the best performance to the data. There were 20 runs
required where 10 of them were the required model point, 5 of the runs were the replicate
point, and the rest were the lack-of-fit point. Since the custom design generated an un-
usual combination of factors in the experimental design, the response for the factors was
generated based on an empirical model built by the FCCD [4].

2.1.3. Two-Level Factorial Design

The building of this design started by selecting the number of factors that needed to
be studied. Based on the selected number of factors, there were only 8 runs needed in this
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design. The design of the experiment continued with the power calculation which included
determination of the signal and noise. Signal is the smallest change in response that could
be considered an achievement, and its value was defined by the user itself. Meanwhile, the
noise was taken from the standard deviation as stated in the previous study [4]. Table 3
summarizes the input parameters inserted for the design power calculation. It was impor-
tant to ensure that the design power was greater than 80% as it represents the probability
of success for the effect that we wanted to detect in the study [22].

Table 3. Summary of input parameters inserted for the design power calculation.

Name Units Difference to Detect
Delta (Signal)

Estimated Standard
Deviation (Noise) Signal/Noise Ratio

Removal of 2,4-D % 10 2.21 4.525
Adsorption capacity mg/g 10 1.82 5.495

The performance of the responses predicted by the empirical model built by the
software was analyzed using analysis of variance (ANOVA). The values of the coefficient of
variation (C.V) and coefficient of determination (R2) were used to identify the model with
the best fit. The model with the best fit had a lower C.V and a higher R2. The adequacy
of the model was determined from the significance of the model and the lack of fit. The
significance of the model or lack of fit was determined based on the p-value or ‘Prob>F’
displayed in the ANOVA section of the software. The model must have a value of ‘Prob > f’
or a p value of less than 0.05 to significantly display the relationship between the response
and the factors. Meanwhile, the lack of fit of the model must be insignificant (p > 0.05) for
the model to fit well with the data [22]. The transformation of the data or model reduction
was performed to improve the statistical performance of the selected model, whereby the
Box–Cox graph in the diagnostic tab of the Design Expert software was used as a reference.
Numerical optimization was performed for each design method to obtain the optimum
condition of the adsorption process. All the independent variables were kept in range,
while the responses were kept at a maximum. The restriction for the upper and lower limits
of the responses was used to ensure a unique optimum condition (only 1 solution) at high
desirability (more than 0.9) suggested by the software.

2.2. Neural Network Modeling

In the present study, Matlab R2021a (The MathWorks, Inc., Natick, MA, USA) software
was used to build the ANN model, using the feedforward backpropagation network
with the learning method ‘learngdm’ (gradient descent with momentum weight and bias
learning function). The neural network created consisted of an input layer (i.e., pH, initial
concentration of 2,4-D and activated carbon content), an output layer (i.e., removal of 2,4-D
and adsorption capacity) and a hidden layer. The hidden nodes in the hidden layer were
adjusted from 1 to 10. Trifonov et. al. [23] suggested that the optimum number of neurons
in the hidden layer could be estimated by N/2, where N is the number of input variables
or experimental data. The tangent sigmoid transfer function (tansig) and linear transfer
function (purelin) were applied to the hidden layer and output layer, respectively. Three
different training methods (i.e., Levenberg–Marquardt, Bayesian and Scaled Conjugated
Gradient) were used in the ANN models, and the data division in the simulation was set at
default to divide randomly.

The experimental data taken from the previous study [4] were used to constitute the
optimum architecture of the ANN model, whereby the network was trained until a high
overall correlation coefficient (R) value for training, testing, validation and all data sets
was obtained. In other words, the R value was the stopping point for the training of the
network. According to Mourabet et al. [24], the value of the overall correlation coefficient
(R) could be used as a measure of the network’s predictive capability. Prior to the training
of the network, the data were normalized within a range of 0 (new xmin) to 1 (new xmax)
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using the following equation to obtain fast convergee and minimal mean square error
(MSE) values [25].

xn = 0.8
(

xi − xmin

xmax − xmin

)
+ 0.1 (5)

where xn is the normalized value of xi, and xmin and xmax are the minimum and maxi-
mum values of xi, respectively. After a desirable result for a network was achieved, the
weight, bias and the output data predicted were recorded. Based on the experimental
response and predicted response of the network, the values of the MSE and the coefficient
of determination (R2) were calculated using the following equations.

MSE =
1
N

N

∑
i=1

(∣∣∣yprd,i − yexp,i

∣∣∣)2
(6)

R2 = 1 −
∑N

i=1

(∣∣∣yprd,i − yexp,i

∣∣∣)2

∑N
i=1

(∣∣∣yexp,i − ym

∣∣∣)2 (7)

where N is the number of data, yprd,i is the ith predicted property characteristic, yexp,i is

the ith measured value, and ym is the mean value of yexp,i. The calculation for the MSE and
R2 was performed manually since the ‘nntool’ command was used instead of ‘nnstart’ to
generate the neural network toolbox. Note that each network was trained separately, and
the best performance of networks (with different training methods) over different numbers
of hidden nodes in the architecture was chosen according to the value of MSE, R2 and
overall R value.

The chosen optimized architecture of the ANN for each training method was used in
the post analysis of the result to validate both responses predicted by RSM models and its
model adequacy. The post analysis of the result was performed by running the optimum
condition generated by RSM designs in the selected optimized ANN model. The predicted
results under optimum conditions were inserted in the confirmation tab in the Design
Expert V12.0 software, and the average result was observed. If the average result was
predicted to fall within the 95% prediction interval (PI), then the empirical model generated
by different designs of RSM was useable even though they had a significant lack of fit [22].

2.3. Comparative Analysis of RSM and ANN Models

The comparisons were made with respect to different training methods and designs
in the ANN and RSM, respectively. The values of calculated R2 and MSE were used in
determining the performance of the ANN model. However, the performance of RSM
models was determined by observing the values of R2 and the coefficient of variation
(C.V, %) generated by the Design Expert V12.0 software.

3. Results and Discussion
3.1. Response Surface Methodology (RSM)

Design Expert V12.0 software was used to study the effect of pH, initial concentration
of 2,4-D and the activated carbon content on the removal of 2,4-D and adsorption capacity
of modified hydrogel. The predictive modeling and optimization were performed using
different designs of RSM.

3.1.1. Predictive Modeling

All the empirical equations (suggested by the software) for predicting the removal of
2,4-D (Y1) and adsorption capacity (Y2) were expressed in coded form, where A is the pH,
B is the initial concentration of 2,4-D, and C is the activated carbon content. The generated
empirical equation for the FCCD is shown in Equation (8) as a reduced quadratic model for
the removal of 2,4-D, while Equation (9) represents the two-factor interaction (2FI) model
for predicting adsorption capacity.
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Y1 = 26.7455 − 17.7766 A + 5.8641 B − 6.5686 C − 1.96863 AB + 1.74688 AC + 7.19018 A2 − 9.59932 B2 + 5.41618 C2 (8)

Y2 = 22.0559 − 13.4036 A + 16.225 B − 4.197 C − 9.01788 AB + 1.26788 AC − 2.34113 BC (9)

The developed empirical equation generated in the optimal design is shown in
Equations (10) and (11). The reduced quadratic model was suggested by the software
for the removal of 2,4-D, and the quadratic model was recommended for predicting
adsorption capacity.

Y1 = 5.07314 − 1.68647 A + 0.561398 B − 0.607189 C + 0.0849027 BC + 0.47414 A2 − 0.897096 B2 + 0.479117 C2 (10)

Y2 = 4.7828 − 1.5333 A + 1.92787 B − 0.552366 C − 0.386627 AB − 0.072154 AC − 0.0298015 BC − 0.322986 A2

− 0.48975 B2 − 0.0519347 C2 (11)

On top of that, the empirical model generated in the two-level factorial design is
shown in Equations (12) and (13). The main effect model was suggested by the software
for the removal of 2,4-D. Meanwhile, a reduced two-factor interaction (2FI) model was
recommended for predicting adsorption capacity.

Y1 = 5.1444 − 1.6624 A + 0.5010 B − 0.6624 C (12)

Y2 = 22.3056 − 13.0759 A + 15.6536 B − 9.01787 AB (13)

According to Aklilu et al. [25], the positive and negative signs in the model represent
both the synergetic and antagonistic effects of the factors, respectively. Hence, the negative
symbol of the coefficient of the pH (A) and activated carbon content (C) indicate that
these factors had a negative impact on both the removal of 2,4-D and adsorption capacity.
In contrast, the positive coefficient of the initial concentration of 2,4-D (B) indicated the
increase in the removal of 2,4-D and adsorption capacity. These interactions of model terms
with the responses were in agreement with the study conducted by Taktak et al. [4].

3.1.2. Statistical Analysis

The statistical analysis for each design was performed using ANOVA to determine the
adequacy of the models generated by the software as shown in Tables 4–6. In this study,
both models (with respect to the removal of 2,4-D and adsorption capacity of modified
hydrogel) for all the designs were significant (p < 0.05). The lack of fit for the FCCD was
found to be significant (p < 0.05) for both models. The software cannot generate/calculate
the lack-of-fit F-statistic for the other two designs. The lack of fit was found to be significant
as the pure error was very low since the original data taken from the previous study [4]
have very little variation in the responses for factors at the center points. This may indicate
that the center points could not capture all normal process variations in the system. Despite
all the effort in the transformation of the model and reduction of the model, the lack of fit
for all models was still found to be significant. Therefore, the post analysis of the result
predicted by the RSM model was performed to determine the model’s usefulness.

Although the lack-of-fit analysis shows that the models do not fit well with the data,
the adequacy of the model could also be determined from other fit statistic parameters such
as R2 and C.V (as shown in Tables 4–6 above). The values of R2 for the removal of 2,4-D
were 0.9886, 0.9958 and 0.9960 while the values of R2 for adsorption capacity were 0.9920,
0.9998 and 0.9516 in the FCCD, optimal design and two-level factorial design, respectively.
According to Aklilu et al. [25], the value of R2 must be at least 0.8 for the model to be a
good fit. Therefore, the predicted data in all the models were in good agreement with
the experimental data since these three designs have values of R2 of more than 0.8. In
addition, C.V is the ratio of standard error in predicting the mean value of the actual
response. In other words, C.V could be used to represent the repeatability of the model.
The values of C.V for the removal of 2,4-D were 7.58, 2.39 and 3.22 while the regression
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model for adsorption capacity has a C.V of 8.25, 0.9651 and 31.89 in the FCCD, optimal
design and two-level factorial design, respectively. Lower C.V indicated a better precision
and reliability of the experiment [25].

Table 4. ANOVA for experimental results in FCCD.

Source df
Removal of 2,4-D (%)

Sum of Squares Mean Square F-Value p-Value

Model 8 4364.32 545.54 119.11 <0.0001
A 1 3160.08 3160.08 689.96 <0.0001
B 1 343.88 343.88 75.08 <0.0001
C 1 431.47 431.47 94.2 <0.0001

AB 1 31 31 6.77 0.0246
AC 1 24.41 24.41 5.33 0.0414
A2 1 142.17 142.17 31.04 0.0002
B2 1 253.4 253.4 55.33 <0.0001
C2 1 80.67 80.67 17.61 0.0015

Residual 11 50.38 4.58
Lack of Fit 6 50.26 8.38 334.67 <0.0001
Pure Error 0.1251 0.025
Cor Total 4414.7
Standard
Deviation 2.14

C.V (%) 7.58
Adjusted R2 0.9803
Predicted R2 0.9387

R2 0.9886
Adeq Precision 42.09

Source df
Adsorption Capacity (mg/g)

Sum of Squares Mean Square F-Value p-Value

Model 6 5312.5 885.42 267.73 <0.0001
A 1 1796.56 1796.56 543.25 <0.0001
B 1 2632.51 2632.51 796.02 <0.0001
C 1 176.15 176.15 53.26 <0.0001

AB 1 650.58 650.58 196.72 <0.0001
AC 1 12.86 12.86 3.89 0.0703
BC 1 43.85 43.85 13.26 0.003

Residual 13 42.99 3.31
Lack of Fit 8 42.96 5.37 744.8 <0.0001
Pure Error 5 0.036 0.0072
Cor Total 19 5355.49
Standard
Deviation 1.82

C.V (%) 8.25
Adjusted R2 0.9883
Predicted R2 0.9747

R2 0.9920
Adeq Precision 62.88
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Table 5. ANOVA for experimental results in optimal design.

Source df
Removal of 2,4-D (%)

Sum of Squares Mean Square F-Value p-Value

Model 7 49.7 7.1 408.82 <0.0001
A 1 38.06 38.06 2191.21 <0.0001
B 1 4.27 4.27 245.79 <0.0001
C 1 5.06 5.06 291.59 <0.0001

BC 1 0.083 0.083 4.78 0.0493
A2 1 0.621 0.621 35.75 <0.0001
B2 1 2.36 2.36 135.65 <0.0001
C2 1 0.7051 0.7051 40.6 <0.0001

Residual 12 0.2084 0.0174
Lack of Fit 7 0.2084 0.0298
Pure Error 5 0 0
Cor Total 19 49.91
Standard
Deviation 0.1318

C.V (%) 2.39
Adjusted R2 0.9934
Predicted R2 0.9855

R2 0.9958
Adeq Precision 58.05

Source df
Adsorption Capacity (mg/g)

Sum of Squares Mean Square F-Value p-Value

Model 9 83.94 9.33 4805.91 <0.0001
A 1 21.55 21.55 11102.94 <0.0001
B 1 34.44 34.44 17747.62 <0.0001
C 1 3.02 3.02 1555.35 <0.0001

AB 1 1.07 1.07 553.8 <0.0001
AC 1 0.0463 0.0463 23.84 0.0006
BC 1 0.0076 0.0076 3.91 0.0763
A2 1 0.2681 0.2681 138.12 <0.0001
B2 1 0.6381 0.6381 328.81 <0.0001
C2 1 0.0083 0.0083 4.26 0.0659

Residual 10 0.0194 0.0019
Lack of Fit 5 0.0194 0.0039
Pure Error 5 0 0
Cor Total 19 83.96
Standard
Deviation 0.0441

C.V (%) 0.9651
Adjusted R2 0.9996
Predicted R2 0.9989

R2 0.9998
Adeq Precision 219.504

From the above statistical analysis, the optimal design was found to have the best
performance in predicting both responses. This is because the values of standard deviation
and C.V were found to be the lowest compared to other design methods. In addition,
the value of R2 for response predicted by optimal design surpassed most of the other
design methods. However, it should be noted that the result in the optimal design could be
misleading since the experimental data for optimal design were obtained from the empirical
model while the data for other designs were taken from the result of the experiment
conducted by Taktak et al. [4]. Data generated from the empirical model may have less
error compared to the raw data from the experiment itself. In addition, the empirical model
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resulted from the modeling and fitting of the data was generated by the software such that
its performance to predict the responses was the best that it could be.

Table 6. ANOVA for experimental results in two-level factorial design.

Source df
Removal of 2,4-D (%)

Sum of Squares Mean Square F-value p-Value

Model 3 27.63 9.21 336.04 <0.0001
A 1 22.11 22.11 806.75 <0.0001
B 1 2.01 2.01 73.28 0.001
C 1 3.51 3.51 128.09 0.0003

Residual 4 0.1096 0.0274
Cor Total 7 27.74
Standard
Deviation 0.1655

C.V (%) 3.22
Adjusted R2 0.9931
Predicted R2 0.9842

R2 0.9960
Adeq Precision 48.2812

Source df
Adsorption Capacity (mg/g)

Sum of Squares Mean Square F-Value p-Value

Model 3 3978.69 1326.23 26.21 0.0043
A 1 1367.83 1367.83 27.04 0.0065
B 1 1960.29 1960.29 38.75 0.0034

AB 1 650.58 650.58 12.86 0.023
Residual 4 202.37 50.59
Cor Total 7 4181.06
Standard
Deviation 7.11

C.V (%) 31.89
Adjusted R2 0.9153
Predicted R2 0.8064

R2 0.9516
Adeq Precision 11.4243

3.1.3. Analysis of Response Surface

To facilitate a straightforward examination of the effect of independent variables
and their interaction, the developed mathematical model was utilized to construct three-
dimensional (3D) response surfaces. Since the effect of process parameters on the responses
had the same pattern as they originated from the same adsorption study, it was sufficient
to analyze the response surface plot for one of the design methods only. In this study, the
3D response surface plot in a two-level factorial design was chosen to be analyzed. This
model was selected to distinguish it from the other model (FCCD) that had been studied
by Taktak et al. [4], as well as to cross-check with previous findings.

Figure 1a,b show the interaction between the initial concentration of 2,4-D and pH
on the removal of 2,4-D and the adsorption capacity of the adsorbent. It can be seen from
the figure that both responses increased when the initial concentration was raised from
20 to 100 mg/L. This is because the initial concentration of 2,4-D provided an important
driving force to overcome all mass transfer resistance of the adsorbate between the solid and
aqueous phase. According to Fick’s second law, by increasing the driving force, the rate of
mass transfer along the concentration gradient would consequently increase. These results
are in agreement with Taktak et al. [4] and Bazrafshan et al. [9]. In contrast, both responses
tended to decrease when the pH of the solution was adjusted from 3 to 9. According to
Bazrafshan et al. [9], pH was the key parameter in the removal of the pollutant by the
adsorbent as it could control the electrostatic force between the adsorbent and the adsorbate.
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Their study on the adsorption of 2,4-D with single-wall carbon nanotubes as the adsorbent
found that both the removal of 2,4-D and adsorption capacity fluctuated as the pH was
increased from 3 to 13. A similar study was also reported by Safa and Bhatti [26], where they
studied the usage of rice husk as an adsorbent for the removal of Everdirect Orange-3GL
and Direct Blue-67 textile dyes. It was found that as the pH was increased from 2 to 12, the
adsorption capacity decreased from 20.5 to 18.8 mg/g.

Figure 1. Two-Level Factorial Design Response surface plot for removal of 2,4-D (a) and adsorption
capacity of adsorbent (b) as a function of initial concentration of 2,4-D solution (mg/L) and pH
(activated carbon = 11. 25%).

The effect of pH of the solution and the activated carbon content on the removal of
2,4-D and adsorption capacity of modified hydrogel is shown in Figure 2a,b. It could be
seen from the figure that both responses decreased when activated carbon content was
increased from 2.5 to 20 wt%. This is because the adsorbent was made by introducing
activated carbon from pomegranate husk into the polymeric network of hydrogel. There-
fore, as more activated carbon was introduced, the structure of the adsorbent became less
porous. Consequently, the uptake capacity of the adsorbent as well as the removal of 2,4-D
decreased. A similar result was also reported by Xu et al. [27] whereby the adsorption
capacities of the biosorbent prepared from rice husk toward heavy metals from simulated
wastewater decreased with increasing adsorbent content.

Figure 3a,b show the interaction between the initial concentration of 2,4-D and acti-
vated carbon content on the responses. As discussed previously, a high initial concentration
of 2,4-D and low activated carbon content cause a positive effect on both responses. Hence,
the maximum removal of 2,4-D and adsorption capacity were obtained when the lowest
level of activated carbon and the highest level of initial concertation of 2,4-D were applied
in the experiment. In summary, pH plays the most important role in the adsorption of 2,4-D
followed by activated carbon content and the initial concentration of 2,4-D. This could be
proven from the F value and p value of ANOVA shown previously.
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Figure 2. Two-Level Factorial Design Response surface plot for removal of 2,4-D (a) and adsorption
capacity of adsorbent (b) as a function of activated carbon content (%) and pH (initial concentration
of 2,4-D = 60 mg/L).

Figure 3. Two-Level Factorial Design Response surface plot for removal of 2,4-D (a) and adsorption
capacity of adsorbent (b) as a function of activated carbon (%) and initial concentration of 2,4-D
(pH = 6).

3.1.4. Optimization

In this study, it was aimed to achieve the maximum removal of 2,4-D and adsorption
capacity of modified hydrogel. Thus, the goal chosen in the numerical optimizations was
the maximum removal of 2,4-D and adsorption capacity while the process variable (pH,
initial concentration of 2,4-D and activated carbon content) was set to be in a range. In
the first optimization, there were too many solutions with the same desirability suggested
by the software for each design. Thus, the limit for the goals was restricted. Then, the
second optimization was performed by increasing the upper and lower limits of goals. By
doing so, a stretch could be put in the maximization of the goal. Otherwise, many potential
optimum conditions may come up such as the one encountered in the first optimization.
Nevertheless, the range of the stretch had to be carefully chosen so that the desirability
of the optimum condition suggested was not too low. In the current study, the range
was adjusted such that the maximization of response was obtained at a unique optimum
condition with a desirability of more than 0.9. The result of the second optimization is
tabulated in Table 7.
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Table 7. Unique solution obtained by different design method of RSM.

Design

Optimum Condition Predicted Response

Desirability
pH

Initial
Concentration
of 2,4-D (mg/L)

Activated
Carbon

Content (wt%)

Removal of
2,4-D (%)

Adsorption
Capacity (mg/g)

FCCD 3.00 99.97 2.52 63.63 68.47 1.000

Optimal 3.00 94.52 2.50 65.01 65.29 0.911

Two-level 3.00 100.00 2.50 63.52 60.05 0.912

3.2. Artificial Neural Network (ANN)

The architecture of ANN for different training methods (i.e., Levenberg–Marquardt,
Scaled Conjugate Gradient and Bayesian Regularization) were constructed by varying the
number of neurons in the hidden layer. The optimization of the ANN model was performed
by training the network until the value of the correlation coefficient (R) for training, testing,
validation and all prediction sets of more than 0.9 was obtained. In other words, the R value
was the stopping point for the training of the network in the measurement of the network’s
predictive capability [24]. Meanwhile, the best architecture of the optimized ANN model
for each training method was determined by the value of MSE and R2 calculated for both
responses. The following Figures 4 and 5 show the value of MSE and R2, respectively, for
both responses over different numbers of hidden nodes for different training methods.

Figure 4. MSE plot over the number of hidden nodes for (a) removal of 2,4-D and (b) adsorption
capacity.

The results presented in Figures 4 and 5 show that the optimized network with the
Levenberg–Marquardt training method had the best performance (MSE of 0.0003 and 0.0006;
R2 of 0.9928 and 0.9833) for the removal of 2,4-D and adsorption capacity, respectively,
when eight hidden nodes were used. Meanwhile, the best performance of the optimized
network with the Scaled Conjugate Gradient training method was obtained when nine
hidden neurons were used. The value of MSE for this network was 0.002 and 0.0019, while
the value of R2 was 0.9576 and 0.9552 for the removal of 2,4-D and adsorption capacity,
respectively. On top of that, the best architecture for the Bayesian Regularization training
method was found to be 3:9:2 as this model has a very low MSE (0.0004 and 0.0003) and high
R2 (0.9910 and 0.9924) for the removal of 2,4-D and adsorption capacity, respectively. High
R2 and low MSE values show that the model has high accuracy in predicting both responses.
To sum up, the architecture of the optimized network for the Levenberg–Marquardt, Scaled
Conjugate Gradient and Bayesian Regularization training methods was 3:8:2, 3:9:2 and
3:9:2, respectively. Hence, it was decided that these networks were used in the post analysis
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of results whereby the responses under optimum conditions generated by different designs
of RSM models were predicted.

Figure 5. R2 plot over the number of hidden nodes for (a) removal of 2,4-D and (b) adsorption
capacity.

The comparison between the experimental and the computed ANN data’s spread
plot in training, testing and validation for the selected networks is shown in the following
Figure 6. Figure 6a shows the R value of 0.99998, 0.97368, 0.98974 and 0.99451 for training,
testing, validation and all data sets, respectively, for the optimized network with the
Levenberg–Marquardt training method. The R value for the optimized network with the
Scaled Conjugate Gradient training method is shown in Figure 6b with the value of 0.98161,
0.93959, 0.99975 and 0.97985 for training, testing, validation and all data sets, respectively.
The high value of R indicated that these optimized models have good precision as the R
value was a measure of the predictive ability of the networks [24]. Additionally, Figure 6c
shows the R value of 0.99999, 0.9922 and 0.99632, respectively, for training, testing and
all data sets for the optimized network with the Bayesian Regularization training method.
There was no R value for validation data sets available in this training method since the
validation stop was disabled by default in the training parameter settings. Nevertheless,
this training method has its own validation built into its algorithm, where the validation was
performed in the form of regularization [22]. This result was analogous to those reported
by Jazayeri et al. [28] whereby no data were available on the validation performance when
they estimated the output power of a photovoltaic (PV) module.

3.3. Post Analysis of Results

The post analysis was performed to validate the responses predicted by the RSM
models under optimum operating conditions recommended by the software. A similar
study was reported by Xu et al. [27], where three independent experiments were performed
under the predicted optimum condition to confirm the model prediction. In addition,
according to StateEase [22], for a case where the lack of fit was found to be significant, an
additional experiment could be run under optimal conditions. In the current study, the
additional experiment was replaced with the simulation of a selected optimized network
of the ANN model. The comparison between the responses predicted by the RSM model
and the selected optimized ANN model under optimum conditions recommended by the
Design Expert software is shown in Table 8. By using the confirmation tab in the Design
Expert software, the average result for all RSM models was found to fall within the 95%
prediction interval (PI). Hence, the model was useable, and the result predicted by the
models was validated.
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Figure 6. R value for training, testing, validation and all data sets for the best architecture of optimized
ANN model with (a) Levenberg–Marquardt training method, (b) Scaled Conjugate Gradient training
method and (c) Bayesian Regularization training methods.
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Table 8. Comparison between the responses predicted by RSM model and optimized ANN model
under optimum conditions.

Design

Optimum Condition Removal of 2,4-D (%) Adsorption Capacity (mg/g)

pH
Initial

Concentration of
2,4-D (mg/L)

Activated
Carbon Content

(wt%)

RSM
Predicted

Levenberg–
Marquardt

Conjugated
Gradient Bayesian RSM

Predicted
Levenberg–
Marquardt

Conjugated
Gradient Bayesian

FCCD 3 99.97 2.52 63.630 62.555 60.461 61.112 68.470 69.206 66.306 68.308
Optimal 3 94.52 2.5 65.010 64.713 60.323 61.094 65.280 66.555 65.677 68.234

Two-Level 3 100 2.5 63.520 62.657 60.462 61.112 60.050 69.252 66.308 68.309

4. Conclusions

In this study, the modeling and optimization for the adsorption process of 2,4-D using
modified hydrogel (AC/PDMAEMA hydrogel) were conducted with different designs
of RSM and different training methods of ANN. The 3D response surface plot in RSM
shows that the maximum removal of 2,4-D and adsorption capacity was achieved when a
high initial concentration of 2,4-D was used. In contrast, the high pH of the solution and
the activated carbon content in the polymeric network of the adsorbent had a negative
impact on both responses. Among different design methods of RSM, the empirical model
generated by optimal design was found to have the highest value of R2 for both responses
with the lowest C.V value. However, further study needs to be conducted in the future
to confirm the result since this result could be misleading due to the different sets of
experimental data used in this design. In the ANN modeling, the Bayesian Regularization
training method (with an architecture of 3:9:2) was found to have the best performance
among different training methods with a very low MSE and a high R2 for both responses.
From the numerical optimization, the maximum removal of 2,4-D and adsorption capacity
in optimal design were 65.01% and 65.29 mg/g, respectively, which were obtained at a pH
of 3, initial concentration of 2,4-D of 94.52 mg/L and 2.5 wt% of activated carbon. The post
analysis with the optimized ANN model found that the responses predicted by RSM under
optimum conditions were validated and the generated models were useable even though
they had a significant lack of fit.
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