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Abstract: Several previous studies examined the variables of public-transit-related walking and
privately owned vehicles (POVs) to go to work. However, most studies neglect the possible non-
linear relationships between these variables and other potential variables. Using the 2017 U.S.
National Household Travel Survey, we employ the Bayesian Network algorithm to evaluate the
non-linear and interaction impacts of health condition attributes, work trip attributes, work attributes,
and individual and household attributes on walking and privately owned vehicles to reach public
transit stations to go to work in California. The authors found that the trip time to public transit
stations is the most important factor in individuals’ walking decision to reach public transit stations.
Additionally, it was found that this factor was mediated by population density. For the POV model,
the population density was identified as the most important factor and was mediated by travel time
to work. These findings suggest that encouraging individuals to walk to public transit stations to go
to work in California may be accomplished by adopting planning practices that support dense urban
growth and, as a result, reduce trip times to transit stations.

Keywords: sustainable travel to public transit stations; complex relationship; Bayesian network
algorithm; work trip

1. Introduction

A transition away from privately owned vehicles (POVs) toward active transport can
have major health advantages [1]. Despite the vast benefits of active transport modes,
particularly walking, many individuals still prefer POVs. For example, just 36% of all
journeys in the United States were below one mile, and only 27% of such journeys were
conducted by walking or biking [2]. According to statistics from the American Community
Survey, the percentage of people who walk to work in the United States has declined from
5.6 per cent in 1980 to 2.8 per cent in 2012 [3].

The “park and ride” concept, which promotes the use of POVs to reach public transit
(PT) stations and combines the use of private cars and PT stations to reduce the negative
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consequences of private vehicle use, has been the subject of several studies in the past [4–7].
Typically, this system is found at rail transportation terminals and transportation hubs,
which allow for both rail and public bus access. However, this system may not be available
at local bus stops. POVs are feasible options to reach PT stations where the stations are
not within walking distance or in low-density areas [8,9]. Although there is hope that
this approach will reduce the negative consequences of private vehicle use (e.g., traffic
congestion, pollution, and physical inactivity), it is more desirable for planners to minimize
the role of POVs in people’s daily travels, particularly those related to work.

PT stations may supplement and extend the variety of active modes significantly [10,11].
Because of this, as well as the fact that POVs are associated with a slew of other well-known
issues, there may be room for a modal shift away from POVs toward walking and PT
that might reduce the usage of POVs, while also contributing to increased physical activ-
ity [12–15]. Because health conditions, work trip qualities, work attributes, and sociodemo-
graphic factors may all impact travel patterns [16–21], it is important to know how walking
connects to PT travel to work to reap the most advantages.

California has always had a problem with traffic congestion. The cause for this ongo-
ing issue is that the region’s population and POV usage have exceeded the transportation
facilities. If California’s transportation system cannot keep pace with the state’s fast urban
growth, and if Californians’ priority for POVs continues, the traffic problem will undoubt-
edly worsen soon. To deal with long-term urban traffic issues, dwellers in crowded regions
are encouraged to replace POVs with active transportation options and PT, especially for
work-related journeys. When people combine walking with PT, which is a hot topic among
planners, the advantages of this replacement may be maximized. Walking is the most
cost-effective mode of transportation and the most basic form of physical activity [22–25].
Walking also needs a low-cost infrastructure. As a result, it makes sense if planners encour-
age individuals to walk to PT stations over other active forms of transportation.

Many studies have been conducted on the topic of first-mile connection, which ad-
dresses how people reach PT stations. Several studies assessed the impact of sociodemo-
graphic characteristics on walking to reach PT stations. Factors, such as age [17,18,26–28],
gender [29,30], vehicle ownership [31,32], income [33–35], and education [32,36,37], were
significantly correlated with the walking to reach PT stations. Although there are a lot of
built environment (BE) factors that impact travel behavior, only a very small number of
these factors were included in the first-mile connection studies. These factors included den-
sity and distance to PT stations [38–42]. Earlier studies have shown that population density
is one of the most significant BE variables, and its impact on travel behavior is stronger
than other BE attributes [32,36,43,44]. People in low-density areas are more likely to use
POVs than those in medium- and high-density areas [45,46]. Similarly, for individuals who
live in low-density regions where the station is too far away to walk to and bus service is
not accessible, driving to PT stations may be the sole choice for reaching PT stations [8].

While sociodemographic variables have been well covered in earlier studies, health-
related factors and their impact on mode choice have rarely been considered in most
PT-related walking investigations [1,47,48]. BMI, self-assessed health, self-reported smoker,
and yearly frequency of hospital and primary care visits are characteristics addressed in
these studies. To the best of the authors’ knowledge, no study considered the impact of
medical conditions in PT-related walking research. Furthermore, most of these studies
neglected job-related issues, as well as those associated with work trips. Flexibility in
work arrival time, full-time/part-time worker, the possibility of working from home, the
distance between home and work location, trip time to work, time spent transferring on
the commute to work if PT is taken, and travel time to PT station are some of the aspects
that are overlooked [49–51]. The existence of such data in the U.S. National Household
Travel Survey can give an excellent chance to look at the influence of a medical condition
and work-related trips on travel mode selection.

There are non-linear and complex interactions between variables in transportation
systems (e.g., the relationship between the built environment and car ownership) that
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are difficult to study using typical statistical approaches and linear programing meth-
ods [52–58]. Non-linear relationships may be inconsistent, and factors may have threshold
correlations with a variable of interest. Because non-linear relationships can help planners
to understand the effective influence range of important factors on the target variable, it is
interesting to see if this result can be applied to other fields [59]. This supports planners
in fine-tuning their strategies [60]. Most PT-related walking studies employed traditional
statistical methods (Table 1). However, these methods are unable to reveal complex relation-
ships. In addition, these models have strict linearity assumptions, which limits the ability
of these models to be effectively generalized [61–66]. Finally, these models are vulnerable
to missing and incomplete data. Machine learning (ML) approaches can be used to solve
the problems outlined before [67–70]. The Bayesian Network (BN) model is one of these
powerful tools, and it has lately been used successfully in various transport-related re-
search [67,71–75]. A BN model can effectively deal with heterogeneous and under-sampling
data, as well as missing, erroneous, or ambiguous data. Because it can effectively alter its
network depending on the data provided or entered into it, BN is indeed thought to be
excellent for learning changeable behaviors (e.g., mode choice) [76–81].

Table 1. Some recent studies on PT-related walking.

Study Location Sample Size (Unit) Analysis Method

Patterson, Webb, Millett and Laverty [19] USA 2448 (passengers) LRM
Ratanawaraha et al. [82] Thailand 1020 (travelers) LRM

Rodriguez-Gonzalez and Aguero-Valverde [83] Costa Rica N/A PDF and CDF
Sun, Zacharias, Ma and Oreskovic [38] China 495 (adults) LRM

Townsend and Zacharias [84] Thailand 1489 (travelers) LRM
Vandebona and Tsukaguchi [85] Japan 3560 (persons) DE

Voss et al. [86] Canada 42 (students) LRM
Wang and Cao [87] USA 7077 (travelers) LRM

Wasfi, Ross and El-Geneidy [27] Canada 6913 (trips) LRM
Xi et al. [88] Canada 21,470 (trips) DE

Yu and Lin [39] USA 18,180 (trips) LRM
Zacharias and Zhao [89] China 2409 (passengers) LRM

Zhao et al. [90] China 1544 (travelers) LRM
Zuo et al. [91] USA 1330 (trips) DE

LRM = logistic regression model; PDF = probability density function; CDF = cumulative distribution function;
DE = Descriptive analysis.

The authors of this research utilize the BN model to explore the major indicators of
travel mode to reach PT stations and highlight their non-linear interactions using the 2017
U.S. National Household Travel Survey (2017 NHTS). The following are the questions
that this research aims to answer: (1) How important are the health condition, work trip,
work, and individual and household attributes to individuals who use walking or POV to
reach PT stations to go to work in California? (2) Do the most important variables have
associations with walking or POV to reach PT stations to go to work?

This paper contributes to the literature in three major ways. To begin with, it adds
to the research of mode choice for reaching PT stations to go to work in California and
other regions where traffic congestion is a problem. Furthermore, this study evaluates the
relative relevance of several elements in walking to work and gives insight into the policy
implementation priorities in California and other places with similar conditions. It also
demonstrates that important factors have irregularly complex relationships, corroborating
the scant data in the literature and providing recommendations for California planning
approaches. Finally, this study demonstrates the significant role of trip time to work and its
combined effect with population density in POV usage to reach PT stations to go to work,
as well as the significant role of population density and its interaction impacts with trip
time to PT stations in walking reach PT stations to go to work, thereby bolstering the case
for dense urban development.
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The following is a breakdown of how the research is structured. The data, variables,
and modeling technique are introduced in Section 2. Section 3 discusses the models’ results
and performance, variable importance, relationships with travel mode to reach PT stations
in California, and interaction impacts on mode choice to reach PT stations. The final section
highlights the most important findings and explains policy implications.

2. Materials and Methods

In this study, two associative and predictive BN models were developed to reveal
the complex relationships between various variables and PT-related walking and PT-
related POVs in California. As previously mentioned, the 2017 U.S. National Household
Travel Survey (2017 NHTS) was employed to conduct this study. These models discover
interaction effects of independent factors on the usage of walking and POVs to reach PT
stations to go to work and assess the relevance of variables in predicting the choice of
walking and POV to reach PT stations to go to work. Figure 1 shows the flowchart of this
study.
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2.1. Data

This study used data from the 2017 U.S. National Household Travel Survey (2017
NHTS). The NHTS has now become the country’s rich source of information on commuting
by U.S. citizens throughout all fifty states. This commute behavior database contains
journeys taken in a variety of ways and for a variety of reasons. The data for the NHTS
are gathered from a randomly selected sample of U.S. households. The NHTS supplies
data about individual and household travel behavior patterns. These patterns are related
to sociodemographic and geographic factors that impact travel choices and are used to
estimate demand. More information can be found at https://nhts.ornl.gov (accessed on
1 January 2020).

This study looked into how Californians utilize walking and privately owned vehicles
(POVs) to reach public transportation to go to work. Thus, the study team mined the whole

https://nhts.ornl.gov
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dataset for relevant data. Public transport in this study refers to public or commuter buses,
subways, elevated and light rail, and Amtrak. The following criteria were used to choose
the samples: (1) residence in California, (2) the use of public transportation to commute to
work, and (3) the use of walking and POVs to reach public transportation to go to work.
A total of 796 samples were used to create the final dataset. A total of 19 input variables
and 2 target variables were included in the dataset (walk to reach public transit stations
and POVs to reach public transit stations). Table 2 lists all of the variables utilized in this
investigation.

Table 2. Variables employed in this study.

Variable Acronym Category/Data Range

Health condition attributes (HCA)

Medical condition results in using bus or subway
less frequently CONDPUB yes (1) and no (2)

Medical condition results in giving up driving CONDRIVE yes (1) and no (2)

Opinion of health HEALTH excellent (1), very good (2), good (3), fair (4), poor
(5)

Medical condition, length of time MEDCOND6 6 months or less (1), more than 6 months (2), and
all life (3)

Built environment characteristics (BEC)

Category of population density (persons per
square mile) in the census block group of the

household’s home location
HBPPOPDN

0–99 (50), 100–499 (300), 500–999 (750), 1000–1999
(1500), 2000–3999 (3000), 4000–9999 (7000),

10,000–24,999 (17,000), and 25,000–999,999 (30,000)

Individual and household attributes (IHA)

Educational attainment EDUC

Less than a high school graduate (1), high school
graduate or GED (2), some college or associated

degree (3), bachelor’s degree (4), graduate degree
or professional degree (5)

Household income HHFAMINC

less than USD 10,000 (1), 10,000–14,999 (2),
15,000–24,999 (3), 25,000–34,999 (4), 35,000–49,999

(5), 50,000–74,999 (6), 75,000–99,999 (7),
100,000–124,999 (8), 125,000–149,999 (9),

150,000–199,999 (10) and 200,000 or more (11)

Age AGE 16–75

Gender SEX male (1) and female (2)

Owned vehicle longer than a year VEHOWNED yes (1) and no (2)

Number of workers in household WRKCOUNT 1–4

Work attributes (WA)

Flexibility in work arrival time FLEXTIME yes (1) and no (2)

Count of days working from home in the last
month WKFMHMXX 0–16

Full-time or part-time worker WKFTPT full time (1) and part time (2)

Option of working from home WKRMHM yes (1) and no (2)
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Table 2. Cont.

Variable Acronym Category/Data Range

Work trip attributes (WTA)

Road network distance, in miles, between
respondent’s home location and work location DISTTOWK17 0–399.07

Minutes spent commuting to work PUBTIME 0–50

Trip time to work in minutes TIMETOWK 0–170

Trip time to transit station in minutes TRACCTM 0–70

Target variable

Walk as mode used to reach public transit station TRACC_WLK yes (1) and no (2)

POV as mode used to reach public transit station TRACC_POV yes (1) and no (2)

In the NHTS dataset, several active modes, including bikes and e-scooters, and passive
modes, such as ride-sourcing, are not considered to reach PT stations. This can be regarded
as a drawback of the NHTS dataset and a limitation of this study. Furthermore, although the
literature suggests that the most critical BE factors for examining the first mile connection to
PT stations are population density and distance to the PT station, the NHTS only considers
population density. As a result, the only BE input in this investigation was population
density, whose direct and significant impacts on travel behavior and mode choice for PT
have been widely proven.

2.2. Bayesian Network (BN) Model

Bayesian Networks (BNs), commonly referred to as belief networks, are probabilistic
network models that combine probability and graph theory. The following are the main
two methods for acquiring BN structures. The first method is based on expert judgment
and uses subjective causal links to construct a BN structure. The second method, known
as structural learning, uses certain learning models to detect and guide the edges on a
given dataset. By using the latter method, this investigation creates the BN architecture.
There are numerous data-driven techniques, including Nave Bayesian Networks (NBN),
Augmented Naive Bayesian Networks (ABN), and Tree Augmented Networks (TAN). TAN
learning generates qualitative BN-depicting variables’ interacting dependencies, which
aids in generating insights into the crucial elements that influence travel mode choice.
Friedman et al. [92] have noted that TAN beats naive Bayes, while retaining the calculation
efficiency and stability that naive Bayes is known for. Other data-driven configuration
algorithms are less effective and reliable than TAN [93]. In this research, the analysis was
performed using SPSS Modeller, which is worth noting.

A BN that is a labelled directed acyclic graph (DAG) represents a joint probability
distribution over a collection of random inputs Q. Let Q = {B1, . . . Bi, D}, where i refers
to the number of inputs, the inputs A1, . . . Ai are the variables, and D signifies the class
variable (mode to public transit station).

Assume a network structure in which the target variable serves as the root, namely
∏ D = ∅, and every variable possesses the target variable as its sole parent, namely
∏ Bj = {D} for 1 ≤ j ≤ i. Equation (1) characterizes a BN as a single joint probability
distribution across Q.

P(B1, . . . Bi, D).
i

∏
j=1

P(Bj > |D) (1)

When ∏ Bj has just one parent for any and all Bj apart from one variable-lacking
parent, the DAG over {B1, . . . Ai} is a tree. When there is only one j so that π(j) = 0, and
therefore there is no series j1, . . . js so that π(jh) = jh+1 given j ≤ h ≤ s and π(js) = i1,
there is indeed a function π that can describe a tree across B1, . . . Bi. Such a function
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describes a tree network where ∏ Bj =
{

D, . . . Bπ(j)

}
if π(i) > 0, and ∏ Bj = {D} if

π(j) = 0.
It is an optimization challenge to learn a TAN structure. Chow and Liu [94], who em-

ployed conditional mutual information between characteristics, offered a broad technique
for solving this problem. The following is a definition of the function:

IM
(

Bj, Bh
∣∣D) = ∑

bjj ,bhj ,dj

P
(

bjj, bhj, dj

)
log

P(bjj, bhj

∣∣∣dj)

P(bjj

∣∣∣dj)P(bhj

∣∣∣dj)
(2)

where IM denotes the conditional mutual information, bjj is the jth state of variable Bj, bhj
is the jth state of variable Bh, dj is the jth state of “mode choice to transit station”. The
optimization challenge of learning a TAN structure is to develop a tree characterizing
function across B1, . . . Bi that maximises the log-likelihood.

3. Results
3.1. Models’ Results and Performance

Two Bayesian Network (BN) models were developed in this study to predict the choice
of walking and POVs to reach PT stations among Californians. To develop these models,
the structure type of the BN models was the TAN algorithm and the parameter learning
method was Bayes adjustment. It is worth mentioning that the data were split into train
and test partitions with a ratio of 80:20 before the models’ development. The training
partition was used to build the models, whereas the test partition was utilized to evaluate
the created model using unseen data. The BN models were used to (1) determine the
importance of variables in predicting the choice of walking and POVs to reach PT stations,
(2) determine relationships with travel mode to reach PT stations in California, and (3)
identify the interaction effects of independent variables on the use of walking and POVs to
reach PT stations. The structures of the BN models developed in this study are shown in
Figure 2.
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Figure 2. BNs’ structure: associations between the travel modes to reach public transport and their
most important variables and mediators as identified by the BN model. (a) BN model for walking to
reach public transit station; (b) BN model for POV to reach public transit station.

The performance of the two BN models is shown in Table 3. Both models achieved
a high accuracy in both the training and testing phases. In addition, the accuracies of the
training and testing phases are almost similar, which implies the stability of both models.
The models’ performance also was assessed using receiver operating characteristic (ROC)
diagrams (Figure 3). The ROC curve depicts the sensitivity–specificity trade-off. Models
with curves nearer to the top-left corner perform much better. A random model is expected
to yield diagonal points (sensitivity = specificity) as a reference point. The nearer the curve
is to the ROC space’s 45 degree diagonal, the less accurate the test becomes. As can be seen,
both models indicated a great performance for both classes (yes and no).
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Table 3. Models’ performance.

Model
Train Test

Correct (%) Wrong (%) Correct (%) Wrong (%)

TRACC_WALK 94.94 5.06 94.48 5.52
TRACC_POV 96.52 3.48 96.93 3.07

Sustainability 2022, 13, x FOR PEER REVIEW  9  of  18 
 

Table 5. Cumulative importance of factors. 

Factor Type 
Cumulative Importance 

Walk  POV 

Health condition attributes (HCA)  0.10  0.17 

Built environment characteristics (BEC)  0.03  0.12 

Work trip attributes (WTA)  0.58  0.25 

Work attributes (WA)  0.02  0.13 

Individual and household attributes (IHA)  0.27  0.33 

Sum  1.00  1.00 

 

Figure 3. Receiver operating characteristic graphs for the BN models developed in this study. 
Figure 3. Receiver operating characteristic graphs for the BN models developed in this study.

3.2. Variable Importance

Table 4 shows the significance of all independent variables in forecasting travel mode
to reach public transit stations. In addition, the cumulative impact of four types of factors
is shown in Table 5. For walking, the results showed that work trip attributes (WTA)
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dominated the prediction of mode choice to reach PT stations in California. For POV,
individual and household attributes (IHA) largely influenced the forecast of mode choice
to use PT. Especially, the predictive power of all the WTAs was 0.58. The combined
contribution of IHA variables was 0.33 for POVs.

Table 4. Importance of the various types of variables.

Factor Type Variable Walk POV

Health condition attributes (HCA)

HCA CONDPUB 0.03 0.04
HCA CONDRIVE 0.02 0.04
HCA HEALTH 0.02 0.05
HCA MEDCOND6 0.02 0.04

Built environment characteristics (BEC)

BEC HBPPOPDN 0.03 0.12

Individual and household attributes (IHA)

IHA EDUC 0.05 0.05
IHA HHFAMINC 0.07 0.05
IHA AGE 0.05 0.08
IHA SEX 0.02 0.05
IHA VEHOWNED 0.02 0.03
IHA WRKCOUNT 0.06 0.07

Work attributes (WA)

WA FLEXTIME 0.02 0.07
WA WKFMHMXX 0.00 0.00
WA WKFTPT 0.00 0.06

Work trip attributes (WTA)

WTA DISTTOWK17 0.03 0.03
WTA PUBTIME 0.04 0.03
WTA TIMETOWK 0.05 0.09
WTA TRACCTM 0.42 0.07
WTA WKRMHM 0.04 0.03

Table 5. Cumulative importance of factors.

Factor Type
Cumulative Importance

Walk POV

Health condition attributes
(HCA) 0.10 0.17

Built environment
characteristics (BEC) 0.03 0.12

Work trip attributes (WTA) 0.58 0.25
Work attributes (WA) 0.02 0.13

Individual and household
attributes (IHA) 0.27 0.33

Sum 1.00 1.00

In terms of the WTAs’ impact on choosing the walking mode to reach PT stations, the
trip time to the transit station (TRACCTM) was the most important variable in predicting
walking choice to the PT station. Previous research has found a negative association
between distance to transit stations and nonmotorized travel behavior [95–97]. As a result,
it was expected that the time spent traveling to the transit station would emerge as the most
relevant factor in predicting the likelihood of walking to the transit station. Individuals
who walk to reach PT stations to go to work may place a different value on their time.
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People’s gender, income, family responsibilities, and other factors can all contribute to this
difference [98]. As a result of these distinctions, different levels of sensitivity to walking
time to PT stations may emerge.

In California, the population density (HBPPOPDN) has a 0.12 predictive power for
POV usage to reach PT stations. The transport mode to the transit station is heavily influ-
enced by population density [99]. In high-density areas, active transportation modalities
are commonly used to reach transit stops. On the other hand, cars are the most prevalent
form of transportation to transit stations in low-density areas.

3.3. Relationships with Travel Mode to Reach Public Transit Stations in California

In this section, the non-linear associations of the most important variable of walking
and POVs to reach PT stations and the prediction of occurrence of these travel modes are
discussed. It is vital to determine these complex relationships since it helps to identify the
relevant impact ranges of these factors. According to the results of the BN models, the
most important factor for predicting walking adoption to reach PT stations was the trip
time to the transit station (TRACCTM), while the population density of participants’ house
location (HBPPOPDN) was chosen as the most important predictor of POV adoption to
reach PT stations.

Figure 4 displays the relationships mentioned above. When the average time to reach
PT stations is around 10 min, Californians are more inclined to walk to the transit stations.
If the typical commute duration to PT stations is around 40 min, Californians are less likely
to walk to PT stations. This study’s results are consistent with Sun and Yin [100] findings,
which revealed that shorter travel times and shorter distances to PT stations might increase
the likelihood of walking to them.
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Figure 4. Non-linear relationship between the most important variable in each model and prediction
of the travel mode choice to reach public transit stations. (a) Prediction of the walking choice to get to
public transit; (b) prediction of the POV choice to get to public transit.

If the participants’ dwelling is in a densely populated area (e.g., 7000–30,000 persons
per square mile), it is unlikely that they will utilize a POV. In contrast, if the dwelling
units are in a low-density region (e.g., 750 persons per square mile), POV is more likely
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to be used. These findings corroborate those of Nigro, Bertolini and Moccia [99], which
found that population density influences the mode of transportation used to access PT
stations. Combining the results of the time to the transit station (for the walking model) and
population density (for the POV model), when the time to the transit station is less than
10 min or the population density in the household’s home location is 7000–30,000 persons
per square mile, walking to reach PT stations could be increased by densifying land use
around PT stations.

3.4. Interaction Impacts on Mode Choice to Reach Public Transit Stationsr

The strong negative connections between travel time to transit stations and walking to
each PT stations suggest that, if the trip duration to transit stations can be reduced, walking
will become more popular. The BN model revealed that another variable, population
density (HBPPOPDN), mediates the effect of trip time to reach public transit stations
(TRACCTM) on walking to PT stations (Figure 5a). Figure 5a illustrates the combined
influence of these two variables on forecasting walking to reach PT stations in California.
Walking is more probable when the trip time to the PT stations is less than 10 min. These
lower trip times to transit stations occur in high density areas (e.g., 7000–30,000 persons
per square mile). This means that the TRACCTM’s negative relationship with the walking
level to the transit station is amplified by HBPPOPDN. The influence of trip time to
transit stations on walking to PT stations is mediated more by a population density of
17,000 persons per square mile than by other HBPPOPDN values.
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reach public transit stations on forecasting walking to reach PT stations; (b) The combined influence
of population density and trip time to work on forecasting usage of POV to reach PT stations.

The substantial negative correlations between participants’ housing population density
and their usage of POVs to reach PT stations show that if people reside in high-density
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areas with integrated public transportation, they will be discouraged from using POVs.
Another variable, trip time to work (TIMETOWK), was found to mediate the impact of
population density (HBPPOPDN) on using POVs to reach PT stations in the BN model
(Figure 5b). The joint impact of these two variables on predicting POV usage to reach PT
stations in California is shown in Figure 4b. In high-density locations, using POVs to reach
PT stations is less likely (e.g., 7000–30,000 persons per square mile). When the commute
time to work is between 42 and 57 min, lower trips using POVs occur. This suggests that
TIMETOWK strengthens the HBPPOPDN’s negative association with POV usage to reach
the transport stations. It is worth noticing that a 57 min commute to work has a greater
mediation effect than other TIMETOWK values on the effect of population density on not
utilizing POVs to reach PT stations.

4. Discussions

The time it takes to walk to PT stops or stations is the most essential factor in people’s
choice to walk. Furthermore, it was shown that population density acted as a mediator for
this effect. The POV model revealed population density as the most relevant component,
which was mediated by the commute time to work. The findings are crucial because they
show that planners should concentrate on population density, public transportation, and
job locations when contemplating the replacement of POVs with walking to commute to
PT stations for work. However, it is critical that the BN’s outcomes are unaffected by the
following variables: the health condition attributes, the individual and household attributes,
the work trip attributes (excluding the trip time to work and trip time to PT stations), and
the work attributes. Previous studies have deemed these factors relevant [17,29,31–33,36,47].
However, this research suggests that they may not be necessary to take into consideration.
In terms of health condition attributes, a very limited number of studies show that this
factor is essential in travel mode choice [1,47,48]. Additionally, this study did not find a
substantial effect of these factors on mode choice for PT stations. This may be due to the
fact that health conditions may have a greater impact on leisure walking in California than
on work-related walking.

As mentioned above, population density emerged as the most important factor of
POV usage to reach PT stations and a mediator of the effects of travel time to PT stations
on walking to PT stations. This finding reflects the importance of this factor in studying of
travel mode choice to PT stations. Several previous studies also stressed the relevance of
this factor on travel mode choice [38,39]. Furthermore, according to Nigro, Bertolini and
Moccia [99], population density has a significant impact on the mode of transportation to
the nearest PT facility.

The density of the population is seen as a crucial component in the success of a PT
operation [101]. Population density, particularly for pedestrians, is commonly cited as a
factor that encourages more people to use PT. However, research has shown inconsistent
outcomes. Higher densities tend to have a more compact land use and closer destinations,
which makes walking more possible and beneficial. However, although some research
suggests that short-distance walking to reach PT stations is dependent on density, wealth
and other societal variables are progressively taking precedence after populational density
reaches a certain level [102,103].

5. Conclusions and Recommendations

This study employed a Bayesian Network model to examine the relative importance
of health condition, work trip, work, and individual and household attributes in trip mode
choice to transit stations to go to work and their complex relationships with travel mode
choice to transit stations to go to work in California, using data from 2017 NHTS. It is
among the first to investigate how population density in California mediates the effects of
time to transit stations on walking to transit stations to go to work and how time to go to
work mediates the influences of population density on POV usage to reach PT stations to
go to work. The findings provide positive consequences regarding densifying population
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and land uses around transit stations for walking level growth to reach public transport
stations in developed countries’ cities, especially car-oriented ones.

The outcomes indicate that work trip attributes play a dominant role in walking to
reach PT stations in California. People that have a short trip time to transit stations to go to
work are more likely to walk to PT stations. This variable is the most important predictor in
the walking model, contributing to more than 0.40 of the predictive power. With a decrease
in the trip time to transit stations in California, the walking level for first-mile connections to
reach the workplace is expected to grow faster. The determination of efficacious approaches
to accelerate growth is key to sustainable transportation in California.

The factors that affect PT-related walking are similar to those that impact urban walk-
ing in general, especially in terms of built environment features [104,105]. The appealing
aspects of PT, as well as the PT services offered and the transportation options available to
individuals, influence how far someone is willing to walk to reach public transportation.

Land use and transportation strategies can be utilized by planners to change the
built environment. The setting wherein PT-related walking takes place is defined by non-
modifiable characteristics (e.g., alternative travel alternatives, culture, purpose, physical
ability, and the weather). However, urban or transportation planning experts can employ
changeable influences (such as density, land use, infrastructure quality, and trip length) to
impact the distances people would walk to PT stations to reach the workplace.

Planners should consider promoting high-density development because this has a
strong effect on PT-related walking lengths. This development makes the origins and
endpoints much closer and increases the transit stations density. These may reduce the
distance that individuals must walk to transit stations. Density has also been connected to
enhanced walkability, which can attract more walkers by raising the proportion of people
who walk to reach transit stations or broadening the catchment area around a transit station.

Typically, people prefer to walk to transit stations through more walkable routes [106].
The higher level of walkability and, in turn, shorter PT-related walking can be achieved
through a higher level of street connectivity and lower-level detours [17,18,87,89]. In
addition, the tolerable walking travel time of pedestrians to transit stations can be increased
if the walkability at the micro-level is improved [107]. Street elements, such as lighting,
seating areas, trees, and width of sidewalk, may increase the distances people are willing
to walk [22,108,109].

Along with these built-environment solutions, various car-restrictive policies could
assist to reduce the use of POVs for general use and reaching transit stations. These
regulations can be implemented particularly well in high-density areas, as low-density
areas may lack enough PT and walking infrastructures. As a result, the only way to reach
transit stations is by using a POV.

This study has a few limitations that deserve comment. First, this study utilized the
2017 NHTS dataset, which does not consider biking, micro-mobility, and ride-sourcing
exclusively as modes to reach PT stations. Thus, future studies can apply the BN algorithm
considering these modes and using different datasets. Second, the NHTS includes a few
variables of the built environment. Hence, it is recommended that future studies develop
BN models using more comprehensive datasets. Finally, this study was conducted in a
car-oriented setting. Thus, people who use walking to reach public transit stations were
underrepresented. Therefore, the outcomes of this study should be transferred cautiously
to other cities, especially European ones.
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