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Abstract

This work introduce a new high dimensional 10-D hyperchaotic system with high complexity

and many of coexisting attractors. With the adjustment of its parameters and initial points,

the novel system can generate periodic, quasi-periodic, chaotic, and hyperchaotic behav-

iours. For special values of parameters, we show that the proposed 10-D system has a very

high Kaplan-Yorke fractal dimension, which can reach up to 9.067 indicating the very com-

plexity of the 10-D system dynamics. In addition, the proposed system is shown to exhibit at

least six varied attractors for the same values of parameters due to its multistability. Regions

of multistability are identified by analysing the bifurcation diagrams of the proposed model

versus its parameters and for six different values of initial points. Many of numerical plots

are given to show the appearance of different dynamical behaviours and the existence of

multiple coexisting attractors. The main problem with controlling chaos/hyperchaos systems

is that they are not always fully synchronized. therefore, some powerful synchronization

techniques should be considered. The synchronization between the high-dimensional 10-D

system and a set of three low-dimensional chaotic and hyperchaotic systems is proposed.

Ten control functions are designed using the active control method, ensuring synchronisa-

tion between the collection of systems and the 10-D hyperchaotic system. Finally, using

Multisim 13.0 software to construct the new system’s electronic circuit, the feasibility of the

new system with its extremely complicated dynamics is verified. Therefore, the novel 10-D

hyperchaotic system can be applied to different chaotic-based application due to its large

dimension, complex dynamics, and simple circuit architecture.
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Introduction

Scientific communities have been interested in chaotic systems study over the past 60 years,

especially since the work of Edward Lorenz, the famous American meteorologist in 1963 [1].

The essential trait of chaotic systems, he discovered, is their great sensitivity to initial condi-

tions. A small change in the chaotic system’s initial parameters results in significantly varied

and unpredictable behaviour. This type of system’s tremendous complexity makes it beneficial

in a variety of fields, including secure communication [2–5].

The Kaplan-Yorke dimension and the Lyapunov exponents are the most important tools

for describing chaotic behaviour in a dynamical system [6]. Kaplan-Yorke dimension, on the

other hand, is an effective measure of the fractal dimension and chaotic complexity of the nor-

mal n-dimensional dynamical system, and it is calculated using Lyapunov exponent values.

When calculating the Lyapunov exponent, the dynamical system’s two adjacent starting values

are taken into account. The paths produced via the initial guesses will exponentially diverge if

this system exhibits chaotic behaviour, and the coefficients that characterises the divergence

rate is a Lyapunov exponent. There is, absolutely, a Lyapunov exponent for every state-space

dimension. At least one of the exponents must be positive for a dynamic system to display cha-

otic behavior. When there are many non-negative exponents, the related systems’ dynamics

expand in multiple directions, resulting in a more complex behaviour, which we name a

hyperchaotic system in this situation.

Many papers have been published on hyperchaotic system. Vaidyanathan et al. [7] pro-

posed of the new 4-D hyperchaotic system with no equilibrium and analysis of global hyperch-

aos synchronization results of the new hyperchaotic system using Integral Sliding Mode

Control (ISMC). Singh et al. [8] proposed of the 5-D hyperchaotic system with stable equilib-

rium point and the proposed system exhibits multistability and transient chaotic behavior.

Alattas et al. [9] proposed of the synchronization problem of hyperchaotic systems using inte-

gral-type sliding mode control for the 6-D hyperchaotic systems and presented of the analog

electronic circuit using MultiSIM. Lagmiri et al. [10] constructed of the two new 7D hyperch-

aotic systems and to investigate the dynamics and synchronization of these new systems using

the theory of observers. Kang et al. [11] proposed a color image encryption method combining

with 2D-VMD and 8D hyperchaotic system. Zhu et al [12] presented a nine-dimensional

eight-order chaotic system, and the corresponding circuit implementation. Mahmoud et al.

[13] presented another complex nonlinear hyperchaotic model, spoke to by nine first-order

nonlinear ordinary differential equations and proposed new nine-dimensional chaotic Lorenz

System with quaternion variables [14]. Jianliang et al. [15] proposed a ten-dimensional nine-

order chaotic system and the electronic circuit implementation. However, there is still a need

for discovering systems with different 10D hyperchaotic system.

Synchronization of chaotic systems has attracted much attention in recent years due to

their applications in neuron model, robotic and cryprosystem. Yu et al. [16] presented a novel

5D hyperchaotic four-wing memristive system with multiline equilibrium and synchroniza-

tion of the 5D hyperchaotic system with different structures by active control. Zambrano-Ser-

rano and Anzo-Hernández [17] proposed a novel chaotic oscillator derived from the generic

four-dimensional autonomous jerk systems and analyze the synchronization behavior of the

chaotic oscillator via feedback control. Munoz-Pacheco et al. [18] analyzed the effect of a non-

local fractional operator in an asymmetrical glucose-insulin regulatory system and proposed

an active control scheme for forcing the chaotic regime (an illness) to follow a periodic oscil-

latory state, i.e., a disorder-free equilibrium. However, to the best of the authors’ knowledge,

neither the control nor the synchronisation of the new 10-D hyperchaotic system has been

investigated yet with the active control method.
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Secure transmissions utilising various methods and schemes is one of chaotic system’s most

essential applications. Chaotic systems generate complex signals with a random appearance,

which are used to conceal the secret information to be communicated. As a result, many litera-

ture have studied the chaotic systems, so as to address the huge gap for the type of complicated

system in the disciplines of chaotic encryption and secure communication [19, 20]. Nazari

et al. [21] proposed secure transmission of authenticated medical images using a novel chaotic

IWT-LSB blind watermarking approach. design an embedded cryptosystem based on a

pseudo-random number generator (PRNG). Trujillo-Toledo et al. [22] proposed design an

embedded cryptosystem based on a pseudo-random number generator (PRNG)using

enhanced sequences from the Logistic 1D map, and it reaches a throughput of up to 47.44

Mbit/s using a personal computer with a 2.9 GHz clock, and 10.53 Mbit/s using a Raspberry Pi

4. Hemdan [23] presented a medical image watermarking approach based on Wavelet Fusion

(WF), Singular Value Decomposition (SVD), and Multi-Level Discrete Wavelet Transform

(M-DWT) with scrambling techniques for securing the watermarks images. Garcı́a-Guerrero

et al. [24] introduces a process to improve the randomness of five chaotic maps that are imple-

mented on a PIC-microcontroller. They have improved chaotic maps tested to encrypt digital

images in a wireless communication scheme, particularly on a machine-to-machine (M2M)

link, via ZigBee channels. Silva-Juárez et al. [25] proposed the use of first-order all-pass and

low-pass filters to design the ratio of the polynomials that approximate the fractional-order.

Also, the filters are implemented using amplifiers and synthesized on a field-programmable

analog array (FPAA) device. Tlelo-Cuautle et al. [26] provides guidelines to implement frac-

tional-order derivatives using commercially available devices and describes details on using

FPGAs to approach fractional-order chaotic systems, programming in VHDL and reducing

hardware resources.

In addition, as previously stated, several studies discovered that the hyperchaotic systems

with high dimensional (n> 3) whose positive Lyapunov exponent is more than one and hav-

ing a high Kaplan-Yorke dimension is capable of generating more random and complex sig-

nals with greater uncertainty, which improves the chaotic transmissions security. Based of

these reasons, several types of these high dimensional systems have been developed having two

positive Lyapunov exponents since after the emergence the first system by Rossler in 1979

[27]. Some nonlinear dynamical systems can develop many forms of complexity such as chaos,

hyperchaos, bifurcation and multistability. A dynamical system that generate two or more syn-

chronize different attractors for a given set of coefficients is defined to be multistable.

In the recent years, construction new high dimensional (n> 5) hyperchaotic systems with

high fractal dimension [28] and extreme multistability become an interesting area of research

in chaos theory because of the need of these kinds of hyper-complex systems in recent engi-

neering applications especially in secure communications. In this work, we generate the first

10-D hyperchaotic system which exhibit up to six synchronize attractors having high Kaplan-

Yorke fractal dimension. The new 10-D hyperchaos system’s dynamic properties is discussed,

its Regions of multistability identified, its active control synchronization and design its equiva-

lent electronic circuit described.

The novelty and contributions of the paper are summarised as follows:

1. System has four positive parameters, twenty-three terms with two quadratic and one quartic

nonlinearity.

2. This work reports various types of complexity behaviors in 10D hyperchaotic system, such

as Chaos, Hyperchaos and Quasi-Periodic.

3. System has multistability, i.e. coexistence of chaotic attractors under various conditions.
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4. System has unstable and self-excited family.

5. This work studied the synchronization of the proposed 10D system with three diverse

Hyperchaotic and chaotic systems via active controllers.

6. The equivalent electronic circuit for the new 10-D hyperchaotic system (1) is developed

using Multisim 13.0 software.

The rest of this paper is organized as follows. Section 2 describes the dynamics of the new

10D Hyperchaotic system. Dynamical analyses of the new 10D Hyperchaotic system are

shown in Section 3. multistability and coexisting attractors in the new 10D Hyperchaotic sys-

tem is discussed in Section 4. In Section 5 we discuss the synchronization of the new 10D

hyperchaotic systems using active control. Circuit implementation of the new 10-D hyperch-

aotic system are presented in Section 6. Finally, the conclusions of this paper are summarized

in Section 7.

New 10-D hyperchaotic system

There are four positive parameters in the new 10D hyperchaotic system, as well as twenty-

three terms with two quadratic and one quartic nonlinearity. The new system is describe using

the algebraic equations (1):

_x1 ¼ x3 þ x1x2 � x1;

_x2 ¼ 1þ aðx2 � x4
1
Þ � x2

1
;

_x3 ¼ � x1 þ x3 þ x4;

_x4 ¼ � bx3 þ cx5;

_x5 ¼ � x4 þ x6;

_x6 ¼ � x5 þ x7;

_x7 ¼ � x6 þ x8;

_x8 ¼ � x7 þ ð1 � dÞx9;

_x9 ¼ � x8 þ x10;

_x10 ¼ � x9 þ x7:

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð1Þ

where the state variables are given as x1, x2, x3, x4, x5, x6, x7, x8, x9 and x10 while a, b, c and d
parameters denote the positive constant. When the initial guess are selected as:

ð1; 0; 0; 0; 0; 0; 0; 0; 0; 0Þ: ð2Þ

and the coefficient values are selected as:

a ¼ 0:1; b ¼ 0:1; c ¼ 1:1; d ¼ 0:01: ð3Þ
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System (1) exhibit a complex hyperchaotic behavior with high fractal dimension and its

phase portraits are described in Fig 1 using the Matlab ode45 function. It clear from the Fig 1

that our proposed the new 10D hyperchaotic system generates two-wing attractors.

The Lyapunov exponents (LE) for the new 10D hyperchaotic system (1) whose initial condi-

tions is given in Eq (2) and the parameters values as in Eq (3) can be calculated using Wolf’s

algorithm, results are shown in Fig 2.

Fig 1. Phase portraits of the 10-D hyperchaotic system (1): (a) x1 − x2 attractor, (b) x1 − x3 attractor, (c) x3 − x4,

(d) x5 − x6 attractor, (e) x9 − x10 attractor and (f) x3 − x9 − x10 attractor.

https://doi.org/10.1371/journal.pone.0266053.g001
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The obtained ten LE of the new 10D hyperchaotic system (1) are:

LE1 ¼ 0:142;

LE2 ¼ 0:038;

LE3 ¼ 0;

LE4 ¼ 0;

LE5 ¼ 0;

LE6 ¼ 0;

LE7 ¼ � 0:011;

LE8 ¼ � 0:024;

LE9 ¼ � 0:094;

LE10 ¼ � 0:597:

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð4Þ

As shown in Fig 2, system (1) has LE1,2 > 0, LE3,4,5,6 = 0, LE7,8,9,10 < 0, which means that it

exhibits a hyperchaotic behavior with two positive, four zero and four negative LE. The sum of

the LE is also negative, indicating that our suggested 10-D system (1) is dispersed.

According to chaos theory, Kaplan-Yorke dimensions high value directly corresponds to

system dynamics’ high complexity. For the proposed system (1), the analogous Kaplan-Yorke

Fig 2. Lyapunov exponents of the new 10-D hyperchaotic system (1) with a = 0.1, b = 0.1, c = 1.1 and d = 0.01.

https://doi.org/10.1371/journal.pone.0266053.g002
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dimension is calculated as follows:

DKY ¼ jþ
1

j Ljþ1 j

Xj

j¼1

Lj: ð5Þ

with j representing the index such that:

Xj

i¼1

Lj > 0 and
Xjþ1

i¼1

Lj < 0: ð6Þ

So, for (1), we discover that:

DKY ¼ 9þ

P9

iþ1
LEi

j LE10 j
¼ 9:045: ð7Þ

We can observe from (7) that fractal dimension of Kaplan-Yorke is very large in compari-

son to other systems. Thus, the proposed 10-D system (1) displays a very complex hyperchao-

tic behaviour.

Table 1 illustrate our new system (1) Kaplan-Yorke fractal dimension and that of some

famous high dimensional recently reported hyperchaotic systems.

In 2011, J. C. Sprott [29] proposed three criteria for the publication of a new hyperchaotic

system. It is said in [29], that a new system must satisfy at least one criterion. Among the three

criteria, one criterion is that the system should exhibit some behavior previously unobserved.

The new behavior of the new 10D hyperchaotic is compared in Table 1.

It can be seen from Table 1 that the 10-D system (1) has a more advanced fractal dimension

than some famous high dimensional chaotic systems reported in literature, which indicate and

prove the high complexity of system (1).

Dynamical analysis of the new 10-D hyperchaotic system

In this part, the effect of initial conditions and coefficient on the complexity and properties of

system (1) would be studied. Stability of equilibrium points, Lyapunov exponents, fractal

dimension and coexisting attractors will be the main properties of investigation.

Table 1. Kaplan-Yorke fractal dimension of ten high dimensional chaotic system.

System Fractal dimension

7-D Varan system [30] 2.175

7-D Lagmiri system [10] 2.091

7-D Yu system [31] 5.278

7-D Yang system [32] 6.149

7-D Hu and Chan system [33] 6.732

9-D Zhu system [12] 2.171

9-D Mahmoud system [13] 5.065

9-D Mahmoud system [14] 5.128

10-D Jianliang system [15] 2.429

The new 10-D system (1) 9.045

https://doi.org/10.1371/journal.pone.0266053.t001
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Equilibrium points and stability

The first step in dynamic analysis is solving the algebraic equations below to discover new

10-D hyperchaotic system (1) points of equilibrium:

x3 þ x1x2 � x1 ¼ 0;

1þ aðx2 � x4
1
Þ � x2

1
¼ 0;

� x1 þ x3 þ x4 ¼ 0;

� bx3 þ cx5 ¼ 0;

� x4 þ x6 ¼ 0;

� x5 þ x7 ¼ 0;

� x6 þ x8 ¼ 0;

� x7 þ ð1 � dÞx9 ¼ 0;

� x8 þ x10 ¼ 0;

� x9 þ x7 ¼ 0:

8
>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>:

ð8Þ

By considering the parameters values (3), three equilibrium points is obtained as the follow-

ing:

E1 ¼ ½0; � 10; 0; 0; 0; 0; 0; 0; 0; 0�

E2 ¼ ½� 1; 1; 0; � 1; 0; � 1; 0; � 1; 0; � 1�

E3 ¼ ½1; 1; 0; 1; 0; 1; 0; 1; 0; 1�

8
>>><

>>>:

ð9Þ

We study the stability of (1) at the three equilibrium points by studying the eigenvalues of

the following Jacobean of the 10-D system.

JEi ¼

x2 � 1 x1 1 0 0 0 0 0 0 0

� 2x1 � 4ax3
1

a 0 0 0 0 0 0 0 0

� 1 0 1 1 0 0 0 0 0 0

0 0 � b 0 c 0 0 0 0 0

0 0 0 � 1 0 1 0 0 0 0

0 0 0 0 � 1 0 1 0 0 0

0 0 0 0 0 � 1 0 1 0 0

0 0 0 0 0 0 1 0 1 � d 0

0 0 0 0 0 0 0 � 1 0 1

0 0 0 0 0 0 1 0 � 1 0

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

ð10Þ
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By considering the parameters values (3) the characteristic polynomial of JEi is calculated as:

rðlÞ ¼ l
10
þ 9:9l

9
� 4:81l

8
þ 62:381l

7
� 57:222l

6
þ 104:3812l

5
�

101:0089l
4
þ 36:6971l

3
� 24:8579l

2
þ 2:2209l � 0:0011:

ð11Þ

Then, the eigenvalues of JE1
are obtained as:

l1 ¼ � 10:3161; l2;3 ¼ �1:9358i;l4 ¼ 0:2538;l5;6 ¼ 0:0058�

1:4453i; l7;8 ¼ 0:0245� 0:5498i; l9 ¼ 0; l10 ¼ 0:1:
ð12Þ

The characteristic polynomial of JE2
is calculated as:

rðlÞ ¼ l
10
� 1:1l

9
þ 9:69l

8
� 9:209l

7
þ 31:433l

6
� 25:5918l

5
þ

36:7331l
4
� 25:9284l

3
þ 8:9336l

2
� 5:5251lþ 0:0024:

ð13Þ

Then, the eigenvalues of JE2
are obtained as:

l1;2 ¼ 0:169� 1:8045i; l3;4 ¼ 0:0021� 1:9349i; l5;6 ¼ 0:0015�

1:4339i;l7 ¼ 0:7185;l8;9 ¼ 0:0179� 0:549i;l10 ¼ 0:
ð14Þ

The characteristic polynomial of JE3
is calculated as:

rðlÞ ¼ l
10
þ 9:9l

9
� 4:81l

8
þ 62:381l

7
� 57:22l

6
þ 104:3812l

5
�

101:0089l
4
þ 36:697l

3
� 24:8579l

2
þ 2:2209l � 0:0011:

ð15Þ

Then, the eigenvalues of JE3
are obtained as:

l1 ¼ � 10:9161;l2; 3 ¼ �1:9358i;l4 ¼ 0:8538;l5; 6 ¼ 0:0058�

1:4453i; l7; 8 ¼ 0:0245� 0:5498i;l9 ¼ 0; l10 ¼ 0:1:
ð16Þ

We observe the existence of four eigenvalues with positive real part in (12), nine positive

eigenvalues in (14) and nine positive eigenvalues in (16) which shows that all equilibrium

points are unstable. In addition, we can conclude that the 10-D system hyperchaotic attractor

belongs to the self-excited family (1).

Bifurcation, Lyapunov exponents and fractal dimension

The LE spectrum and bifurcation diagram are two most significant tools for analyzing a sys-

tem’s dynamical behavior. The Kaplan-Yorke fractal dimension is also a useful indicator of

system complexity. The dynamical behavior and complexity of the novel 10-D system (1) are

examined using numerical simulations in this section of the study, with variable positive coef-

ficient a, b, c, and d.

Parameter a varying. To investigate the sensitivity of (1) to the value of parameter a, we

let b = 0.1, c = 0.5, d = 0.01 and vary a between 0 and 0.2. The bifurcation diagram (BD) of (1)

with corresponding Lyapunov exponents spectrum when a belongs to the following set of val-

ues [0;0.2] and for initial conditions (3) are depicted in Fig 3, we can observe that BD and Lya-

punov exponents spectrum are in good agreement. Fig 3 illustrate that the new 10-D system

(1) can exhibit periodic behavior without positive Lyapunov exponents which means that the

Kaplan-yorke fractal dimension equal to zero indicating no complexity of the dynamics. Also,

the 10-D system can involves into a chaotic attractor or a hyperchaotic attractor with high

Kaplan-Yorke fractal dimension which indicates complexity of the dynamics.
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When a 2 ([0, 0.013], [0.017, 0.021], [0.027, 0.031]), the new 10-D system (1) exhibit a peri-

odic behavior without complexity. When a 2 ([0.014, 0.016], [0.022, 0.026], [0.032, 0.042],

[0.046, 0.050], [0.188, 2]), the new 10-D system (1) generates a chaotic behaviour with different

level of complexity. When a varies the value of kaplan-yorke dimension moves from 6.739

when a = 0.035 to 8.374 when a = 0.195. When a 2 ([0.050, 0.187]), the new 10-D system (1)

exhibits a hyperchaotic behavior with very high level of complexity. The corresponding

kaplan-yorke dimension moves from a high value of 8.746 when a = 0.185 to a very high value

of 9.067 when a = 0.6. Fig 4 illustrates several attractors and dynamical behaviors for various

values of a. In addition, Table 2 shows the Kaplan-Yorke fractal dimension and Lyapunov

exponents for some values of a.

Parameter b varying. To investigate the sensitivity of new 10-D hyperchaotic system (1)

to the value of parameter b, we fix a = 0.1, c = 1.8, d = 0.01 and vary b between 0.1 and 2. Fig 5

gives the LE spectrum and BD of (1) when and for initial conditions (3), we can observe an

excellent compatibility between LE spectrum and the corresponding BD.

It is obvious from Fig 5 that the proposed 10-D system (1) can exhibits periodic behaviour

with Kaplan-yorke fractal dimension equal to zero indicating no complexity of the dynamics.

Also, the 10-D system can involves into a chaotic attractor with one positive LE and a higher

fractional Kaplan-Yorke dimension which indicates complexity of the dynamics. In addition,

more complexity is observed when the new system generate a hyperchaotic behaviour with

more than one positive LE and higher values of Kaplan-Yorke fractal dimension, which indi-

cates a very complicated dynamic behavior generated by the new 10-D system (1).

When, the new 10-D system (1) associate into a hyperchaotic attractor with two positive LE
and a very high complexity. The corresponding Kaplan-Yorke fractal dimension equal to:

6.597 when b = 0.8, 7.960 when b = 0.42, 8.165 when b = 0.3 and it can reach 9.064 when

b = 0.1. These high values prove the very complex behavior of system (1). When, the new 10-D

system (1) with one positive Lyapunov exponents generates a chaotic behavior, the corre-

sponding Kaplan-Yorke fractal dimension equal to: 5.236 when b = 0.95 and 4.465 when

b = 1.16. When, the new 10-D system (1) possesses a quasi-periodic behavior with two or three

zero and eight negative LEs. Different dynamic behaviors and attractors for special values of

the parameterb are displayed in Fig 6. Table 3 shows the LE and the Kaplan-Yorke fractal

dimension for different values of b.

Parameter c varying. To study 10-D system (1) sensitivity to the value of parameter c, we

let a = 0.1, b = 0.1, d = 0.01 and vary c between 0 and 3. Fig 7 gives the LE spectrum and BD of

Fig 3. Bifurcation diagram (a) and Lyapunov exponents spectrum (b) of the new 10-D system (1) when: b = 0.1,

c = 1.8, d = 0.01 and a 2 [0;0.2].

https://doi.org/10.1371/journal.pone.0266053.g003
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system (1) when and for initial conditions (3). From close observation of the figure, there is a

good compatibility between Lyapunov exponents spectrum and the corresponding bifurcation

diagram. When parameter c varies, we can see from Fig 7 that the new 10-D system (1) can

exhibits periodic behavior with no complexity, chaotic behavior with one positive LE and a

high fractional Kaplan-Yorke dimension, which illustrates complexity of the dynamics. In

addition, higher complexity is observed when the proposed system generates a hyperchaotic

behavior with more than one positive LE and higher values of fractional Kaplan-Yorke dimen-

sion. When c ([0, 0.05], [0.13, 0.15], [0.24, 0.26], [0.45, 0.70], [2.36, 3]) the new system (1) gen-

erates periodic behaviour where the corresponding Kaplan-Yorke fractal dimension equal to

zero. When c ([0.06, 0.012], [0.17, 0.23], [0.27, 0.44], [0.71, 0.8], [1.92, 2.35], [2.65, 2.70], [2.85,

2.87]) the new 10-D system (1) involves into a chaotic attractor with different level of complex-

ity. When c = 0.1, the value of Kaplan-Yorke fractal dimension is 6.676. This value may

Fig 4. Phase portraits of the new 10-D system (1) for different values of a. (a) x3 − x2 Quasi-periodic attractor, (b) x3

− x2 chaotic attractor and (c) x3 − x2 hyperchaotic attractor.

https://doi.org/10.1371/journal.pone.0266053.g004

Table 2. Lyapunov exponents, Kaplan-Yorke dimensin and dynamics of the new 10D system (1) with parameter a varying.

a LE1 LE2 LE3 LE4 LE5 LE6 LE7 LE8 LE9 LE10 DKY Dynamics

0.06 0.132 0.015 0 0 0 0 -0.011 -0.018 -0.079 -0.578 9.067 Hyperhaos

0.185 0.111 0.014 0 0 0 0 -0.016 -0.015 -0.126 -0.723 8.746 Hyperhaos

0.195 0.134 0 0 0 0 -0.01 -0.012 -0.023 -0.238 -0.711 8.374 Chaos

0.035 0.027 0 0 0 0 -0.01 -0.023 -0.038 -0.056 -0.69 6.739 Chaos

0.01 0 0 0 0 -0.011 -0.012 -0.02 -0.056 -0.07 -0.693 0 Quasi-Periodic

https://doi.org/10.1371/journal.pone.0266053.t002
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increase up to 7.163 when c = 0.40 providing a high complexity. When c = 0.77 we have

obtained the highest value for chaotic attractors of system (1) which is 8.589. When, the new

10-D system (1) displays a hyperchaotic behavior with two positive, four zero and four nega-

tive LE. The corresponding Kaplan-Yorke fractal dimension is 9.031 when c = 1.4. Different

attractors and dynamical behaviors for special values of the coefficient c are given in Fig 8.

Table 4 shows the LE and fractional Kaplan-Yorke dimension for various values of c.

Fig 6. Phase portraits of the new 10-D system (1) for different values of b. (a)x3 − x4Periodic attractor, (b) x3 − x4

chaotic attractor and (c) x3 − x4 hyperchaotic attractor.

https://doi.org/10.1371/journal.pone.0266053.g006

Fig 5. Bifurcation diagram (a) and Lyapunov exponents spectrum (b) of the new 10-D system (1) when: a = 0.1,

c = 1.8, d = 0.01 and b 2 [0.1;2].

https://doi.org/10.1371/journal.pone.0266053.g005
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Parameter d varying. To examine the 10-D system (1) sensitivity for the value of coeffi-

cient d, we let a = 0.1, b = 0.1, c = 1.8 and vary d between 0 and 1. Fig 8 gives the LE spectrum

and BD of system (1) when and for initial conditions (3), it is obvious to notice the good com-

patibility between Lyapunov exponents spectrum and the corresponding bifurcation diagram.

When parameter d varies, we can see from Fig 9 that the new 10-D system (1) can exhibits

periodic behavior with no complexity, chaotic behavior with one positive LE and a high frac-

tional Kaplan-Yorke dimension, which implies complexity of the dynamics. In addition,

higher complexity is observed when (1) generates a hyperchaotic behavior with more than one

positive LE and higher values of Kaplan-Yorke fractal dimension. When the new system (1)

generates Hyperchaotic behaviour with very high complexity where the corresponding

Kaplan-Yorke fractal dimension is about 9.028 when d = 0.02. When the new 10-D system (1)

involves into a chaotic attractor where the Kaplan-Yorke fractal dimension is about 4.667

when d = 0.16, 5.33 when d = 0.85 and may increase up to 7.937 when d = 0.05 indicating

more complexity. When the new 10-D system (1) exhibits a quasi-periodic behavior. Various

types of attractors and dynamic behaviors for special values of the parameter d are presented

in Fig 10. Table 5 shows the LE, the Kaplan-Yorke fractal dimension and the dynamics for dif-

ferent values of d. To the best of the authors knowledge, this study on the new 10-D hyperch-

aotic system with a Kaplan-Yorke fractal dimension higher than 9 has never been studied by

any researcher.

Fig 7. Bifurcation diagram (a) and Lyapunov exponents spectrum (b) of the new 10-D system (1) when: a = 0.1,

b = 0.1, d = 0.01 and c 2 [0; 3].

https://doi.org/10.1371/journal.pone.0266053.g007

Table 3. Lyapunov exponents, Kaplan-Yorke dimension and dynamics of the new 10D system (1) with parameter b varying.

b LE1 LE2 LE3 LE4 LE5 LE6 LE7 LE8 LE9 LE10 DKY Dynamics

0.1 0.135 0.023 0 0 0 -0.01 -0.011 -0.014 -0.085 -0.593 9.064 Hyperchaos

0.3 0.12 0.014 0 0 -0.01 -0.013 -0.03 -0.061 -0.121 -0.497 8.165 Hyperchaos

0.42 0.129 0.016 0 0 -0.016 -0.022 -0.035 -0.075 -0.134 -0.468 7.96 Hyperchaos

0.8 0.118 0.013 0 -0.01 -0.029 -0.055 -0.062 -0.113 -0.176 -0.377 6.597 Hyperhaos

0.95 0.066 0 0 -0.01 -0.043 -0.055 -0.069 -0.107 -0.156 -0.253 5.236 Chaos

1.16 0.046 0 0 -0.013 -0.071 -0.088 -0.095 -0.109 -0.139 -0.188 4.465 Chaos

1.5 0 0 -0.01 -0.01 -0.047 -0.048 -0.119 -0.143 -0.157 -0.167 0 Quasi-Periodic

https://doi.org/10.1371/journal.pone.0266053.t003
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Multistability and coexisting attractors in the new 10D hyperchaotic

system

To study the effect of initial criteria on the behaviour of (1), the bifurcation diagrams of (1)

versus its three parameters (a, b and c) for six different initial conditions are calculated and

plotted. The obtained bifurcation diagrams allow us to examine the phenomena of multistabil-

ity; this strange occurrence demonstrates system (1)’s extraordinary sensitivity to initial condi-

tions, which is attributable to its extremely complicated dynamics [34].

Let ξ1, ξ2, ξ3, ξ4, ξ5 and ξ6 be six different initial conditions for the new 10-D hyperchaotic

system (1), where:

ξ1 = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0) (Bluecolour)

Fig 8. Phase portraits of the new 10-D system (1) for different values of c. (a) x4 − x5 Periodic attractor, (b) (a) x4 −
x5 chaotic attractor and (c) (a) x4 − x5 hyperchaotic attractor.

https://doi.org/10.1371/journal.pone.0266053.g008

Table 4. Lyapunov exponents, Kaplan-Yorke dimension and dynamics of the new 10D system (1) with parameter c varying.

c LE1 LE2 LE3 LE4 LE5 LE6 LE7 LE8 LE9 LE10 DKY Dynamics

1.4 0.121 0.018 0 0 0 0 -0.010 -0.019 -0.091 -0.608 9.031 Hyperchaos

0.77 0.113 0 0 0 0 0 -0.010 -0.040 -0.107 -0.533 8.589 Chaos

0.4 0.041 0 0 0 0 -0.010 -0.024 -0.043 -0.117 -0.531 7.163 Chaos

0.1 0.025 0 0 0 0 0 -0.037 -0.072 -0.092 -0.502 6.676 Chaos

2.6 0 0 -0.010 -0.010 -0.011 -0.012 -0.014 -0.035 -0.049 -0.773 0 Quasi-Periodic

https://doi.org/10.1371/journal.pone.0266053.t004
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ξ2 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 1) (Redcolour)

ξ3 = (0, 0, 0, 0, 0, 0, 0, 0, 0, −1) (Greencolour)

ξ4 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0.5) (Magentacolour)

ξ5 = (0, 0, 0, 0, 0, 0, 0, 2, 0, 0) (Yellowcolour)

ξ4 = (0, 0, 0, 0, 0, 0, 0, −2, 0, 0) (Cyancolour)

Fig 9. Bifurcation diagram (a) and Lyapunov exponents spectrum (b) of the new 10-D system (1) when: a = 0.1,

b = 0.1, c = 1.8 and d 2 [0; 1].

https://doi.org/10.1371/journal.pone.0266053.g009

Fig 10. Phase portraits of the new 10-D system (1) for various values of d. (a) x7 − x10 Periodic attractor, (b) x7 − x10

chaotic attractor and (c) x7 − x10 hyperchaotic attractor.

https://doi.org/10.1371/journal.pone.0266053.g010
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Multistability when parameter a varying. Here the BD of (1) with respect to coefficient a
is calculated and plotted starting from six different initial points ξ1, ξ2, ξ3, ξ4, ξ5 and ξ6. Fix

b = 0.1, c = 1.8 and d = 0.01, from the bifurcation diagram, it can be observed that the new 10D

system (1) has six different dynamical evolutions when a 2 [0;0.2] as depicted in Fig 11.

When a 2 [0;0.04], we can see that system (1) has coexistence of one chaotic attractor start-

ing from and five quasi-periodic attractors as shown in Fig 12(a). Coexistence of four quasi-

periodic attractors starting from ξ2, ξ3, ξ4 and ξ3. and two chaotic attractors starting from ξ1

and ξ4 are determined when a 2 [0.05;0.02] as depicted in Fig 12(b). Dynamics, Kaplan-Yorke

fractal dimension and Lyapunov exponents for all coexisting attractors when a 2 [0;0.2] are

listed in Table 6.

Multistability when parameter b varying. Here system (1) bifurcation diagram with

respect to b is calculated and plotted starting from the six different initial points ξ1, ξ2, ξ3, ξ4, ξ5

and ξ6. Fix a = 0.1, c = 1.8 and d = 0.01, from the bifurcation diagram, it can be observed that

the new 10D hyperhaotic system (1) exhibit six different dynamical evolutions when b 2
[0.1;3] as depicted in Fig 13. When b 2 [0;1.2], we can see that system (1) has coexistence of

Table 5. Lyapunov exponents, Kaplan-Yorke dimension and dynamics of the new 10-D hyperchaotic system (1) with parameter d varying.

d LE1 LE2 LE3 LE4 LE5 LE6 LE7 LE8 LE9 LE10 DKY Dynamics

0.02 0.111 0.019 0 0 0 0 -0.010 -0.025 -0.078 -0.599 9.028 Hyperhaos

0.05 0.056 0 0 0 0 -0.012 -0.014 -0.032 -0.083 -0.736 7.937 Chaos

0.85 0.019 0 0 0 -0.014 -0.015 -0.018 -0.055 -0.088 -0.624 5.33 Chaos

0.16 0.010 0 0 0 -0.015 -0.022 -0.023 -0.028 -0.050 -0.786 4.667 Chaos

0.5 0 0 0 0 -0.010 -0.010 -0.013 -0.089 -0.092 -0.642 0 Quasi-Periodic

https://doi.org/10.1371/journal.pone.0266053.t005

Fig 11. Bifurcation diagram of system (1) versus a starting from:ξ1 (blue), ξ2(red), ξ3(green), ξ4(magenta),

ξ5(yellow) and ξ6(cyan).

https://doi.org/10.1371/journal.pone.0266053.g011
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two chaotic attractors starting from ξ1 and ξ4 and four periodic attractors starting from the

remaining initial points as shown in Fig 14(a). Coexistence of one chaotic attractor starting

from ξ4 and five periodic attractor starting from the other initial conditions are observed when

a 2 [0.13;0.19], (see Fig 14(b)). When b 2 [2;3], the new 10-D hyperchaotic system has coexis-

tence of three chaotic attractors starting from ξ2, ξ3 and ξ4 and three periodic attractors starting

from ξ1, ξ5 and ξ6 as shown in Fig 14(c). Dynamics, Kaplan-Yorke fractal dimension and Lya-

punov exponents for all coexisting attractors when b 2 [0.1;3] are listed in Table 7.

Fig 12. Coexistence of six different attractors projected on the x1 − x5 plane. (a) Coexistence of one hyperchaotic

attractor and five quasi-periodic attractors when a = 0.01. (b) Coexistence of two hyperchaotic attractors and four

quasi-periodic attractors when a = 0.1.

https://doi.org/10.1371/journal.pone.0266053.g012

Fig 13. Bifurcation diagram of system (1) versus b starting from:ξ1 (blue), ξ2(red), ξ3(green), ξ4(magenta),

ξ5(yellow) and ξ6(cyan).

https://doi.org/10.1371/journal.pone.0266053.g013
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Multistability when parameter c varying. Here the bifurcation diagram of system (1)

with respect to parameter c is calculated and plotted starting from the six different initial points

ξ1, ξ2, ξ3, ξ4, ξ5 and ξ6. Fix a = 0.1, b = 0.1 and d = 0.01, it can be observed from the bifurcation

diagram that the new 10-D hyperchaotic system (1) exhibit six different dynamical evolutions

when c 2 [0;3], as depicted in Fig 15. When c 2 ([0;0.4], [1.1;2.2]), the new 10-D hyperchaotic

Table 6. Lyapunov exponents, Kaplan-Yorke dimensin and dynamics of system (1) coexisisting attractors with parameter a varying.

a ξi LE1 LE2 LE3 LE4 LE5 LE6 LE7 LE8 LE9 LE10 DKY Dynamics

0.01 ξ1 0 0 0 0 -0.010 -0.012 -0.020 -0.056 -0.070 -0.693 0 Quasi-Periodic

ξ2, ξ3 0 0 0 0 0 -0.010 -0.014 -0.015 -0.305 -0.355 0 Quasi-Periodic

ξ4 0.081 0.010 0 0 0 -0.010 -0.011 -0.021 -0.042 -0.527 9.013 Hyperchaos

ξ5, ξ6 0 0 0 0 0 -0.010 -0.013 -0.138 -0.148 -0.658 0 Quasi-Periodic

0.1 ξ1 0.129 0.024 0 0 0 0 -0.010 -0.018 0.093 -0.597 9.054 Hyperhaos

ξ2, ξ3 0 0 0 0 -0.010 -0.012 -0.024 -0.026 -0.268 -0.403 0 Quais-Periodic

ξ4 0.089 0.014 0 0 0 0 -0.010 -0.022 -0.081 -0.533 8.876 Hyperhaos

ξ5, ξ6 0 0 0 -0.010 -0.011 -0.012 -0.015 -0.143 -0.291 -0.476 0 Quais-Periodic

https://doi.org/10.1371/journal.pone.0266053.t006

Fig 14. Coexistence of six different attractors projected on the x1 − x3 plane. (a) Coexistence of one hyperchaotic

attractor (blue), one chaotic attractor (magenta) and four periodic attractors when b = 0.5. (b) Coexistence of one

chaotic attractor and five periodic attractors when b = 1.5. (c) Coexistence of three chaotic attractors and three periodic

attractors when b = 2.5.

https://doi.org/10.1371/journal.pone.0266053.g014
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system (1) has coexistence of two chaotic and four quasi-periodic attractors as shown in

Fig 16(a). Coexistence of one chaotic starting from ξ1 and five quasi-periodic attractors is

determined when a 2 ([0.5;0.7], [2.3;3]), as depicted in Fig 16(b). Finally, when c 2 [0.8;1], we

can observe the coexistence of one chaotic attractor starting from ξ4 and five quasi-periodic

attractors as shown if Fig 16(c).

Dynamics, Kaplan-Yorke fractal dimension and Lyapunov exponents for all coexisting

attractors when c 2 [0;3], are listed in Table 8.

Table 7. Lyapunov exponents, Kaplan-Yorke dimensin and dynamics of system (1) coexisisting attractors with parameter b varying.

b ξi LE1 LE2 LE3 LE4 LE5 LE6 LE7 LE8 LE9 LE10 DKY Dynamics

0.5 ξ1 0.119 0.013 0 0 -0.010 -0.032 -0.048 -0.077 -0.149 -0.424 7.545 Hyperhaos

ξ2, ξ3 0 -0.010 -0.015 -0.017 -0.029 -0.032 -0.058 -0.156 -0.192 -0.325 0 Periodic

ξ4 0.054 0 0 -0.010 -0.024 -0.032 -0.042 -0.059 -0.121 -0.466 5.625 Chaos

ξ5, ξ6 0 -0.010 -0.027 -0.030 -0.062 -0.064 -0.071 -0.103 -0.289 -0.308 0 Periodic

1.5 ξ1 0 -0.004 -0.009 -0.010 -0.046 -0.049 -0.119 -0.144 -0.157 -0.167 0 Periodic

ξ2, ξ3 0 -0.010 -0.065 -0.068 -0.076 -0.085 -0.098 -0.100 -0.194 -0.199 0 Periodic

ξ4 0.018 0 -0.010 -0.016 -0.051 -0.053 -0.118 -0.139 -0.156 -0.177 3.5 Chaos

ξ5, ξ6 0 -0.010 -0.098 -0.099 -0.112 -0.113 -0.114 -0.133 -0.142 -0.145 0 Periodic

2.5 ξ1 0 -0.010 -0.028 -0.031 -0.040 -0.047 -0.052 -0.140 -0.213 -0.215 0 Periodic

ξ2, ξ3 0.012 0 -0.030 -0.032 -0.060 -0.061 -0.137 -0.147 -0.216 -0.220 2.4 Chaos

ξ4 0.017 0 -0.025 -0.027 -0.038 -0.049 -0.066 -0.145 -0.214 -0.221 2.68 Chaos

ξ5, ξ6 0 -0.010 -0.045 -0.047 -0.110 -0.111 -0.113 -0.115 -0.209 -0.211 0 Periodic

https://doi.org/10.1371/journal.pone.0266053.t007

Fig 15. Bifurcation diagram of system (1) versus c starting from:ξ1 (blue), ξ2(red), ξ3(green), ξ4(magenta),

ξ5(yellow) and ξ6(cyan).

https://doi.org/10.1371/journal.pone.0266053.g015
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Fig 16. Coexistence of six different attractors projected on the x1 − x2 plane. (a) Coexistence of two chaotic attractor

and four quasi-periodic attractors when c = 0.3. (b) Coexistence of one hyperchaotic attractor starting from ξ1 (blue)

and five quasi-periodic attractors when c = 0.85. (c) Coexistence of one chaotic attractor starting from ξ4 (magenta),

one periodic attractor (blue) and four quasi-periodic attractors when c = 2.9.

https://doi.org/10.1371/journal.pone.0266053.g016

Table 8. Lyapunov exponents, Kaplan-Yorke dimensin and dynamics of system (1) coexisisting attractors with parameter c varying.

c ξi LE1 LE2 LE3 LE4 LE5 LE6 LE7 LE8 LE9 LE10 DKY Dynamics

0.3 ξ1 0.062 0 0 0 0 0 -0.010 -0.053 -0.098 -0.492 7.981 Chaos

ξ2, ξ3 0 0 0 0 0 0 -0.040 -0.044 -0.203 -0.413 0 Quasi-Periodic

ξ4 0.032 0 0 0 0 0 -0.019 -0.045 -0.107 -0.467 7.288 Chaos

ξ5, ξ6 0 0 0 0 0 -0.036 -0.039 -0.086 -0.091 -0.625 0 Quasi-Periodic

0.9 ξ1 0.129 0.010 0 0 0 0 -0.010 -0.027 -0.101 -0.603 6.52 Hyperchaos

ξ2, ξ3 0 0 0 0 -0.017 -0.021 -0.023 -0.025 -0.069 -0.607 0 Quasi-Periodic

ξ4 0 0 0 0 0 -0.004 -0.046 -0.083 -0.103 -0.559 0 Quasi-Periodic

ξ5, ξ6 0 0 0 0 0 -0.021 -0.024 -0.112 -0.117 -0.622 0 Quasi-Periodic

2.9 ξ1 0 -0.003 -0.006 -0.007 -0.009 -0.010 -0.014 -0.049 -0.052 -0.772 0 Periodic

ξ2, ξ3 0 0 0 -0.005 -0.006 -0.008 -0.012 -0.014 -0.313 -0.364 0 Quasi-Periodic

ξ4 0.111 0.011 0 0 0 -0.009 -0.010 -0.017 -0.067 -0.587 9.031 Hyperchaos

ξ5, ξ6 0 0 0 -0.006 -0.007 -0.010 -0.01 1 -0.088 -0.096 -0.679 0 Quasi-Periodic

https://doi.org/10.1371/journal.pone.0266053.t008
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To the best of the authors knowledge, no research has been done on the new 10-D hyperch-

aotic chaotic system that exhibiting different coexisting attractors with the variation of its

parameters.

Synchronization of the new 10D hyperchaotic system with a set of

chaotic systems

This section study the synchronization of the proposed new 10-D hyperchaotic with three

diverse Hyperchaotic and chaotic systems via active controllers. One considers a set of three

systems as master system. The slave system will be the new 10D Hyperchaotic system. The idea

is to synchronize the first three coordinates of the new 10-D hyperchaotic system with coordi-

nates of the 3D system (17), the second three state coordinates of the new 10-D hyperchaotic

system will be synchronized with the state coordinates of the 3D system (18). Finally, we will

synchronize the last four coordinates of the new 10-D hyperchaotic system with the coordi-

nates of the 4D hyeprchaotic system (19).

The first 3-D chaotic system

This subsection review the 3D chaotic system [35], which has six terms with two nonlinearities

and it was given by:

_x11 ¼ eðx12 � x11Þ;

_x12 ¼ x1x3;

_x13 ¼ 50 � fx4
11
� gx13:

8
>>><

>>>:

ð17Þ

Suppose the parameters are represented by e = 3, f = 1 and g = 1 and for the initial condi-

tions (0.1; 0.1; 0.1), then, system (17) exhibits a chaotic behaviour with the following values of

Lyapunov exponents: LE1 = 1.386, LE2 = 0, LE3 = −5.386 The phase portraits of the 3D chaotic

system (17) are depicted in Fig 17.

The second 3-D chaotic system

This subsection review the 3D chaotic system [36], which has three quadratic nonlinear terms.

It was described as follows:

_x21 ¼ x22;

_x22 ¼ hx21x23 þ kx2
22
� mx2 � x22x23;

_x23 ¼ x2
22
� 1:

8
>>><

>>>:

ð18Þ

When the coefficients take the values h = 0.1, k = 0.1, m = 0.15 and for the initial conditions

(0.2, 0.2, 0.2), system (18) exhibits a chaotic behaviour with the following values of LE1 =

0.053, LE2 = 0, LE3 = −0.183. The phase portraits of the 3D chaotic system are presented in

Fig 18.
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The 4-D hyperchaotic system

This subsection review the 4D hyperchaotic system [37], which has four nonlinear terms and

line equilibrium. It was described as follows:

_x31 ¼ x32 � x31x33 � x32x33;

_x32 ¼ nx31x33 þ x34;

_x33 ¼ x2
32
� x33 þ x34;

_x34 ¼ px32:

8
>>>>>>><

>>>>>>>:

ð19Þ

When the parameters take the values n = 3, p = −0.08 and for the initial conditions (0.1, 0.1,

0.1, 0.1), system (12) exhibits a hyperchaotic behaviour with the following values of Lyapunov

exponents LE1 = 0.163, LE2 = 0.024, LE3 = −1.823. The phase portraits of the 4D hyperchaotic

system are shown in Fig 19.

Design of active controllers for synchronization

Design of active controllers is considered in this subsection, in order to synchronize the new

10-D hyperchaotic system (1) and a set of three multidimensional systems (20). One considers

Fig 17. Phase portraits of the hyperchaotic system (17): (a) x1 − x2 attractor, (b) x1 − x3 attractor.

https://doi.org/10.1371/journal.pone.0266053.g017

Fig 18. Phase portraits of the hyperchaotic system (18): (a) x1 − x2 attractor, (b) x1 − x3 attractor.

https://doi.org/10.1371/journal.pone.0266053.g018
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the following set of chaotic systems (The first 3D chaotic system (17), the second 3D chaotic

system (18) and the 4D hyperchaotic system (19) as master system:

_x11 ¼ eðx12 � x11Þ;

_x12 ¼ x1x3;

_x13 ¼ 50 � fx4
11
� gx13;

_x21 ¼ x22;

_x22 ¼ hx21x23 þ kx2
22
� mx2 � x22x23;

_x23 ¼ x2
22
� 1;

_x31 ¼ x32 � x31x33 � x32x33;

_x32 ¼ nx31x33 þ x34;

_x33 ¼ x2
32
� x33 þ x34;

_x34 ¼ px32:

8
>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>:

ð20Þ

Then, the new 10-D system is studied as a master system and described as follows:

_x1 ¼ x3 þ x1x2 � x1 þ u1;

_x2 ¼ 1þ aðx2 � x4
1
Þ � x2

1
þ u2;

_x3 ¼ � x1 þ x3 þ x4 þ u3;

_x4 ¼ � bx3 þ cx5 þ u4;

_x5 ¼ � x4 þ x6 þ u5;

_x6 ¼ � x5 þ x7 þ u6;

_x7 ¼ � x6 þ x8 þ u7;

_x8 ¼ � x7 þ ð1 � dÞx9 þ u8;

_x9 ¼ � x8 þ x10 þ u9;

_x10 ¼ � x9 þ x7 þ u10;

8
>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>:

ð21Þ

Fig 19. Phase portraits of the hyperchaotic system (19): (a) x1 − x2 attractor, (b) x1 − x3 attractor.

https://doi.org/10.1371/journal.pone.0266053.g019
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where the functions of the active control to be found is u1, u2, u3, u4, u5, u6, u7, u8, u9 and u10.

The state errors are defined as e − 1 = x1 − x11, e2 = x2 − x12, e3 = x3 − x13, e4 = x4 − x21, e5 = x5

− x2, e6 = x6 − x23, e7 = x7 − x31, e8 = x8 − x32, e9 = x9 − x33, e10 = x10 − x34 From the slave system

(21), we subtract master system (20) including the control functions, thus, we obtain error sys-

tem as follows:

_e1 ¼ _x1 � _x11 ¼ x3 þ x1x2 � x1 � eðx12 � x11Þ þ u1;

_e2 ¼ _x2 � _x12 ¼ 1þ aðx2 � x4
1
Þ � x2

1
� x1x3 þ u2;

_e3 ¼ _x3 � _x13 ¼ � x1 þ x3 þ x4 � 50þ fx4
11
þ gx13 þ u3;

_e4 ¼ _x4 � _x21 ¼ � bx3 þ cx5 � x22 þ u4;

_e5 ¼ _x5 � _x22 ¼ � x4 þ x6 � hx21x23 � kx2
22
þmx2 þ x22x23 þ u5;

_e6 ¼ _x6 � _x23 ¼ � x5 þ x7 � x2
22
þ 1þ u6;

_e7 ¼ _x7 � _x31 ¼ � x6 þ x8 � x32 þ x31x33 þ x32x33 þ u7;

_e8 ¼ _x8 � _x32 ¼ � x7 þ ð1 � dÞx9 � nx31x33 � x34 þ u8;

_e9 ¼ _x9 � _x33 ¼ � x8 þ x10 � x2
32
þ x33 � x34 þ u9;

_e10 ¼ _x10 � _x34 ¼ � x9 þ x7 � px32 þ u10:

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð22Þ

Our aim is to design the active control functions, which control the error system to be asymp-

totically stable; in order to ascertain synchronization between the new 10-D hyperchaotic sys-

tem (21) and set of systems (20).

By choosing the active control functions as the follows:

u1 ¼ eðx12 � x11Þ � x3 � x1x2 � e1;

u2 ¼ x1x3 � 1 � aðx2 � x4
1
Þ þ x2

1
� e2;

u3 ¼ 50 � fx4
11
� gx13 þ x1 � x3 � x4 � e3;

u4 ¼ x22 þ bx3 � cx5 þ bx3 � cx5 � e4;

u5 ¼ hx21x23 þ kx2
22
� mx2 � x22x23 þ x4 � x6 � e5;

u6 ¼ x2
22
� 1þ x5 � x7 � e6;

u7 ¼ x32 � x31x33 � x32x33 þ x6 � x8 � e7;

u8 ¼ nx31x33 þ x34 þ x7 � ð1 � dÞx9 � e8;

u9 ¼ x2
32
� x33 þ x34 þ x8 � x10 � e9;

u10 ¼ px32 þ x9 � x7 � e10:

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð23Þ
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The dynamical equations of error system becomes:

_e1 ¼ � e1;

_e2 ¼ � e2;

_e3 ¼ � e3;

_e4 ¼ � e4;

_e5 ¼ � e5;

_e6 ¼ � e6;

_e7 ¼ � e7;

_e8 ¼ � e8;

_e9 ¼ � e9;

_e10 ¼ � e10:

8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

ð24Þ

It can be noted from (24) that after applying the proposed active control functions (23) the

error system becomes linear with the following state representation:

_e1

_e2

_e3

_e4

_e5

_e6

_e7

_e8

_e9

_e10

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

¼

� 1 0 0 0 0 0 0 0 0 0

0 � 1 0 0 0 0 0 0 0 0

0 0 � 1 0 0 0 0 0 0 0

0 0 0 � 1 0 0 0 0 0 0

0 0 0 0 � 1 0 0 0 0 0

0 0 0 0 0 � 1 0 0 0 0

0 0 0 0 0 0 � 1 0 0 0

0 0 0 0 0 0 0 � 1 0 0

0 0 0 0 0 0 0 0 � 1 0

0 0 0 0 0 0 1 0 0 � 1

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

e1

e2

e3

e4

e5

e6

e7

e8

e9

e10

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

ð25Þ

It is easy to check that all eigenvalues of the states matrix (25) are negatives, so, based on

Routh-Hurwitz condition; the error system is stable which assure synchronization between the

slave system (21) and master system (20). So, the designed active functions ensure that the first

three states of the 10 D system will be synchronized with the states of the first chaotic system

(17). The second three states of the new 10-D hyperchaotic system will be synchronized with

the states of second chaotic system (18) and the last four states of the new 10-D hyperchaotic

system will be synchronized with the states of the 4D hyperchaotic system (19).

Simulation results

For numerical simulations the initial conditions of the master system (10) are chosen as: (0.1,

0.1, 0.1, 0.2, 0.2, 0.2, 0.1, 0.1, 0.1, 0.1) The parameters of the master system are chosen as: e = 3,

f = 1, g = 1, h = 0., k = 0.1, m = 0.15, n = 3 and p = −0.08 The initial conditions of the slave sys-

tem (10) are chosen as (1, 1, 1, 1, 1, 1, 1, 0, 0, 0) The parameters of the slave system are chosen

as: a = 0.1, b = 0.1, c = 1.8 and d = 0. Active controllers is switched on at t = 200s and all the

states error time evolution are depicted in Fig 20. The results shows that all the ten states of

error system (22) evolve chaotically with time when the active controllers are deactivated

(when t< 200s) indicating non synchronization. After that (when t� 200s), the controllers

are activated and it can be seen that all the states synchronization error converge rapidly to

zero. So, simulation results showing the success of the proposed active controllers (23) to syn-

chronize the new 10D hyperchaotic system with a class of three multidimensional chaotic and
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hyperchaotic systems. To the best of the authors knowledge, no study has been done to investi-

gates the synchronization of the new 10D hyperchaotic system with the active control strategy.

Also, synchronization of the proposed 10D system (1) with a class of low dimensional systems

making it very desirable to use in secure communications schemes that need high complexity.

Circuit implementation of the new 10-D system

In order to test system (1) physical feasibility, an equivalent electronic circuit for the new 10-D

hyperchaotic system (1) is developed using Multisim 13.0 software as depicted in Fig 21. Using

Fig 20. Time evolution of the synchronization errors with controllers deactivated (t< 200s) and activated

(t> 200s).

https://doi.org/10.1371/journal.pone.0266053.g020
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the Kirchhoff’s laws to the circuit in Fig 21, the circuital equations of the new 10D Hyperchao-

tic system (1) becomes:

_x1 ¼
1

R1C1

x3 �
1

R2C1

x1x2 �
1

R3C1

x1;

_x2 ¼
1

R4C2

V þ
1

R5C2

x2 �
1

R6C2

x2

1
�

1

R7C2

x4

1
;

_x3 ¼ �
1

R8C3

x1 �
1

R9C3

x3 þ
1

R10C3

x4;

_x4 ¼ �
1

R11C4

x3 þ
1

R12C4

x5;

_x5 ¼ �
1

R13C5

x4 þ
1

R14C5

x6;

_x6 ¼ �
1

R15C6

x5 þ
1

R16C6

x7;

_x7 ¼ �
1

R17C7

x6 þ
1

R18C7

x8;

_x8 ¼ �
1

R19C8

x7 þ
1

R20C8

x9;

_x9 ¼ �
1

R21C9

x8 þ
1

R22C9

x10;

_x10 ¼ �
1

R23C10

x9 þ
1

R27C10

x7:

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð26Þ

By using TL082CD operational amplifiers, the circuit would have nine reversers and ten

integrators, also this study considered three multipliers IC AD633. All active devices have a

supply voltage ±15V. The values of circuital components are selected as follows: R1 = R2 = R3 =

R4 = R6 = R8 = R9 = R10 = 400KO, R5 = R7 = R11 = 4MO, R12 = 222.23KO, R20 = 404.04KO, Ri =

Fig 21. Electronic circuit schematic of the proposed 10-D hyperchaotic system (1).

https://doi.org/10.1371/journal.pone.0266053.g021
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400KO for i = 13, . . ., 19 and i = 21, . . ., 24, Ri = 100KO for i = 25, . . ., 42, and Ci = 1nf for i = 1,

. . ., 10.

Fig 22(a)–22(c) shows the periodic attractor, the chaotic attractor and the hyperchaotic

attractor respectively derived by Multisim 13.0. It can be noticed that the Multisim 13.0 simu-

lation results are akin to the Matlab results depicted in Fig 6(a)–6(c) which confirm the pro-

posed 10-D system (1) physical feasibility.

Fig 23 shows four coexistence attractors obtained from the Multisim 13.0 based implemen-

tation of the 10-D system (1) for similar values of coefficients a = b = 0.1, c = 1.8, d = 0.01 and

four different initial conditions ξ1, ξ2, ξ3 and ξ4

Fig 23(a)–23(d) shows respectively good compatibility with the four coexisting attractors

(the magenta chaotic attractor, the red chaotic attractor, the green chaotic attractor and the

blue periodic attractor) depicted in Fig 14(c) using Matlab software. These results confirm the

physical existence of the coexisting attractors in the proposed 10-D system (1).

Conclusion

In this work, a new ten-dimensional hyperchaotic system is first presented; the new system

contains four positive parameters and twenty-three terms with two quadratic and a quartic

nonlinearities. The new system has many specifics properties, it has three unstable equilibrium

points, it can exhibits four different dynamical behaviours (periodic, quasi-periodic, chaos and

hyperchaos) for special values of parameters. In addition, the new system may generate many

Fig 22. Experimental phase portraits of the system (1) x3 − x4 plane. (a): Periodic orbit, (b): Chaotic attractor and

(c): Hyperchaotic attractor.

https://doi.org/10.1371/journal.pone.0266053.g022
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coexisting attractors with high fractal dimension when fixing the parameters and changing the

initial conditions. Dynamical properties of the new system is investigated using Lyapunov

exponents, Kaplan-Yorke dimension, bifurcation diagrams, phase portraits, equilibrium

points stability and dissipativity. The idea of synchronizing the new 10-D high dimensional

system with a set of three low dimensional system is applied by using active controllers; which

guarantee the convergence of the synchronization errors to zero asymptotically. Finally, in

order to prove the real feasibility of the new system and the physical existence of the coexisting

attractor, an equivalent electronic circuit was designed using Multisim. The obtained results

show a good agreement with Matlab results, which confirm the feasibility of both the 10-D sys-

tem and its dynamical behaviours. We strongly believe that the new 10-D Hyperchaotic system

with its high dimension, very complex dynamic and easy to implement circuit schematic

can be applied in various chaotic-based applications. The hardware implementations of

the new systems along with their applications are considered as the future direction of the

work.
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