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Abstract. It is noting that the response variable and the explanatory variables are highly correlated in high dimension data. Hence,
the selection of informative variables is important in order to achieve a better model interpretation and concomitantly improve the
accuracy of the prediction. In this study, the variable selection in stock market price using statistical approach was carried out.
It is pertinent since most of the previous study only concerns on the financial interests of the stock market. Therefore, this study
considers the homogeneity structure in the highly correlated data on yearly stock market price by applying ordered homogenous
pursuit lasso (OHPL) method. The performance results of OHPL were compared with lasso and elastic net. As a result, OHPL a
had higher number of selected variables and a better prediction power than of lasso and elastic net. In conclusion, OHPL shows its
capability to enhance variable selection while increasing the prediction power of the selected variables than its counterpart.
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INTRODUCTION

Modelling the relationship between the explanatory and response variables using statistical approach is essential for
a wide range of studies. In addition, when the number of explanatory variables is larger than of observations, the
high dimensionality sample data is assumed to be independent. Thus, in the case of high dimension, selecting a
subset of informative variables is of major concern [1]. It is noteworthy that many explanatory variables are added
to lower the possibility of the model deviation. Nevertheless, having more explanatory variables may not be relevant
as this decreases the accuracy of the prediction and also the model interpretation. Hence, the reduction technique
is performed since it is able to select optimal explanatory variables that possess relevant information and improve
the statistical models concomitantly. As an advantage, the model would be constructed with a better performance in
prediction power and also interpretation [2].

It is noting that the conventional variable selection such as Akaike information criteria (AIC), Mallow’s Cp, and
Bayesian information criteria (BIC) are impractical in high dimensional due to the high computational time [1, 3, 4].
As a result, modelling high dimension data using these conventional methods may not achieve a better interpretation of
the relationship between the explanatory and the response variables. Ordinary least squares (OLS) is widely recognize
as the common estimation method in many application studies. Nonetheless, the OLS estimator becomes unreliable in
the existence of multicollinearity among the explanatory variables. Moreover, the computation of the OLS estimator
could not be carried out if the number of explanatory variables exceeds the number of response variables [5]. Hence,
penalized likelihood methods are commonly adapted to overcome these difficulties.

The most known penalized method which is least absolute shrinkage and selection operator (LASSO) was in-
troduced by [6]. LASSO utilised L1-penalty instead of L2-penalty, in which the variable selection can be performed
by assigning some explanatory variable coefficients to zero. Certainly, LASSO has garnered the attention of many re-
searches particularly in high dimensional studies. On the contrary, it also has some flaws, for instance, the selection of
explanatory variables is usually less than the number of observations. In addition, this method attempts to choose only
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one variable among the highly correlated explanatory variables. Besides that, the method also has no oracle properties
where the probability of selecting the right set of explanatory variables that have nonzero coefficients converged to
one. As well as, if the zero coefficients were known antecedent, it will have a similar means and covariances as the
asymptotically normal nonzero coefficients estimators. Notwithstanding, LASSO has become the baseline of many
penalized methods and has elucidate several extensions in diverse practical applications.

On the other hand, [7] has then proposed elastic net method to overcome limitation issue in LASSO by combining
both L1-penalty and L2-penalty. Definitely, both of LASSO and elastic net has the capability to perform variable
selection and model estimation concurrently. However, they may lack in variable selection consistency which may
lead to poor model performance and lower prediction power. Therefore, a recent approach of homogeneity specifically
in the highly correlated variables is proposed. The fundamental of homogeneity was introduced by [8] to divide the
regression coefficients into several groups. The classification of the group is pertinent to separate based on regression
coefficients values. For example, the regression coefficients values in the same groups are together or close, whereas in
the different groups are significantly different to each other. Sparsity occurs when a large number of groups is entirely
made up of zero coefficients. This is also referred as a special condition of homogeneity. The successful detection of
homogeneity in the model causes the regression model to not only recognized the original structure of the data but
also increase the predictive performance.

In a recent study on homogeneity by [4], proposed ordered homogeneity pursuit lasso (OHPL) to improve the
limitation of LASSO. This study had successfully improved the prediction power and variable selection in the ap-
plication of spectroscopic dataset. Likewise, spectroscopic dataset, the highly correlated yearly stock market price
also may contain the homogeneity structure in its explanatory variables. Thus, the present study applies OHPL to
performed variable selection as well as enhanced the prediction power in the application of yearly stock market price.
The comparison of OHPL will be carried out with LASSO and elastic net method.

METHOD

LASSO
The penalized linear regression with LASSO regression coefficients is defined as

β̂LAS S O
PLR = argminβ

{
(y − βX)T(y − βX) + λ

p∑
j=1

|βj|
}

(1)

where λ ≥ 0 is a fixed tuning parameter that controls the degree of sparsity in the
∑p

j=1
|β j| penalty term. LASSO con-

tinuously shrinks the regression coefficients towards zero which subsequently improves its prediction accuracy. If the
λ is large enough, greater number of coefficients estimates will be exactly zero. Nevertheless, if the λ is approaching
zero, this becomes the OLS estimates.

Noteworthy, LASSO has two added advantages as compared to the conventional variable selection methods. It
has more stability than subset selection due to the selection process in LASSO is continuous. In addition, they are
suitable in computing high dimensional model. Although LASSO is one of the successful variable selection methods
for high-dimensional data, however, it may not perform well under certain circumstances. For instance, LASSO will
usually choose most n explanatory variables due to the nature of the convex optimization problem. Thus, this becomes
an undesirable property for some applications [7].

Elastic Net
As compared to LASSO, elastic net can select more than n variables. To address the limitation in LASSO, elastic
net was developed by combining the L1-norm penalty and the L2-norm penalty which are from ridge and LASSO,
respectively [7]. The ridge penalty is to overcome the highly correlated problem, whereas the LASSO penalty is for
the variable selection problem. Elastic net estimator with penalized linear regression is defined as follows

PLRElastic(β; λ1; λ2) = (y − βX)T(y − βX) + λ1

p∑
j=1

|βj| + λ2

p∑
j=1

β2
j . (2)
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where the two tuning parameters are λ1 ≥ 0 and λ2 ≥ 0. The sparsity in the regression coefficients is encourage
by the first tuning parameter of λ1 whereas the grouping effect is encouraged from the second tuning parameter
λ2 in Equation(2). Meanwhile, increasing λ1 shrinkage value will subsequently decrease the number of explanatory
variables selected. On the other hand, there is another tuning parameter which is α, a mixing proportion of the LASSO
(L1) and ridge (L2) penalties with values of (0, 1). Under the assumption ofα = λ2

λ1+λ2
, a linear combination of both

penalties can be obtained by rewriting Equation (2) as:

PLRElastic(β;α) = (y − βX)T(y − βX) + (λ1) + (1 − α)

p∑
j=1

|βj| + α
p∑

j=1

β2
j . (3)

Equation (3) is a ridge regression if α = 1. Contrariwise, it becomes the LASSO regression if α = 0 in Equation (3).
Noteworthy, when the value of α is between 0 and 1, Equation (3) can shrinks the coefficients as ridge regression and
select variables as LASSO [5].The penalized linear regression using elastic net regression coefficient estimates can be
obtained as:

β̂Elastic
PLR = argminβPLRElastic(β;α). (4)

Worthy of note that Equation (4) is the naı̈ve elastic net. The solution to this is known as the naı̈ve elastic
estimates. According to [7], the purpose of the naı̈ve elastic estimates is to obtain the correct elastic net estimates.
Hence, by rescaling the naı̈ve estimators, the elastic net estimator is given by

β̂Elastic = (1 + λ2)β̂Nai̇veElastic
PLR (5)

It is remarkably known that elastic net has better performance than of LASSO particularly in encouraging group-
ing effects on the highly correlated variables. Furthermore, the prediction accuracy is better than of LASSO due to
combination of both penalties in elastic net. However, it lacks the oracle properties of selecting the variables consis-
tently which is similar to LASSO [9].

OHPL
Ordered homogeneity pursuit LASSO or OHPL was introduced by [4] to select informative variables that are highly
correlated in high dimension data. OHPL can be considered as an improved version of LASSO but with two added
advantages. The selection of number of observations is greater than of LASSO and the grouping effect which are
homogenous in the response variable can naturally be identified using OHPL. In general, OHPL is a combination of
fisher optimal partitions and LASSO method. The fisher optimal partitions functions as the baseline for constructing
the selection algorithm intervals. In this step, fisher optimal partitions produces different width of variable intervals.
Meanwhile, the next step involves applying LASSO in these intervals to obtain the subset of optimal variable.

To perform variable selection using OHPL, the groups are firstly constructed by using the homogeneity in regres-
sion coefficients. Then, the extraction process was carried out on the groups that have the most correlated explanatory
variables in each group. This groups of selected variables are known to have the most informative variable and is
computed as follows:

x�i = argmaxi∈Gr j |xT
i y| (6)

where the xi is standardized, y is centered and Grj is the group at j − th. From Equation (6), LASSO is then applied
to these selected group of variables. The final stage involves deriving these group of variables to develop a partial
least square model. It is noteworthy that there are three tuning parameters in the OHPL algorithm steps, namely the
number of components K, number of groups, g and λ1 LASSO penalty. The selection of these tuning parameters can
be carried out using the cross-validation technique [4].

Performance Assessment
For evaluation purpose, the dataset were divided into two sets. The training set were used to developed the model,
choosing tuning parameters and implementing variable selection. Meanwhile the test set is used to assess the model.
By using the root mean square error (RMSE), the performance of LASSO, elastic net and OHPL were used as the
performance evaluation. RMSE were calculated as follows:

090012-3



RMSE =

√√√√ n∑
i=1

(ŷ − y)2

n
(7)

where ŷ is the predicted response value and n is the number of samples.

Meanwhile, coefficient of determination is another validation method that were used to assess the performance of
the methods. The closer the values to 1, indicates the better regression model fits the data. The formula for coefficient
of determination is defined as follows:

R2 = 1 −
n∑

i=1
(yi − ŷi)

2

n∑
i=1

(yi − ȳi)2

(8)

where ŷ is the average of predicted value of response.

RESULT

The stock market price consists of 4362 stock market prices over the period of 30 years from 1987 to 2017, including
all sectors in the stock market. Since missing values is not the main concern here, therefore the process of screening
and removal were carried out on the missing observations. For instance, those that have at least one missing value and
where no recorded data is available, were subsequently omitted from the observations. The finalize data consisted of
901 stock market prices. S&P500 index was the response variable used in this study.

The application of this yearly stock market price in OHPL, elastic net and LASSO were carried out to perform
variable selection and model estimation. In order to determine the tuning parameters of λ in both elastic net and
LASSO, a grid values between 0.01 and 100000 were produced. The next step involves performing a 5-fold cross-
validation, following [7] suggestion. The minimum λ obtained using cross-validation, were applied to perform the
analysis. The g were generated as 10 and cross-validation were taken in 5-fold, to obtain the optimal λ. Therefore, the
comparison result of LASSO, elastic net and OHPL using yearly stock market price is shown in Table 1.

TABLE 1. Performance result of yearly stock market price

Method RMSE R2 Variables Selected

LASSO 109.40 0.985 38
Elastic Net 95.54 0.991 171
OHPL 71.52 0.980 310

The result for the stock market price also shows the capability of OHPL to improve the accuracy of the original
LASSO. This is in a good agreement with [4] by using spectroscopic data. Elastic net selected more variables than
of LASSO. Contrariwise, OHPL outperformed the number of selected variables compared to elastic net and LASSO.
Unlike elastic net, OHPL have shown the lowest number of RMSE indicating that this method can yield a better
model performance as well as better prediction power. On the other hand, LASSO had a limited ability in performing
variable selection as well as model performance. This is apparently presented by its higher RMSE and lower number
of selected variables value. The result is in agreement with the findings of [4].

From Table 1 result, it shows that OHPL increased the model performance as compared to its counterpart. More-
over, since OHPL is an extension from the original LASSO, therefore the results had proven that it has a higher
variable selection power. In addition, the high correlation that exists between the stock market price variables are
better represented by OHPL method. Although the coefficient of determination was the lowest in OHPL, nonetheless
not much of a difference was observed when compared with elastic net and LASSO. Notwithstanding, the findings in
the performance result also showed that the OHPL method can be applied in stock market price, particularly in the
study of highly correlated variables as well as for prediction.
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CONCLUSION

OHPL which is an improved version of LASSO had effectively show that it had greater selection of number of vari-
ables than of LASSO. Moreover, with the homogeneity feature that OHPL possess, it is able to encourage the grouping
effect which are homogenous in the application to stock market price. Besides that, OHPL had better prediction ac-
curacy in comparison with LASSO and elastic net. OHPL is more suitable for high dimension data that have similar
group structure. Likewise, the explanatory variables in the yearly stock market price have successfully presented that
it also owns this property that is applicable to OHPL.

ACKNOWLEDGMENTS

The first author expressed her gratitude to Ministry of Education Malaysia for the scholarship. This study was
partially funded by Universiti Teknologi Malaysia under Industry-International Incentive Grant [grant number
Q.J130000.3001.01M30].

REFERENCES

[1] P. Bühlmann and S. Van De Geer, Statistics for high-dimensional data: methods, theory and applications
(Springer Science & Business Media, 2011).

[2] Z. Y. Algamal, M. H. Lee, A. Al-Fakih, and M. Aziz, SAR and QSAR in Environmental Research 27, 703–719
(2016).

[3] J. Chen and Z. Chen, Statistica Sinica 555–574 (2012).
[4] Y.-W. Lin, N. Xiao, L.-L. Wang, C.-Q. Li, and Q.-S. Xu, Chemometrics and Intelligent Laboratory Systems

168, 62–71 (2017).
[5] F. S. Kurnaz, I. Hoffmann, and P. Filzmoser, Chemometrics and Intelligent Laboratory Systems 172, 211–222

(2018).
[6] R. Tibshirani, Journal of the Royal Statistical Society: Series B (Methodological) 58, 267–288 (1996).
[7] H. Zou and T. Hastie, Journal of the royal statistical society: series B (statistical methodology) 67, 301–320

(2005).
[8] Z. T. Ke, J. Fan, and Y. Wu, Journal of the American Statistical Association 110, 175–194 (2015).
[9] Z. Y. Algamal and M. H. Lee, Computers in biology and medicine 67, 136–145 (2015).

090012-5

https://doi.org/10.1080/1062936X.2016.1228696
https://doi.org/10.1016/j.chemolab.2017.07.004
https://doi.org/10.1016/j.chemolab.2017.11.017
https://doi.org/10.1080/01621459.2014.892882
https://doi.org/10.1016/j.compbiomed.2015.10.008
https://doi.org/10.1111/j.1467-9868.2005.00503.x

