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Abstract: The application of polymer inclusion membranes (PIMs) for the aquatic remediation of
several heavy metals, dyes, and nutrients has been extensively studied. However, its application
in treating organic compounds such as Ibuprofen, an emerging pharmaceutical contaminant that
poses potential environmental problems, has not been explored satisfactorily. Therefore, graphene
oxide (GO) doped PIMs were fabricated, characterized, and applied to extract aqueous Ibuprofen at
varied pH conditions. The doped PIMs were synthesized using a low concentration of Aliquat 336 as
carrier and 0, 0.15, 0.45, and 0.75% GO as nanoparticles in polyvinyl chloride (PVC) base polymer
without adding any plasticizer. The synthesized PIM was characterized by SEM, FTIR, physical, and
chemical stability. The GO doped PIM was well plasticized and had an optimal Ibuprofen extraction
efficiency of about 84% at pH of 10 and 0.75% GO concentration. Furthermore, the GO doped PIM’s
chemical stability indicates better stability in acidic solution than in the alkaline solution. This study
demonstrates that the graphene oxide-doped PIM significantly enhanced the extraction of Ibuprofen
at a low concentration. However, further research is required to improve its stability and efficiency
for the remediation of the ubiquitous Ibuprofen in the aquatic environment.

Keywords: Ibuprofen; contaminants of emerging concerns; polymer inclusion membrane; graphene
oxide; chemical stability; wastewater; remediation

1. Introduction

A composite material consists of two or more components designated as matrix and
filler. The primary function of the filler is to fill in the matrix and synergistically combine
the advanced properties of the matrix and filler for improved performance, as evidenced
by the several significant breakthroughs and considerable benefits for commercial water
treatment and desalination applications [1]. Over the past few decades, nanoparticles have
been incorporated into several industrial processes and applications, particularly carbon-
based materials used as charges in water treatment mechanisms [2,3]. For example, several
authors [2–10] have reported graphene and its derivatives as suitable fillers to remove
several organic and inorganic wastewater contaminants with remarkable efficiencies [11,12].

Following its discovery by Novoselov et al. in 2004, graphene, a single-layer 2-D
structure material with thin thickness at the atomic level, has received serious attention in
the broad scientific community and is notably recognized as a major potential component
in next-generation membrane technologies (Graphene-Info, 2012), [13–18]. Graphene has
good water channel properties, large surface area, remarkable tensile strength (~1 Tpa), the
exceptional electrical conductivity of ~106 s cm−1 at ordinary temperature, high thermal
conductivity of ~5000 W m K−1, enhanced active sites, large delocalized π-electron systems,
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and chemical stability coupled with an exclusive tunable size structure. Hence, the material
can be easily engineered for different aqueous filtration techniques. Furthermore, graphene
is an ideal adsorbent for wastewater making it a unique nanofiller material [12,13,18].

Native graphene is hydrophobic, which limits its application in wastewater treatment
processes. However, the oxidized form of graphene (GO), formed from thermal or chemical
exfoliation of graphite oxide, exhibits hydrophilic properties and is frequently used as
nanofillers for water remediation mechanisms. Furthermore, the presence of oxygenated
functional groups such as the carboxyl, the primary hydroxyl group on edge plane, epoxy,
tertiary hydroxyl, and carbonyl groups on basal planes, among others found in GO, coupled
with their excellent solubility and the potential for surface functionalization, make GO a
better nanocomposite material compared to the native graphene. In addition, previous
reports have proven the remarkable removal response of magnetic/graphene nanoparticles
or GO composites for contaminants such as chromium, copper, arsenic, cadmium, lead,
cobalt, and an organic dye [19].

The advent of new and more sensitive analysis methods has made it possible to detect
very low concentrations of various potentially dangerous contaminants in the aquatic
systems up to ng/L detection level. This newly detected and potentially harmful chemical
class is now globally classified as “emerging pollutants” or Contaminants of Emerging
Concern (CECs). According to Poynton and Robinson, the US Geological Survey (2016)
has defined CECs as “any unregulated synthetic or naturally occurring chemical or any
microorganism not commonly assessed in the environment but with the potential of been
dispersed in the environment causing known or suspected adverse ecological and (or)
human health effects [19–23].

Pharmaceutical and related compounds, otherwise known as active pharmaceuti-
cal ingredients (APIs), are now considered emerging environmental contaminants. Such
a wide range of emerging pharmaceutical contaminants found in wastewater include
analgesics and anti-inflammatory drugs (Naproxen, Ketoprofen, Ibuprofen, Diclofenac,
Indomethacin, Acetaminophen, Mefenamic acid, Propyphenazone), Anti-ulcer agents
(Ranitidine), Psychiatric drugs (Paroxetine), Antiepileptic drugs (Carbamazepine), An-
tibiotics (Ofloxacin, Sulfamethoxazole, Erythromycin), B-blockers (Atenolol, Metoprolol),
Diuretics (Hydrochlorothiazide), Hypoglycaemic agents (Glibenclamide), lipid regulator,
and cholesterol-lowering statin drugs (Gemfibrozil, Bezafibrate, Clofibric acid, Pravas-
tatin) [21,24–29]. For example, Ibuprofen, a typical member of the nonsteroidal anti-
inflammatory drugs (NSAIDs) listed in Essential Drugs lists by the World Health Orga-
nization (WHO) in 2010, is one of the most widely used drugs globally and the third
most popular, highly prescribed, and most salable over-the-counter medicine in the world.
Ibuprofen is used for the medicament of myoskeletal injuries, rheumatoid arthritis, and
fever; hence, it is one of the frequently detected pharmaceutical CECs [24,30–34]. Salgado
et al. [32] have reported up to 11.5 µg/L in the influent, 0.9 µg/L in the effluent of some
musks, and up to 22.6 µg/g in the sludge of five wastewater treatment plants (WWTPs)
in Portugal.

Therefore, the concentration and toxicity of Ibuprofen in wastewater treatment plants
and water bodies are a growing concern. According to Marchlewicz et al., the increasing
Ibuprofen pollutant in the aquatic environment poses a potential hazardous impact due to
its bioactive nature and ubiquitous presence in surface water, rivers and lakes, hospital,
and municipal water, and probably in drinking water. Unfortunately, conventional water
treatment cannot eliminate Ibuprofen efficiently [29–31].

Polymer inclusion membranes (PIMs) have been widely studied and reported to be
efficient in removing dyes, heavy metals, and nutrients from aquatic systems. However,
only a few studies have investigated the removal of aqueous Ibuprofen using PIM. Hence,
this study evaluates the stability and potential of functionalized polymer inclusion mem-
brane to remove low concentration Ibuprofen, which prolonged accumulation has been
recognized as a pharmaceutical’s endocrine disruptors in the aquatic system [35–38].
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2. Materials and Methods
2.1. Materials

Ibuprofen, IBP (purity ≥ 99.0%) (Sigma–Aldrich, St. Louis, MO, USA) without further
purification, was used to simulate IBP aqueous pollutant model. Poly(vinyl chloride)
(Mw~43000) as Polymers, Tetrahydrofuran (THF) (99.9%) (Darmstadt, Germany) as solvent
was purchased from Sigma–Aldrich, Graphene (OH) (multi-layered) (Purity: 99.99%) of
lateral Size: 10 µm (India) as nanoparticles and Aliquat® 336 TG obtained from Alfa Aesar
Thermofisher Scientific (Heysham, Lancashire, UK) as ionic exchange carrier. The reagents
used include 0.1M Hydrochloric acid (Merck, Darmstadt, Germany) and 0.1 M Sodium
hydroxide. All reagents employed are of standard analytical quality.

2.2. Preparation of the Pristine and Control Polymer Inclusion Membrane

Polymer (PVC) was dissolved in THF solvent and stirred to form a homogenous
dope solution at 65 ◦C. The pristine (PIM GOO) was fabricated without adding carrier
or graphene oxide. The same step was followed to fabricate the control PIM (PIM GO)
but with an Aliquat carrier (Formulation according to Table 1). The homogenous solution
was then sonicated to remove any air bubbles. Subsequently, the dope solution formed
was then poured into a smooth glass plate pre-set at 30 µm thickness in an automatic film
machine filmograph (K4340 Automatic Film Applicator, Elcometer) US. The cast membrane
was then left at room temperature to allow the THF to evaporate before peeling off, and
subsequent drying time beyond 24 h was allowed.

2.3. Preparation of the Graphene Doped Polymer Inclusion Membrane

Polymer (PVC), Aliquat 336 carrier, and an appropriate varied amount of graphene
oxide were dissolved in THF (according to Table 1) under continuous magnetic stirring
at 65 ◦C until a homogeneous solution was obtained. The solution was then sonicated to
remove any air bubbles. Subsequently, the dope solution formed was then poured into
a glass plate pre-set at 30 µm thickness in an automatic film machine filmograph (K4340
Automatic Film Applicator, Elcometer) (Manchester, UK). The cast membrane was then
left at room temperature to allow the organic solvent to evaporate for 24 h, after which the
formed thin-sheet graphene doped PIM was peeled off and allowed for further drying for
at least another 24 h.

Table 1. Formulation Composition of synthesized PIMs.

PIM PVC (g) ALIQUAT (g) THF (g) GO (g) % GO

GOO 6 - 24 - -
GO 6 3 21 - -
G1 6 3 21 0.045 0.15
G2 6 3 21 0.135 0.45
G3 6 3 21 0.225 0.75

2.4. Membrane Characterization
2.4.1. Scanning Microscopy Analysis

The surface morphology of the PIMs was observed by scanning electron microscopy
(SEM) HITACHI (TM3000) Tokyo, Japan, at 5 kv and ×100 magnification. The membrane
samples were initially gold-plated using Quorum SC7620 (Laughton, East Sussex, USA).

2.4.2. Fourier Transform–Infrared Spectroscopy

Fourier transform–infrared spectroscopy (FT–IR) measurements were performed on
the fabricated and tested PIMs. The test was conducted to identify the interrelations among
the PVC polymer, aliquat 336 carrier, and the GO nanofiller [39]. Therefore, the IR spectra
of the fabricated PIMs were determined by Fourier transformed infrared spectrometry
(Thermo Scientific, Nicolet is10, Waltham, MA, USA) to identify the functional group in the
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Doped-PIMs. Data were collected in transmission mode after 32 scans of each membrane
in wave numbers from 4000 to 500 cm−1.

2.4.3. Membrane Stability
Physical and Chemical Stability Assessment

Physical stability is one of the most significant characteristics of a PIM. A physically
stable PIMs should be able to bend without tearing or visible deformation, signaling an
excellent physical strength [40]. Therefore, the fabricated PIMs were subjected to physical
tests by manually bending and stretching the membrane sheets at a minimal force.

The chemical stability of the polymer inclusion membrane, particularly in environ-
mental conditions of interest, is a critical factor for PIM’s practical application in water
remediation. The loss of carrier during application attributed to the weight loss of the
PIM after being subjected to specific environmental conditions is a helpful tool to assess
the membrane’s chemical stability [40–43]. Therefore, the chemical stability of the opti-
mum fabricated graphene doped PIMs was investigated and compared to the control PIM.
The optimum GO doped-PIM and control PIM membranes with an average weight of
0.0171 ± 0.002 g was cut out for the investigation by monitoring the mass loss after 6 h
in contact with 0.1 M NaOH solution (pH~10), 0.1 M HCL solution (pH~1), and phos-
phate buffer solution (pH~6.8) and continued stirring at ~400 rpm. The membranes were
subsequently dried at room temperature until a constant weight was obtained. The per-
centage mass loss was calculated using Equation (1): All measurements were conducted
in triplicate.

Mass loss% =
Wo − Wt

Wo
× 100 (1)

where Wo is the initial weight of the PIM, and Wt is the final PIM’s constant weight
after drying.

2.5. Performance Extraction of Pharmaceuticals Ibuprofen

This test was performed to investigate the removal efficiency of the fabricated graphene
oxide doped PIMs for a 10 mg/L simulated aqueous Ibuprofen solution. Each PIM under-
study had an approximate diffusing area of 7.07 cm2 and clamped between two 250 mL
identical diffusion cells on a Teflon ring-shaped support (Figure 1). The feed compartment
was filled with 10 mg/L aqueous Ibuprofen prepared serially from a stock solution of
20 mg/L by diluting it with deionized water. The feed solution phase was subsequently
adjusted to a pH range of 2, 6, and 10 using 0.1 M HCL and 0.1 M NaOH as appropriate.
The receiving phase compartment was filled with 0.1 M HCL. Each phase was simulta-
neously stirred at a speed of approximately ~400 rpm with the aid of a magnetic bar at
room temperature. The Ibuprofen concentration was determined by U-Vis spectrometry
(Spectroquant Pharo 300, Merck, Darmstadt, Germany) in a quartz cuvette at 222.5 [44,45],
which corresponds to the maximum Ibuprofen absorbance detected in the present study
and conditions [46,47]. The percentage Ibuprofen extraction (E%) was calculated using
Equation (2)

E% =
Con. f eed, 0 − Con. f eed, 0

Con. f eed, 0
× 100 (2)

where Con. Feed,0 is the initial concentration of Ibuprofen in the solution, Con. Feed, t is the
Ibuprofen concentration in the solution after equilibrium is reached.
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al., [48], a low Aliquat 336 content (i.e., below 30%) shows micropores features with the 
extractant molecules probably “entangled” within the polymer chains making the extract-
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Figure 1. Set-up of the identical diffusion cell on a Teflon ring-shaped support PIM.

3. Results
3.1. Characterization of Fabricated Graphene Doped Polymer Inclusion Membranes
3.1.1. Scanning Electronic Microscopy

SEM images of the surface of all the fabricated PIMs are presented in Figure 2. A
homogeneous microstructure of the PIM surface indicating a uniform distribution of
graphene oxide and Aliquat carrier in the PVC polymer matrix was observed. Therefore,
the fabricated PIMs can be classified as a dense thin film with no apparent porosity probably
because of the low Aliquat 336 carrier used in its formulation because according to Xu
et al., [48], a low Aliquat 336 content (i.e., below 30%) shows micropores features with
the extractant molecules probably “entangled” within the polymer chains making the
extractant molecules behaves like a plasticizer but with low activity and mobility through
the polymer matrix. The dispersed GO within the surface of the PIMs G1–G3 tends to be
uniformly grafted with the formation of apparent tiny pores that are less than a few µm
and therefore could not be easily detectable by the SEM acquisitions.
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3.1.2. FT–IR Spectroscopy

FT–IR analysis is an essential tool to simultaneously determine the organic compo-
nents, chemical bond, and organic content based on the nature of the chemical interactions
between different components used in the fabrication of PIMs [39,43,49,50]. The FTIR
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results obtained for the fabricated PIMs (GOO-G3) and the optimum PIM G3 before and
after extraction are presented in Figures 3 and 4, respectively.

The pure PVC in the pristine (PIM GOO), control PIM (GO), and graphene oxide
doped PIMs (G1-G3) is detected at the spectrum bands of 684, 685, and 686 cm−1, which is
attributable to the bending modes of the C−H bonds, while the bands at 832, 1250, and
1330 cm−1 correspond to the stretching modes of the C−Cl bonds. The band at 1430 cm−1

and 2910 to 2970 cm−1 is attributed to the C−H bonds stretching. The C−C stretching
bond of the PVC backbone chain occurs at 1060 and 1090 cm−1, while the C−H trans 4
wagging modes occur at 957 cm−1 [39,51,52].

The control PIM GO and the graphene doped PIMs G1–G3 distinctly revealed the
Aliquat carrier added to them without any significant modification in the polymer chain
of the PVC polymer. The quaternary amine group (CH2–N and CH3–N) of the Aliquat
336 carrier showed a peak at 2850 cm−1 [51,53]. A new absorption peaks band was also
observed at the spectrum of 3380 and 3390 cm−1, indicating the CN group, which is unique
to the Aliquat-336, confirming the physical integration of the Aliquat carrier within the
PIMs’ matrix.

The presence of graphene oxide in PIMs’ G1–G3 can be observed by the ring structure
of the GO as indicated by the peak at 2160 cm−1 [54,55]. Similarly, the peaks at 3380 cm−1

represent the O-H stretching vibration of hydroxyl groups, while the peak of 1630 cm−1 is
the C=O unit of -COOH groups stretch band of graphene oxide [56,57].

Membranes 2022, 12, x FOR PEER REVIEW 7 of 15 
 

 

 
Figure 3. FTIR spectra of PIMs and their identical aligned constituents. 

 
Figure 4. Compared FTIR spectra of G3 before and after Ibuprofen extraction. 

To evaluate the mechanism of Ibuprofen removal by the optimum graphene doped 
PIM and at the optimum pH, a comparative infrared spectrum of PIM G3 before and after 
Ibuprofen extraction was investigated, as shown in Figure 4. A new distinct peak at 1710 

684

832

957

1060

1250

1330

1430

2910

2970

GOO

4000 3500 3000 2500 2000 1500 1000 500

685

832

957

1090

1250

1330

1430

1620

2850

2920

3390

3730

Wave number (cm-1)

GO

4000 3500 3000 2500 2000 1500 1000 500

686

832

957

1090

1250

1330

1430

1630

2160

2850

2920

3380

Wave number (cm-1)

 G1
 G2
 G3

4000 3500 3000 2500 2000 1500 1000 500

686

958

1090

1250

1330

1430

1620

2160

2850

2920

3380

G3 before extraction at pH 10

Wave number (cm-1)
4000 3500 3000 2500 2000 1500 1000 500

687

832

957

1090

1250

1330

1430

16201710

2850

2920

G3 after extraction at pH 10

Wave number (cm-1)

Figure 3. FTIR spectra of PIMs and their identical aligned constituents.



Membranes 2022, 12, 24 7 of 13

Membranes 2022, 12, x FOR PEER REVIEW 7 of 15 
 

 

 
Figure 3. FTIR spectra of PIMs and their identical aligned constituents. 

 
Figure 4. Compared FTIR spectra of G3 before and after Ibuprofen extraction. 

To evaluate the mechanism of Ibuprofen removal by the optimum graphene doped 
PIM and at the optimum pH, a comparative infrared spectrum of PIM G3 before and after 
Ibuprofen extraction was investigated, as shown in Figure 4. A new distinct peak at 1710 

684

832

957

1060

1250

1330

1430

2910

2970

GOO

4000 3500 3000 2500 2000 1500 1000 500

685

832

957

1090

1250

1330

1430

1620

2850

2920

3390

3730

Wave number (cm-1)

GO

4000 3500 3000 2500 2000 1500 1000 500

686

832

957

1090

1250

1330

1430

1630

2160

2850

2920

3380

Wave number (cm-1)

 G1
 G2
 G3

4000 3500 3000 2500 2000 1500 1000 500

686

958

1090

1250

1330

1430

1620

2160

2850

2920

3380

G3 before extraction at pH 10

Wave number (cm-1)
4000 3500 3000 2500 2000 1500 1000 500

687

832

957

1090

1250

1330

1430

16201710

2850

2920

G3 after extraction at pH 10

Wave number (cm-1)

Figure 4. Compared FTIR spectra of G3 before and after Ibuprofen extraction.

To evaluate the mechanism of Ibuprofen removal by the optimum graphene doped
PIM and at the optimum pH, a comparative infrared spectrum of PIM G3 before and
after Ibuprofen extraction was investigated, as shown in Figure 4. A new distinct peak at
1710 cm−1, recognized as stretching C=C, indicates the Ibuprofen complex on the graphene
oxide-doped PIM [57,58]. The peaks at 3380 cm−1 and 2160 cm−1 representing the ring
structure of the GO are no longer seen, indicating a likely loss of the nanoparticles due to
leaching occasioned by the instability of nanoparticle engrafted membranes [58].

3.1.3. Physical and Chemical Stability

PIMs are usually considered physically stable when bent without tearing or visibly
deforming the thin membrane structure. The results of the physical stability assessment to
determine the effect of incorporated GO nanoparticles on the transparency and flexibility
of the fabricated PIMs are presented in Table 2. It was observed that the incorporation
of graphene oxide successfully plasticized the doped PIMs in the absence of a plasticizer,
making them supple and flexible. In contrast, the pristine and the control PIM with
10% Aliquat carrier were brittle and unamenable to moderate stretching and bending.
This result shows that the plasticized GO-doped PIM decreased the rigidity of the three-
dimensional structure of the PVC polymer used, thereby enhancing the deformation,
durability, workability without rupturing, and transport efficiency [59,60].

Table 2. Physical properties of the pristine, control, and graphene oxide-doped PIMs.

PIM Flexibility Transparency

GOO brittle transparent
GO brittle transparent
G1 flexible transparent
G2 flexible transparent
G3 flexible transparent

A critical and well-known drawback of PIM is its chemical instability due to leach-
ing out of the carrier from the membrane into the aqueous solution. The rate of mass
loss of the membrane under a specific condition, such as the pH of the media and mem-
brane constituents, is strongly related to the loss of efficiency of the membrane during
application [41,61]. The result obtained for the chemical stability of the optimum PIM
(G3) and the control PIM (GO) in acidic, neutral, and alkaline solutions is presented in
Figure 5. The results showed that the PIMs’ stability is generally affected by the pH of the
medium. There is greater instability in the alkaline (AL) medium than the acidic (AC) and
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neutral (NT) media, which is similar to the finding of Kunène et al. [40] and Moulahcene
et al. [43]. The mass loss of 10.256 ± 0.581% in the alkaline medium indicates the high
instability of G3; this was also confirmed by the loss of some GO functional groups in the
PIM after Ibuprofen extraction as revealed by the FTIR (Figure 4). The loss of nanoparticles
due to material leaching out of the membrane matrix is a common limitation, affecting
nanoparticles’ enhanced membrane [11]. This observation is probably due to the high
hydrophilic nature of GO [62,63] and the PIM’s thickness (30 µm) in this work. Although
thin PIM’s thickness enhanced extraction rate, it is also prone to leaching compared to a
thicker membrane [40,64–66]. Hence, further modifications may be required to enhance the
stability of the doped PIM but without compromising the precise separation performance
of the membrane [67,68]. However, the mass loss of the control PIM (GO) in the alkaline
medium (12.121 ± 0.548%) is higher than that of G3, indicating relatively improved stability
of the latter. The mutual chemical interaction between the positive charge of the cationic
Aliquat 336 carrier and concentrated hydroxide (OH−) anions from the NaOH and the
dehydrochlorination reaction between the poly (chloroethene) in the PVC and quaternary
ammonium compounds such as the Aliquat 336 have been attributed to the easier leaching
out of aliquat carrier in an alkaline media compared to the acidic media [40,69,70].
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3.2. Effect of Amount of Doped GO and Feed pH on the Efficiencies of Ibuprofen Removal

The effect of the different amounts of GO added to the doped PIMs (0, 0.15, 0.45,
0.75) compared with the pristine PIM was evaluated using 10 mg/L aqueous Ibuprofen
extraction performance. Additionally, the effect of pH of the feed solution was also assessed
using the optimal PIM.
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3.2.1. Effect of Graphene Oxide Concentration on Ibuprofen Extraction

The results of the efficiency of Ibuprofen extraction using the fabricated PIMs are as
shown in Figure 6. Removal efficiency increased significantly between the doped PIMs
and the control PIM GO after 96 hr. All the GO-doped PIMs showed good extraction
performance. However, PIM G3 gave the highest removal efficiency of ~77%. The least
value of ~70% removal efficiency obtained in the present work is greater than the optimum
value of ~55% obtained by Moulahcene et al. [43] using PIM consisting of an insoluble
β-CD polymer as a carrier in the presence of dibuthylphtalate (DBP) as a plasticizer. This
study established that graphene oxide doped PIM with Aliquat 336 exchange carrier can
effectively extract emerging Ibuprofen contaminant from aqueous water as opined by [71].
The present finding also confirmed the claim that the good negative charge surface area
of GO and its electrostatic interactions are ideal sorbents, particularly for aromatic ring
molecules such as the Ibuprofen drug [13,16,18,72–74].
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3.2.2. Effect of pH of Feed Solution on Ibuprofen Extraction

To investigate the effect of pH on the removal efficiency of Ibuprofen, the pH of the
feeding solution was adjusted to 2, 6, and 10 (Figure 7). It is well known that the pH of
feed solution significantly affects the removal effectiveness of pharmaceutical contaminants
using membranes [30]. The result shows an extraction efficiency of ~84%, ~83%, and ~77%
at the feed solution pH of 10, 6, and 2, respectively. The results indicate that the extraction
efficiency increased when the pH of the feed solution increased. However, the effect of feed
solution pH on Ibuprofen extraction efficiency using GO-dosed PIM is not very pronounced
in the present study. The maximum extraction efficiency of ~84 percent occurs at a pH
of 10.
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4. Conclusions

The effect of GO enhanced PIM by incorporating a small amount of GO as nanoparticle
and Aliquat carrier on the remediation of trace Ibuprofen (a pharmaceutical contaminant
of emerging concerns) and membrane stability was successfully studied. The fabricated
GO-doped PIM was more stable in acidic and neutral media than in the alkaline medium.
Furthermore, the optimum extraction efficiency of ~84% obtained indicates a high potential
for Ibuprofen extraction using GO doped PIM. However, further research is required to
improve the stability of the GO doped PIM and to study the effect of other operating
conditions, such as the feed concentration and receiving phase types.
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