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Abstract: Mushrooms are popular due to the nutrition contents in the fruit bodies and are relatively
easy to cultivate. Mushrooms from the white-rot fungi group can be cultivated on agricultural
biomass such as sawdust, paddy straw, wheat straw, oil palm frond, oil palm empty fruit bunches,
oil palm bark, corn silage, corn cobs, banana leaves, coconut husk, pineapple peel, pineapple leaves,
cotton stalk, sugarcane bagasse and various other agricultural biomass. Mushrooms are exceptional
decomposers that play important roles in the food web to balance the ecosystems. They can uptake
various minerals, including essential and non-essential minerals provided by the substrates. However,
the agricultural biomass used for mushroom cultivation is sometimes polluted by heavy metals
because of the increased anthropogenic activities occurring in line with urbanisation. Due to their role
in mycoremediation, the mushrooms also absorb pollutants from the substrates into their fruit bodies.
This article reviews the sources of agricultural biomass for mushroom cultivation that could track how
the environmental heavy metals are accumulated and translocated into mushroom fruit bodies. This
review also discusses the possible health risks from prolonged uptakes of heavy metal-contaminated
mushrooms to highlight the importance of early contaminants’ detection for food security.

Keywords: agriculture biomass; edible fungi; contamination; health; nutrition

1. Introduction

Mushrooms are believed to have first emerged more than a million years ago. The
oldest fossil of a gilled mushroom (Gondwanagaricites magnificus) confirmed its presence
in Gondwana approximately 14 to 21 million years ago, which was during the Early
Cretaceous [1]. People claimed that mushrooms were rare and supernatural species that
could cure illnesses in ancient times. They also thought that the mushrooms consisted of
healing qualities that could benefit humans. The Egyptians assumed that mushrooms were
immortality plants and regarded them as “gifts from the Gods” [2], whereas the Romans
posited that mushrooms were medicine from the gods that could assist in the hunt for
missing objects and souls [2]. Mushrooms have long been recognised, particularly during
the Chinese, Roman and Greek civilisations, where they consumed the edible mushrooms
as high nutritional property foods [3]. Other than being highly nutritious, mushrooms are
also famous due to the flavour and the texture of the flesh, which can enhance the aroma
when cooked [4]. Mushrooms can also be utilised for different purposes, especially for
sustainable human lifestyle [2] such as human food, animal feed, beverages, pharmaceutical,
nutraceutical, fashion, architecture, packaging and filtration technologies [5].

J. Fungi 2022, 8, 42. https://doi.org/10.3390/jof8010042 https://www.mdpi.com/journal/jof

https://doi.org/10.3390/jof8010042
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jof
https://www.mdpi.com
https://orcid.org/0000-0003-0510-5795
https://doi.org/10.3390/jof8010042
https://www.mdpi.com/journal/jof
https://www.mdpi.com/article/10.3390/jof8010042?type=check_update&version=1


J. Fungi 2022, 8, 42 2 of 17

Edible mushrooms can be wildly grown in the forests, especially on the dead and
decaying matter such as a stump, rotten bark and soil [6]. Mushrooms can also be cultivated
domestically or commercially. Mushrooms are one of the uppermost valuable commodity
crops listed in Malaysia’s National Agro-Food Policy (2011–2020) [7]. Despite that more
than 200 species of mushrooms have been used for functional foods worldwide for a long
time, only about 35 species have been commercially cultivated [8,9]. The most commonly
grown mushrooms in the world are Agaricus bisporus (button mushroom), Auricularia
auricula (wood ear mushroom), Flammulina velutipes (winter mushroom), Lentinula edodes
(shiitake), Pleurotus spp. (oyster mushrooms) and Volvariella volvacea (straw mushroom) [6].
There are mushrooms collected in the wild such as Ganoderma spp. (reishi mushroom),
Polyporus spp. (porous ping-pong bat) and Termitomyces spp. (termite mushroom) [3].

The growth substrate is one of the factors that can highly affect the quality of edible
mushrooms [10]. Given the saprophytic characteristic, the mushrooms obtain their nu-
trients by absorbing the dissolved organic matter from the deadwood and other decay
materials. Nevertheless, Demkova et al. [11] reported that mushrooms have the ability to
accumulate heavy metals in a large concentration, such as mercury (Hg), lead (Pb) [12,13],
arsenic (As) [14,15], cadmium (Cd) [13–15], manganese (Mn), copper (Cu), iron (Fe) and
zinc (Zn). Although some of the heavy metals such as Zn, Fe, Mn and Cu are essen-
tial metals in mushroom fruit bodies, others, such as Hg, Pb, As and Cd elements, are
health hazards [16]. Furthermore, most of the elements can be bio-accumulated by the
mushrooms, especially from the soil and substrates [17]. Therefore, this review discusses
and summarises the accumulation of heavy metals by mushrooms cultivated on various
substrates. The alternative substrates that have a permissible heavy metal content in the
substrates for a better quality of edible mushrooms were also identified.

2. Agricultural Biomass as Mushroom Cultivation Substrates

Several crops are cultivated and harvested around the world, with sugarcane (21%),
corn (13%), rice (9%) and wheat (8%) being the four individual crops accounting for half
of the global production of primary crops in the year 2018, whereas potatoes and soybean
accounted for 4% of the world’s crop production [18]. Corn, rice and wheat are the crops
that supply more than 42% of calories for the whole human population [19]. These crops
are employed in manufacturing processes as raw materials and generate solid wastes such
as rice straw, rice husk, wheat straw, corn silage, corn cob and sugarcane bagasse. Table 1
below shows the agricultural biomass produced in selected countries from each continent.

Table 1. Agricultural biomass produced in selected countries of the continents.

Continents Country Agricultural Biomass Produced References

Asia

Philippines

Rice hulls, rice straw, corn cobs, corn husks, corn leaves, corn
stalks, coconut husk, sugarcane leaves, sugarcane bagasse,

banana trunk, banana leaves, banana peels, pineapple crown,
pineapple peel, coffee pulp, mango peel, mango pulp, cacao

pods, cassava trunk, cassava leaves, cassava peel, peanut pods.

Cruz, 1997 [20]

Vietnam

Rice straw, rice husk, corn leaves, corn cobs, cassava leaves and
tops, cassava stalks, pulp and cortex, sugarcane leaves and

bagasse, coffee stem, leaves, husk and coffee ground, Soybean
steam, leaves, branches and shells.

Son et al., 2021 [21]

China Rice husk and straw, corn cobs, husk, leaves and stalks,
sugarcane bagasse, wheat straw

Atinkut et al., 2020 [22]
Millati et al., 2019 [23]
Basalan et al., 1995 [24]

USDA, 2018 [25]
Birru et al., 2016 [26]

Bakker et al., 2013 [27]

Thailand
Rice straw and husk, oil palm empty fruit bunch, sugarcane

bagasse, stumps and leaves, coconut husk and shells, cassava
leaves and peels, rubber sawdust

Papong et al., 2004 [28]
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Table 1. Cont.

Continents Country Agricultural Biomass Produced References

Malaysia
Rice straw and husk, oil palm empty fruit bunch, oil palm

trunk and frond, timber, coconut husk, coir and trunk,
sugarcane bagasse, stumps and leaves

Siddiqui et al., 2019 [29]
Ozturk et al., 2017 [30]

Indonesia

Rice husk and straw, corn cob, stalk and husk, cassava stalk, oil
palm mesocarp fibre, oil palm kernel shell and empty fruit
bunch, coconut husk and shell, forest and wood residues,

sugarcane tops and bagasse
Coffee leaves, pulp, husk and spent coffee grounds

Budhijanto et al., 2019 [31]
Pranoto et al., 2013 [32]

Abdul Wahid et al., 2017 [33]
Klingel et al., 2020 [34]

India
Rice husk and bran, Wheat bran and straw, corn stover, husk

and skins, miller stover, sugarcane tops, bagasse and molasses
Apple pomace

Phonbumrung et al., 1998 [35]
Arvanitoyannis et al., 2008 [36]
Bhuvaneshwari et al., 2019 [37]

Lyu et al., 2020 [38]

Europe Covers 28 EU countries
Vine shoots, grape stalks and grape pomace

Coffee leaves, pulp, husk and spent coffee grounds
Apple pomace

Pardo-Gimenez et al., 2007 [39]
Klingel et al., 2020 [34]

Lyu et al., 2020 [38]

Africa Tanzania Rice husks, coconut shells, cashew nuts shells and palm
fruit shells Mdoe, 2014 [40]

Oceania Australia Coffee husk and coffee pulp powder
Apple pomace

Bio Bag, 2020 [41]
Lyu et al., 2020 [38]

In Malaysia, the agricultural sector has become one of the country’s major contrib-
utors to its economy. As the agriculture sector expands, crop yields have risen, thereby
increasing the generation of agricultural waste such as paddy straw, coconut husk, corn
silage, sugarcane bagasse and others. According to Tambichik et al. [42], the amount of
waste generated by agricultural and construction industries grew annually, particularly in
Malaysia. However, Malaysia has disposed of 1.2 million tonnes of agricultural waste into
landfills yearly [43]. Large amounts of unused lignocellulosic by-products are available in
tropical and subtropical areas, especially in Malaysia [44]. Poor management of agricultural
waste can lead to environmental pollution. For instance, one of the most important issues
that might pollute the environment is the open burning of paddy straw at the paddy field.
Besides, the waste from the pineapple leaves and pineapple skins are usually left rotten
on the farm. Therefore, each individual needs to be made aware of the importance of
taking care of the environment. To reduce the environmental pollution caused by inefficient
agro-waste management, the waste produced can be utilised as a substrate for mushroom
cultivation [45]. Table 2 shows the list of various agricultural residues used for mushroom
cultivation from previous research.

Table 2. Various agricultural residues used for mushroom cultivation.

Mushroom Species Agriculture Residue as Substrates References

Pleurotus sp.
(oyster mushroom)

Wheat straw, rice straw, soybean straw, corn straw, peanut straw,
rape straw.

Sawdust, corn husk, corn cob, corn stalk.
Date palm leaves, wheat straw, sawdust.

Rice straw, wheat straw, cotton straw, tea leaves, banana leaves.
Cotton waste, sawdust

Paddy straw, coir pith, banana leaf
Wheat straw and olive mill waste

Vineyard pruning and grape pomace

Wu et al., 2019 [46]
et al., 2015 [47]

Alananbeh et al., 2014 [48]
Kamthan et al., 2017 [49]

Odunmbaku et al., 2018 [50]
Udayasimha et al., 2012 [51]

Ruiz-Rodriguez et al., 2010 [52]
Sanchez et al., 2002 [53]

Lentinula edodes
(button mushroom)

Rice bran, coffee pulp, coffee husk, spent coffee grounds, sugarcane
bagasse, corn cob, millet straw, wheat straw, tea leaves, peanut

hulls, cottonseed hulls, sunflower seed hulls, dried grass powder,
water hyacinth, etc.

Wheat straw
Wheat straw, corn cobs, oak-wood sawdust

Beech sawdust, wheat bran, olive oil press cakes, gypsumGrape
stalks and vine shoots

Kamthan et al., 2017 [49]
Mata et al., 2018 [54]

Philippoussis et al., 2007 [55]
Gregori et al., 2012 [56]

Pardo-Gimenez et al., 2007 [39]
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Table 2. Cont.

Mushroom Species Agriculture Residue as Substrates References

Schizophyllum commune
(split gills mushroom)

Banana leaves, coconut leaves, paddy straw, coir dust,
rubber sawdust Ediriweera et al., 2015 [57]

Volvariella volvacea
(straw mushroom)

Tea leaves, paddy straw, water hyacinth, oil palm bunch, oil palm
pericarp waste, banana leaves, sawdust, cotton waste and

sugarcane bagasse.
Paddy straw, cotton waste, banana leavesRice straw

Kamthan et al., 2017 [49]
Mangunwardoyo et al., 2018 [58]

Biswas et al., 2014 [59]

Ganoderma lucidum
(lingzhi mushroom)

Sawdust
Broad beanstalks, cotton stalk, corn straw, paddy straw, sugarcane

bagasse and wheat straw

Kamthan et al., 2017 [49]
Rashad et al., 2019 [60]

Flammulina velutipes
(enoki mushroom) Olive waste and poplar wood shavings Rugolo et al., 2016 [61]

Un-utilised agriculture waste increases year by year if proper waste management is
lacking to overcome the problems. Several types of agricultural waste are freely available in
the world. Agriculture waste mainly contains lignocellulose as the main component, and it
is built with cellulose, hemicellulose and lignin, as well as the extractives and minerals [62].
These three major structural components are found in the entire parts of the vascular plants,
serving as structural support systems. Basically, the lignin components in the biomass
only cover 10% to 25% of the biomass on a dry basis, while the cellulose and hemicellulose
typically range from 40% to 60% and 20% to 40% on a dry basis, respectively [63]. The major
lignocellulose agricultural residues produced are paddy straw, wheat straw, barley straw,
corn stover, sorghum stalks, coconut husk, sugarcane bagasse, oil palm wastes, pineapple
skin and banana leaves [64]. Due to the inclusion of cellulose, hemicellulose and lignin in
the agricultural biomass, it makes the residue difficult to break down. Nevertheless, the
decomposition process of fungi can easily degrade agricultural biomass [49]. Fungi are
natural decomposers that can degrade agricultural biomass and catalyse the decomposition
process. Therefore, the involvement of fungi in re-utilising abundant and renewable
resources such as agriculture waste or biomass is one of the alternative ways to solve the
abundant agriculture waste produced in the field.

Mushrooms are the spore-bearing and the largest fungi [5] with the potential of
degrading the lignocellulosic-agricultural residues into food because they lack the chemo-
heterotrophic extracellular digestion process. The lignocellulose product obtained from
the decomposition process allows the mushroom to use it as a source of nourishment [45].
However, a few fermentation factors such as medium composition, the ratio of carbon
to nitrogen, pH, temperature and air composition influence the obtained lignocellulose
product [65]. Nutrient sources for mushrooms mostly come from the substrates, affecting
the chemical, functional and sensorial characteristics of the mushroom fruit bodies [66].

Minerals are an integral part of the substrate necessary for mushrooms’ growth. The
substrate can also be supplemented with minerals, which when applied in adequate
amounts can improve the incubation and fructification speed. In fact, lignocellulosic
substrate materials usually have a lower mineral content compared to others [65], and they
need supplements to fulfil the requirements for cost-effective production. The addition of
supplements to the substrates can increase the growth rate of the mushroom fruit bodies.
As reported by Fanadzo et al. [67], the cultivation of P. ostreatus on the wheat straw with the
application of cottonseed hull as supplements can increase mushroom biological efficiency
(BE) compared to maize bran, which is 70.4% and 49.4%, respectively. It proved that the
addition of different minerals such as supplements could help the fructification in some
mushroom strains [68]. The application of supplements must be in a desirable amount
that is suitable with the requirement of the mushroom species. Excessive application of
supplements towards mushroom cultivation leads to increasing the mineral contents in
the mushroom substrate that culminates into excessive bed temperature, the possibility
of mycelium mortality [67] and undesirable flavour towards food and contamination [69].
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A few trace elements can also be naturally found in the mushroom substrates, such as
calcium, zinc, manganese, iron, copper and molybdenum cations. However, modernisation
has heightened the demand for these trace elements in various industries, which has led to
increased exploitation of raw materials. The activities will cause the mobilisation of a large
amount of gas and contaminants in the ecosystems [70].

3. Sources of Heavy Metals in Mushroom Substrates

Heavy metals are a group of metals and metalloids that have relatively high density
and high toxicity, even at permissible limits, such as Pb, As, Hg, Cd, Zn, Ag, Cu, Fe, Cr, Ni,
Pd and Pt [71]. Heavy metals can also be classified as inorganic chemical hazards that are
mostly found in contaminated areas [72], and the common examples include Pb, Cr, As, Zn,
Cd, Cu, Hg and Ni [73]. Kabata-Pendias et al. [74] reported that heavy metals could occur
naturally in the soil environment due to the weathering process of the parent material at a
trace level of less than 1000 mg kg−1. The heavy metals can be eliminated and uptakes by
the microorganisms depends on the chemistry of ion metals, cell wall compositions in the
microorganisms, physiology of the cell and phytochemical factor such as pH, temperature,
time ionic strength and metal concentration [75] The industrial revolution has facilitated
advanced technology with broad effects on environmental pollution, especially in the
industrial sector [76,77]. Rapid industrialisation and urbanisation in emerging countries
have caused increased heavy metals’ contamination and pose a risk to human health and
the environment [78].

Soil, water and air are the major components of the environment that are usually
polluted by heavy metal contaminants produced by anthropogenic activities [79]. More-
over, heavy metals have also been introduced into agricultural systems through land
application of sewage sludge, organic waste manure, industrial waste and irrigation with
wastewater [80]. Heavy metal contamination has a wide range of effects on agriculture,
from agricultural soil to the products consumed by humans. Given the growing usage
of agrochemicals and inorganic fertilisers, modern agricultural practices have resulted
in agricultural pollution that results in the ecosystem and environmental damage [81].
Inorganic fertiliser, which includes liming, irrigation and sewage sludge, are the significant
sources of heavy metals in agricultural soil (Table 3). Different anthropogenic activities can
influence heavy metal concentrations. The concentration of heavy metals differs among
anthropogenic activities due to the application of phosphate, potash and nitrate fertiliser
and lime.

Table 3. Sources of heavy metals in agricultural soil.

Sources Type of Activities Heavy Metal References

Fertilisers
Phosphate, Potash and Nitrate

fertiliser
Lime

Zn, Pb, Cr, Cd, As

Karalic et al., 2013 [82],
Atafar et al., 2010 [83],

Sun et al., 2013 [84],
Kelepertzis 2014 [85].

Pesticides
Herbicides
Insecticides
Fungicides

As, Co, Cr, Ni, Pb, Cu, Zn, Cd

Defarge et al., 2018 [86],
Kelepertzis, 2014 [85],

Quinteros et al., 2017 [87],
Srivastava et al., 2017 [88]

Manure and bio-solid
Livestock manure

Composts
Sewage sludge

Cu, Zn, Mn, Cr, Pb, Ni, Cd

Provolo et al., 2018 [89],
Wuana et al., 2011 [72],

Srivastava et al., 2017 [88],
Sharma et al., 2017 [85]

Wastewater
Irrigation with municipal

wastewater
Industrial waste water

Zn, Cu, Ni, Pb, Cd, Cr, As, Hg
Wuana et al., 2011 [72]

Balkhair et al., 2016 [90],
Woldetsadik et al., 2017 [91]

Atmospheric deposition Mining, transportation, waste
incineration Cr, Pb, Zn, As, Cd, Hg, Ni Wuana et al., 2011 [72]
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Fertiliser is important in preserving plant growth. Plants need essential macronutrients
such as N, P, K, S, Ca and Mg for their growth. However, the soil needs to be supported
with additional supplements due to the deficiency of a few heavy metals, such as Fe, Zn,
Cu, Co, Mn, Mo and Ni [92]. Cereal crops cultivated on Cu-deficient soil are occasionally
treated with Cu as a soil amendment [72]. Other than fertiliser application, pesticides are
also one of the agriculture essentials which include herbicides, insecticides and fungicides.
The function of pesticides is to control the pests and weeds that are detrimental to the
crops. Pesticides used in agriculture usually contain metals. For example, lead arsenate is
used in fruit orchards for parasite control [72]. In Malaysia, the use of herbicides covered
about 83% of the total pesticides used in agriculture [62]. The application of phosphate
fertiliser, inorganic fertilisers and pesticides in the plantation have contributed to the
varying concentration of Zn, Pb, Cr, Cd and As in the soil [72,84,85]. For instance, leachate
of Cd in the soils will be taken up by the plants and highly deposited on leaves that may be
consumed by animals or humans [88] (Figure 1).
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Figure 1. Bioaccumulation of heavy metals in mushrooms enters the food chain.

Apart from fertilisers and pesticides, manure and bio-solids also add Cu, Zn and
Mn into the soil, while sewage sludge contributes Cu, Zn, Mn, Cr, Pb, Ni and Cd [80].
Growers also use animal manure from poultry, cattle and pigs for their crops. Although
the application of animal manure could be considered as organic fertiliser, the excessive
application to the soil or long-term application of manure might increase soil salinisation
and intensify the accumulation of heavy metals in plants [93,94]. The concentration of Cu,
Mn, Zn and Cr was demonstrated to be higher in plant shoots that were treated with pig
slurries [89]. The animal manures contain high concentrations of heavy metals such as As,
Cu and Zn, and hence the long-term application on soil can increase the concentration of
these heavy metals. Bio-solid, also known as sewage sludge, is an organic solid product
that is mostly produced during the wastewater treatment process. The organic solid can be
recycled and usually applied in agriculture as fertiliser [72]. Thus, the leachate from the
applied bio-solid can also be incorporated into the soil and increase the concentration of
the heavy metals [95].

Furthermore, the heavy metal contamination in the soil is caused by atmospheric
deposition through mining, transportation and waste incineration. Metals are released into
the air usually through fugitive emission, emission of air, gas or vapour, however, some
heavy metals such as As, Cd and Pb have volatile characteristics when reacting with high
temperatures. These heavy metals are very toxic when inhaled by humans and may cause
serious illness. The contaminated smoke contains solid particles that are deposited on land
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or sea. Exposure to heavy metals from the air is more dangerous because the contaminants
can widely spread and increase the deposited area.

Besides, industrial activities also contribute to heavy metal contamination. The levels
of heavy metals in soil can increase due to mining activities by accelerating the bedrock
weathering [96]. For instance, gold mining contributes to the Hg in the environment [72],
while As, Cd and Fe are produced by the coal mines, which causes serious problems in the
soil and negatively affects human health. Other than that, the metals will be distributed
into the water and surface sediments, resulting in contamination of water sources and the
land that are used as plant nutrition sources [96]. Therefore, the plants directly uptake
the heavy metals from mining activities, which are then translocated into the food chain.
The contaminations are stated as a longstanding compound and can cause long-term
health problems [97].

Besides the natural existence of metals in soil, most human activities also contribute
towards the contamination of the soil by heavy metals. Due to the excessive contaminants
deposited into the soil, the contaminants will also be deposited into the plants due to the
phytoremediation process occurring from the soil through the roots [98]. The plants will
absorb the heavy metals from the soil and release the natural substances to supply the
nutrient through the roots. However, the heavy metals will remain in the plants.

4. Bioaccumulation of Heavy Metals in Mushrooms

Heavy metal contamination of the rivers, agricultural areas and lands has been re-
ported [99]. The heavy metals can be eliminated from the contaminated area through
several methods, such as chemical precipitation, coagulation with alum or iron salts, mem-
brane filtration, reverse osmosis, ion exchange and adsorption [100,101]. The biosorption
method is a promising low-cost metal removal method, where microorganisms are used to
eliminate the metals [102]. In this context, the heavy metals can be eliminated and taken up
by the microorganisms depending on the chemistry of ion metals, microorganisms’ cell wall
compositions, physiology of the cell and phytochemical factors such as pH, temperature,
time ionic strength and metal concentration [102].

Crops, vegetables and fruits are stated to have low heavy metal concentrations com-
pared to the levels in mushroom fruit bodies [103]. Mushrooms can easily absorb heavy
metals from the environment due to the ability to undergo the mycoremediation process
compared to other plants that grow in the same area [104]. Additionally, mushrooms can
absorb either essential or non-essential metals. Essential metals are those that are required
at certain levels by humans for biological systems, such as Fe, Cu, Mn and Zn. However,
excessive levels of these essential metals can also cause negative effects on the organisms.
Likewise, non-essential metals such as Cd, Pb and As are toxic and can cause serious illness
to the organisms [105]. The accumulation of heavy metals in mushroom fruit bodies is
noted to be affected by mushroom species, substrates’ composition and bioavailability of
the metals [106].

Heavy metal accumulation varies based on different mushroom species. Pleurotus sp.
is a mushroom species that has a very high potential in the biosorption of environmental
contaminants (Table 4). Specifically, P. sajor-caju, P. ostreatus and P. florida were reported
to absorb Cd, Cu, Ni, Fe, Zn, Mn, Hg and Pb [71,103,107,108]. Pleurotus sp. are widely
grown all over the world, especially in the forest [104]. The highest heavy metal recorded in
Pleurotus sp. is Fe at 243.92 mg/kg of dry weight [103], while Lentinula edodes recorded the
highest amount of As compared to other mushroom species, which was 1.21 mg/kg of dry
weight, exceeding the permissible limit by the WHO 2015 (Table 5). The bioaccumulation
potential in each of the mushroom species shows the mushroom’s capability to absorb the
metals based on a species-to-species mechanism [102].

Heavy metals in mushrooms also arise from their growth environment, especially
from their growth substrates. Other than wild-growing mushrooms, growers often use
agriculture biomass to cultivate the mushrooms. Nevertheless, some of the agriculture
biomass contained heavy metals due to anthropogenic activities (Table 3). The heavy
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metals may remain in the biomass and be transported into mushroom fruit bodies through
cultivation. The uptake of metals from the biosorption process by the mushrooms is
unevenly distributed within the mushroom fruit bodies. Mushrooms contain abundant
hyphae in the mycelium that help the biosorption of nutritive elements and heavy metals
in the substrates [104]. The hyphae have a rough texture and can attract metals and other
chemical contaminants [102]. The mycelia of the mushroom can also act as a biological
filter and possible sorbent to the mushroom fruit bodies. Fe, Hg, As, Cd, Zn and Pb have
been detected in high concentrations in the sporocarps of the wild mushrooms compared
to the stipe [15]. The cell wall of this mushroom species helps in the biosorption of heavy
metals into the fruit bodies, and they have been reported to have carboxylic, amino, thiol,
phosphate and hydroxide groups computed in the cell wall [109].

Table 4. Absorption of heavy metals in mushroom fruit bodies.

Mushroom Species Edibility Heavy Metal Concentration in Fruit Bodies References

Pleurotus sajor-caju Edible Cd (98.94), Ni (97.22), Fe (88.24) * Yadav et al., 2020 [71]

Pleurotus ostreatus Edible

Cu (53.56), Fe (220.87), Zn (89.68), Mn (47.55) *
Pb (3.24), Cd(1.18), Hg (0.42), Cu (13.6), Mn (6.27), Zn (29.8),
Fe (86.1) *Pb (0.11), Cd (0.55), Hg (0.31), Fe (48.6), Cu (5.0),

Mn (10.3), Zn (19.3) *
Cd (11.2), Hg (1.2), Zn (0.8), Pb (0.0) *

Gebrelibanos et al., 2016 [103]
Demirbas, 2001 [110]

Tuzen et al., 1998 [107]
Lasota et al., 1990 [108]

Pleurotus florida Edible Cu (53.56), Fe (243.92), Zn (95.26), Mn (41.29) *
Cd (98.93), Ni (97.22), Fe (84.84) *

Gebrelibanos et al., 2016 [103]
Yadav et al., 2020 [71]

Pleurotus eryngii Edible Cu (0.00), Zn (1.00), Cd (0.03), Co (1.00), Ni (0.00) *** Drzewiecka et al., 2010 [111]

Lentinula edodes Edible Ni (1.6), Cr (3.25), Pb (0.84), Cd (1.15), As (1.21), Hg (0.0) * Na et al., 2014 [75]

Schizophyllum commune Edible Hg (0.0), Fe (11.00), Zn (6.46), Pb (1.56), Cu (1.76),
Cd (2.25), Ni (4.24) * Udochukwu et al., 2014 [112]

Volvariella volvacea Edible

Cu (93.59), Pb (98.69)Hg (0.0), Fe (8.25), Zn (27.33), Pb (1.25),
Cu (1.55), Cd (4.88), Ni (5.75) *

Fe (322.5), Cu (101.8), Zn (36.5), Mn (78.5),
Cr (0.24), Pb (0.25) **

Yadav et al., 2013 [71]
Udochukwu et al., 2014 [112]
Mohiuddin et al., 2015 [113]

Ganoderma lucidum Edible
Pb (0.08), Cd (0.11), As (0.03), Hg (0.01) *
Fe (303.0), Cu (72.5), Zn (52.2), Mn (64.0),

Cr (0.21), Pb (0.13) **

An et al., 2020 [114]
Mohiuddin et al., 2015 [113]

* mg/kg dry weight, ** µg g−1 dry weight, *** mM kg−1 dry weight.

Table 5. Permissible level for heavy metals in food and vegetables according to FAO/WHO (2015).

Metals WHO/FAO (mg/L) Normal Range in Plant (mg/L)

Cu 30.0 2.5
Pb 2.0 0.50–30.0
Zn 60.0 20.0–100.0
Fe 48.0 400.0–500.0
As 0.2 0.2–1.5

5. Translocation of Heavy Metal Contamination in Mushroom Food Chain

Mushrooms are popular due to their nutritional value, which offers several benefits to
consumers. Due to the ability to undergo the mycoremediation process, the mushrooms can
absorb heavy metals, especially the wild mushroom that grows in contaminated areas [104].
However, the main concern is the consequences that come from heavy metal mitigation in
the trophic chain, comprising the soil, plants, animals and humans [115]. The permanent
entry of heavy metals into the food chain can be extremely dangerous, especially for human
health. Heavy metals can mainly spread in humans and animals through food, air or
skin [116]. Some edible mushrooms can accumulate high concentrations of certain metals,
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such as As, Cd, Cu, Hg and Pb [117]. Most of these metals contain major toxic and harmful
effects on human health at low levels. Hence, little effort has been made to investigate the
potential danger of mushroom consumption to human health.

Arsenic (As) is one of the metals that can be found in marine organisms such as fish,
squid, clams and other marine invertebrates [118], as well as in mushroom fruit bodies
and the environment [119]. The permissible As level in food and vegetables according
to FAO/WHO (2015) is at 0.2 mg/L (Table 4). Prolonged consumption of high arsenic
content food may cause cancer and skin lesions [120] and could be highly toxic when in
an inorganic state. Lentinula edodes is reported to mainly contain inorganic As, which is
84% (1.38 mg/L) and above the permissible As safe consumption level [121]. Additionally,
the ingestion of As at a dangerous level can lead to liver disease, coma and death in the
worst-case scenario [122].

Another heavy metal in the mushroom food chain that is detrimental to humans is Cd.
Exposure to and consuming high Cd level food remains a high risk for the deterioration
of human health. Chunhabundit [123] reported that exposure to Cd could lead to chronic
kidney disease, osteoporosis, diabetes, cardiovascular disease and cancer. Entrance of Cd
into body systems can cause renal damage by proximal tubule dysfunction. Exposure to
Cd can induce oxidative stress and modification of DNA expression [124].

Pb has also been detected in Agaricus bisporus collected from urban areas, and the Pb
content in A. bisporus was found to be 0.54 mg/kg dry weight [12]. Environmental scientists
reported that Pb toxicity is dangerous to plants, animals and humans [125]. Several diseases
could develop when Pb enters and contaminates the food chain. Pb can also be found in
straw mushroom fruit bodies that grow on Pb-contaminated rice straw and stubble, where
the highest Pb concentration is recorded in egg and the mature stage of straw mushroom
(V. volvacea) [126]. The chances of these metals in straw mushrooms entering the consumer
food chain are high since the button to egg stages are the preferred harvesting stages for
straw mushrooms [127]. By consuming high Pb content food, the antioxidants’ cell defence
system may be disrupted, leading to cell death [125]. The metals can also enter the central
nervous system and cause behavioural and developmental disorders, such as learning
disabilities, attention deficit disorders, brain damage, muscle weakness, anaemia and renal
dysfunction [119]. The most dangerous effects can also occur following long-term exposure
to Pb contamination.

Apart from the metals, Cu is an essential mineral that is beneficial to various physio-
logic and metabolic effects in humans. Cu is an important component for bone formation
and metabolism of iron and heme synthesis in the human body and enhancing the proper
function of the nervous system [128]. However, excessive intake of Cu might lead to Cu
toxicity and is a potential carcinogen [129]. The carcinogen in mushrooms can promote the
growth of tumours in humans. Furthermore, prolonged consumption of Cu-contaminated
food can cause various types of health problems, such as hepatic cirrhosis, anaemia, osteo-
porosis, cell hemolysis and kidney disorders [130–132]. The accumulation of Cd has been
reported in Pleurotus species that grew on metal-enriched duckweed and the accumulation
of Cd content was above permissible limits [133].

Mercury (Hg) contamination is one of the most important issues, especially in the
environment and humans [133]. Hg exposure has become a major public health concern
worldwide [134]. The concentration of Hg in edible mushrooms is extreme, especially
for those cultivated in a contaminated environment. The issue of Hg contamination in
food has become a concern if it gains entry into the human body. Slavik et al. [135]
found high Hg levels in edible mushrooms cultivated in highly contaminated areas in Spis.
Therefore, it is not advisable to consume mushrooms grown in high-risk areas because Hg
can cause nervous system damage in adults and impaired neurological development in
infants and children [136]. Consistent exposure to Hg can also induce oxidative stress and
mitochondrial dysfunction [137].

Mushroom intake was defined as any amount of mushroom consumed based on USDA
food codes including the foods that were mixed with mushrooms [138]. The standard
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mushroom daily intake is 84 g, which is about three ounces per person [139]. In Malaysia,
it is estimated that the rate of mushroom consumption is 2.4 kg per person in the year
2020 [140]. High consumption of contaminated mushrooms can lead to high exposure
to heavy metals. The most crucial factor to reduce the risk of contamination of heavy
metals for human health is by monitoring the sources of the mushrooms. The risk of
exposure towards heavy metals from the consumption of mushrooms can be determined by
estimated daily intake, target hazard quotient, carcinogenic risk and the hazard index [52],
which can be calculated according to the following equation [141]:

EDI
(

mg
kg.day

)
=

C × IR × ED × EF
BW × AT

(1)

where EDI represents estimated daily intake, C is concentration of heavy metal in the edible
mushroom (mg/kg), IR is ingestion rate (kg/person/daily), EF is exposure frequency
(350 day/year), ED is exposure duration (children = 6 years, adults = 30 years), BW is body
weight (children = 15 kg, adults = 70 kg) and ATn (EF × ED) is average time if exposure
(children = 2190 days, adults = 10,950 days).

The target hazard quotient (THQ) can be expressed as the ratio of EDI to the reference
dose (RfD), which can be calculated using the following equation:

THQ =
EDI (mg/kg − day)
RfD (mg/kg − day)

(2)

The RfD value can be determined as 4.0 × 10−2, 7.0 × 10−1, 3.0 × 10−1, 3.5 × 10−3, 1.5,
1.0 × 10−4 and 1.4 × 10−2, 2.0 × 10−2 and 1.0 × 10−3 mg kg−1 day−1 for Cu, Fe, Zn, Pb,
Cr, Mn, Ni and Cd, respectively [141]. However, the THQ value differs based on various
heavy metals’ concentrations in edible mushrooms, duration of exposure, rate of ingestion,
type of heavy metals and number of heavy metals analysis [141].

6. Formulation of Mushroom Substrate and Heavy Metal Relation

Each mushroom species needs optimal nutrition in the cultivation substrates that help
the mushroom growers achieve the highest yield in a short cultivation period. Mushrooms
cultivated on a commercial scale require good-quality substrates that can give a high
yield in return. Mushrooms, especially Pleurotus spp., need substrates containing carbon,
nitrogen and inorganic compound for their growth [66]. The main mushroom substrates are
usually low in nitrogen and high in carbon, where it contains cellulose, hemicellulose and
lignin such as paddy straw, wheat straw, cottonseed hulls, sawdust, wastepaper, leaves and
residue from the sugarcane [142]. Most of the growers used sawdust and wheat straw as the
commercial mushroom substrates, supplemented with different commercial supplements
such as rice bran, cottonseed hulls and other cereal bran [143].

However, most commercial substrates, especially the rubber sawdust and wheat straw,
have been polluted with different kinds of pollutants and caused an increased accumulation
of heavy metals in the substrates (Table 6). Given the ability to absorb heavy metal ions,
sawdust has a high content of heavy metals compared to wheat straw [144]. Moreover, the
heavy metals in Pleurotus sp. fruit bodies can be affected by the growth substrates [145].
Heavy metals are non-biodegradable by any biological and physical process and could
remain in the soil for years. Once the heavy metal is leached, it will be immobilised
in the soil and leach into groundwater and might be accumulated and taken up by the
plants [145]. An increased concentration of heavy metals and inorganic matter in the plants
will also reduce the pH, thereby facilitating easier detection of the biological materials in
the plants [103]. Furthermore, high heavy metal content in plants can affect the content in
the mushroom because the fruit bodies are able to accumulate the heavy metal that leached
into the plants. Thus, it is important to choose the alternative mushroom substrates with a
heavy metal content at the permissible level.
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Table 6. Chemical and heavy metal composition in commercial mushroom substrates.

Mushroom Species Mushroom Substrates Biochemical
Composition

Substrate Heavy Metal
Content References

Pleurotus sajor-caju and
Pleurotus ostreatus

(grey oyster mushroom)

Rubber sawdust with rice
bran and hydrated lime

Protein (14.5),
Carbohydrate (61.45),

Fat (23.22), Lignin (70.27),
Ash (5.146) *

Cu (0.020), Zn (0.539),
Mn (0.580), Fe (3.233) *

Abd Rasib et al., 2015 [146]
Boamponsem et al.,

2013 [145]

Pleurotus florida
(white oyster mushroom)

wheat straw with 2% of
aqueous formalin

Protein (16.1),
Carbohydrate (63.57),

Fat (23.78), Lignin (70.67),
Ash (5.299) *

Cu (1.034), Fe (0.920),
Zn (1.483), Mn (0.660) ***

Abd Rasib et al., 2015 [146]
Gebrelibanos et al.,

2016 [103]

Pleurotus eryngii(king
oyster mushroom)

50% sawdust with 25%
cotton seed hulls and 25%
wheat bran supplemented

with gypsum

Protein (21.5), Ash (6.02),
Fiber (62.0), Lipid (0.54) *

As (0.16), Cr (0.12),
Cd (0.83), Hg (0.00006),
Pb (2.110), Na (244.00),

K (3927.00), Ca (4671.00),
Mg (1391.00), P (1262.00),

Cu (2.90), Mn (13.10),
Zn (5.60), Fe (19.50) **

Sun et al., 2013 [84]

Ganoderma
lucidium(ganoderma)

Rubber sawdust with rice
bran and hydrated lime

Protein (36.6),
Carbohydrate (70.42),

Fat (25.56), Lignin (72.13),
Ash (5.605) *

Cu (24.00), Mn (31.00),
Zn (31.00), Cd (<0.05),
Hg (0.01), Pb (2.00) **

Abd Rasib et al., 2015 [146]
Tham et al., 1999 [147]

* g/kg dry weight, ** µg/g dry weight, *** mg/kg dry weight.

7. Conclusions

There are high amounts of nutrients in most agricultural biomass, and the raw materi-
als are particularly suitable for growth substrates. The utilisation of agricultural biomass
or wastes as sources of mushroom substrates offers suitable ways to overcome the excess
waste in the agriculture field. The occurrence of essential and non-essential elements in
agricultural biomass such as mushroom substrates indicates the quality of the production of
mushroom fruit bodies. Good-quality mushrooms uptake nutrients from good-quality sub-
strates. Unfortunately, the non-essential elements can be translocated into the mushroom
fruit bodies through the mycoremediation process performed by the edible mushroom. The
contaminants that leached into the substrates could enter the human food chain through
consumption of the mushroom fruit bodies, leading to various health problems either in
short or long consumption periods. Therefore, to improve future national food security,
detection and selection of suitable agricultural biomass as mushroom substrates is crucial
to avoid the bioaccumulation and translocation of heavy metals into the food chain.
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