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ABSTRACT 

Carbon dioxide, CO2 emissions have risen precipitously over the last century, wreaking havoc on the atmosphere. Carbon 

Capture and Sequestration (CCS) techniques are being used to inject as much CO2 as possible and meet emission reduction 

targets with the fewest number of wells potential for economic reasons. However, CO2 injectivity is being reduced in 

sandstone formations due to significant CO2-brine-rock interactions in the form of salt precipitation and fines migration. 

The purpose of this project is to develop a regression model using linear regression and neural networks to correlate the 

combined effect of fines migration and salt precipitation on CO2 injectivity as a function of injection flow rates, brine 

salinities, particle sizes, and particle concentrations. Statistical analysis demonstrates that the neural network model has 

a reliable fit of 0.9882 in R Square and could be used to accurately predict the permeability changes expected during CO2 

injection in sandstones. 
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I. INTRODUCTION 

Carbon Capture and Sequestration (CCS) has developed into a critical component of a portfolio of technologies to reduce 

emissions of the world's most prevalent greenhouse gas, Carbon Dioxide, CO2. Untreated CO2 emissions remain in the 

atmosphere, wreaking havoc on the climate and weather, commonly referred to as global climate change. By 2015, CO2 

emissions had contributed approximately 0.8 °C to transient global warming (Y. Xu and V. Ramanathan, 2017). CCS is 

based on the capture and permanent storage of CO2 in deep underground geologic formations such as depleted oil fields. 

These formations are buried beneath layers of dense, impermeable rock or cap rock, which effectively prevents the 

injected CO2 from escaping to the surface, just as it did for the oil and gas previously contained in the formation over 

thousands of years. 

Adequate well injectivity and storage capacity are required to successfully inject large volumes of CO2 and achieve 

emission reduction targets with the fewest possible wells. According to previous observations, sandstone formations 

exhibit a significant average loss of permeability of up to 35-55 percent following a typical CO2 injection (I. M. Mohamed, 

J. He, and H. A. Nasr-El-Din, 2012). Numerous studies are being conducted to optimize the CO2 injection process, with 

numerous mathematical models being developed to observe changes in the permeability of porous media (W. D. Carrier 

III, 2003 & A. Verma and K. Pruess, 1988). The primary factors limiting injectivity are determined to be the combined 

effect of salt precipitation and fines migration, which results in a severe impairment of the rock formation's permeability 

(Y. A. Sokama-Neuya et al., 2017). 

 

II. LITERATURE REVIEW 

The rate at which CO2 can be injected into a formation without fracturing it can be expressed in terms of the injectivity 

index, I, which is defined as the ratio of volumetric injection flow rate, q, to pressure drop 

𝐼 =  
𝑞

𝛥𝑃
 (1) 

This injectivity, however, will be influenced by the physical changes that occur in porous media during CO2 injection. 

These changes in fluid injectivity are indicative of an injectivity impairment and can be expressed as Relative Injectivity 

Change,  
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𝑅𝐼𝐶 = (
𝐼𝑖 −  𝐼𝑓

𝐼𝑖

) (2) 

 

 

Porosity and permeability changes can be induced by a variety of different mechanisms, including mechanical stress 

changes and biomass growth (J. Hommel, E. Coltman, and H. Class, 2018). However, we will focus on the factors 

contributing to salt precipitation and fines migration in this study. 

Salt precipitation is a well-known phenomenon in the oil and gas industry and is widely regarded as a common factor 

reducing CO2 injectivity for sequestration (Y. A. Sokama-Neuyam, J. R. Ursin, and P. Boakye, 2019). When CO2 is 

injected into sandstone formations, the initially saturated water is removed from the formation via advection and 

vaporization due to the mass and heat transfer of the injected fluid. This decrease in water saturation causes solids to 

precipitate out of the brine, posing a significant impediment to fluid flow, particularly in the vicinity of the wellbore. This 

region of dryness will then extend further away from the injection point, spreading its effect. This would result in a 

significant reduction in permeability due to the blockage and jamming caused by the precipitated salt. However, the 

volume of water removed may result in a minor increase in permeability, which should not be overlooked (R. Miri and 

H. Hellevang, 2016). 

Fines are also released as a result of the CO2 - brine - rock interactions (Y. A. Sokama-Neuyam et al., 2017), which may 

exacerbate the injectivity impairment during continuous CO2 injection. Carbonic acid is formed when CO2 is injected into 

a porous medium saturated with an aqueous solution (3). 

𝐶𝑂2 + 𝐻2𝑂 ⇌  𝐻2𝐶𝑂3 

𝐻2𝐶𝑂3  ⇌ 𝐻𝐶𝑂3−
 + 𝐻+ 

              𝐻𝐶𝑂3−
 ⇌  𝐶𝑂3 2− +  𝐻+

 
(3) 

However, this dissolution results in the dislodgment of less reactive minerals such as clay and quartz, which aggregate 

into microscopic particles and are mobilized along the flowing stream, resulting in plugging of the reservoir rock's narrow 

pore channels and a reduction in permeability (F. Othman, M. Yu, F. Kamali, and F. Hussain, 2018). Normally, mineral 

dissolution is preferred, as is the case with matrix acidifying activities, but this subsequent mechanism of precipitation 

and fines migration during continuous CO2 injection would reduce permeability. 

This interaction of salt precipitation and fines migration results in a significant change in permeability during the CO2 

injection process. As a result, the total amount of CO2 injected will be significantly reduced, which contradicts the primary 

objective of meeting specified CO2 emission reduction targets. The primary factors that have a direct effect on this 

mechanism are the CO2 injection parameters, which include the injection flow rate, brine salinities (F. Othman, M. A. 

Naufaliansyah, and F. Hussain, 2019) particle sizes, and concentrations of particles (M. A. Md Yusof et al, 2020).Thus, 

the purpose of this article is to develop a CO2 injectivity regression model that describes the change in the permeability 

of porous media as a function of these four injection parameters. This model should be capable of predicting the expected 

RIC during the CO2 injection process and can be an extremely useful tool in making future core flooding decisions. 

 

III. METHODS 

Predictive Modelling 

Md Yusof and Arif Ibrahim (M. A. Md Yusof et al, 2020) measured and prepared 45 data points of Relative Injectivity 

Change (RIC) for this analysis based on permeability changes in two Berea sandstones that are sensitive to injection flow 

rate, brine salinities, particle sizes, and particle concentrations via a specific design of experiment. Following that, these 

data sets will be analyzed using linear regression and neural network models. 

Linear regression is a method for modelling the relationship between a scalar response and one or more explanatory 

variables using a linear relationship. In this project, we used a linear regression model, which is one of the data analysis 

methods included in Microsoft Excel's Analysis ToolPak. Linear regression is a widely used analytical technique for 

analyzing financial, statistical, and engineering data. 

By contrast, neural network models are forecasting techniques that are used in a wide variety of deep learning applications 

and forecasting methods. It performs admirably in mapping the response variable to its predictions, even when the 
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relationship is non-linear or complex. The supervised neural network model used in this project was created with the 

Python library's sci-kit-learn module and is hosted in Jupyter Notebook, an interactive open-source web application for 

statistical modelling, data visualization, and machine learning exercises. 

Both regression models will be used to generate predictions of expected injectivity changes as a result of various injection 

parameter combinations. The differences between the experimental and predicted datasets will be the primary focus of 

this project's analysis. 

 

Statistical Analysis 

There are four main statistical parameters that are being considered in this study to help in evaluating the accuracy of the 

predicted relative injectivity change value from both regression models. 

The main statistical analysis parameter for this study is the R-squared value. This serves as a good indicator of how well 

the data fits the model. As shown in Figure 1 below, a low R-squared value indicates that the model is inaccurate and 

inapplicable to the dataset (left graphic), whereas a high value converging to 1 will indicate that the model fits very well 

and is an accurate representation of the data (right graphic). 

 

Figure 1. Graphical representation of R-squared analysis  

(Retrieved from The Minitab Blog) 

Additionally, the accuracy of mathematical correlations will be assessed using the Average Absolute Percentage Error 

(AAPE) as demonstrated in (2). This represents the difference between the actual value (At) and the forecast value 

numerically (Ft). A low AAPE value indicates that the predicted datasets are more accurate than the original datasets. 

𝐴𝐴𝑃𝐸 = |
𝐴𝑡 −  𝐹𝑡

𝐴𝑡

 | ∗ 100% (4) 

The Mean Absolute Error (MAE) is the average of the absolute values of the discrepancies between the predicted and 

observed values across the verification sample. The MAE is a linear score, which means that all individual variations are 

equally weighted in the aggregate. 

On the other hand, the Root Mean Squared Error (RMSE) is a quadratic scoring rule that quantifies the average magnitude 

of an error. It squares the difference between the predicted and observed values and then averages them over the sample. 

Because the errors are squared prior to being averaged, the RMSE weights large errors heavily. As a result, the root mean 

square error is most useful when large errors are particularly undesirable. In general, both the MAE and RMSE indicate 

inaccuracy, and statistical analysis prefers lower values. 

IV. RESULTS AND DISCUSSION 

The purpose of this project is to develop a mathematical model that employs both linear regression and neural networks 

to establish a mathematical relationship between the measured and predicted datasets. This enables extensive forecasting 

of expected Relative Injectivity Change (RIC), for a variety of injection parameter combinations, assuming significant 

statistical parameters are obtained in the statistical error analysis. 
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Linear Regression Model 

The data is separated using the train-test-split procedure prior to handing over the dataset in this predictive modelling 

problem. This is a necessary step in machine learning methods because the dataset is divided into two parts: the "train" 

dataset, which the model will use to generate an effective mapping of the parameters to the desired outputs, and the "test" 

dataset, which will be used to test and measure the accuracy and performance of the generated model from the "train" 

dataset. The percentage split is chosen to ensure that both the training and testing datasets are representative of the total 

data. Eighty percent of the 45 data points are classified as training data (36 data points), while the remaining twenty 

percent will be used for evaluation purposes (9 data points). When a model is able to predict the outputs from the varying 

parameters entered with a small deviation from the actual measured values of the output, it is said to be efficient. 

The correlational analysis of the linear regression method's results is summarized in Table 1 below. 

Table 1. Performance of the linear regression model 

 

A respectably high value of 0.91978 is obtained, indicating a significant degree of positive correlation, given that it 

approaches unity. This does not, however, imply a perfect fit, as the relationship between the four injection parameters is 

not perfectly linear with the measured RIC. This encourages similar analyses to be conducted using a more sophisticated 

and sensitive regression model that is also more computationally efficient. Having said that, the linear regression model 

is still quite capable and can be used as a valid comparison and evaluation criterion in this project. 

In Figure 2, the predicted data from the linear regression model is plotted against the measured data. Similarly, the same 

plot is generated for the training and testing datasets, respectively, from which a R Square value of 0.914 and an AAPE 

value of 0.198 for the training data and a R Square value of 0.944 and an AAPE value of 0.152 for the testing data are 

obtained (Figure 3 and 4). This analysis demonstrates that the model is representative of both the training and testing 

datasets and justifies the original data splitting ratio of 80:20. The significant fitting observed in the test datasets also 

bolsters the generated linear model's accuracy and validity, as well as its predictive ability. 
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Figure 2. Plot of the predicted data from the linear regression model against the measured data 

 

Figure 3. Plot of the predicted data from the linear regression model against the measured data for the training 

datasets 
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Figure 4. Plot of the predicted data from the linear regression model against the measured data for the testing 

datasets 

Neural Network Regression Model 

As with the linear regression model, the neural network receives an 80:20 split of the data points, with 80 percent (36 data 

points) being used for training and fitting the input parameters and the remaining 20% serving as a validation set against 

which the model's performance will be evaluated. The overall performance of a neural network model is highly dependent 

on its computational complexity and is measured in terms of the precision and robustness of the predicted data. Apart 

from that, when dealing with these machine learning modules, convergence and computational speed are significant 

concerns. As such, thorough and critical optimization of the model framework is required to produce a high-performing 

neural network algorithm. To be more precise, the neural network model is based on a flexible set of "hyperparameters" 

that define how the algorithm adapts to the input data. The size of the hidden layers, the alpha parameter, the momentum 

parameter, and the initial learning rate are all tuned in this project. The optimization technique is entirely based on which 

hyperparameter values provide the highest level of accuracy in terms of R Square. 

To begin, the number of layers between the input and output nodes has a significant effect on the data being processed 

because it is necessary for converging and regressing the input variables towards the desired output. Adding additional 

layers does not always result in improved results, but rather results in unnecessarily longer computational times. 

Additionally, excessive growth in the number of neurons or layers can create an overfitting problem. As a result, it is 

necessary to conduct a thorough analysis of the datasets in order to determine the optimal neural network topology. 

The plot (Figure 5) compares the R Square values obtained from various hidden layer configurations with an increasing 

number of neurons and layers from left to right. This plot demonstrates that three hidden layers with a size of 5 to 6 

neurons each produce the highest R Square value of approximately 0.988. This result is consistent with the general rule 

of thumb for selecting the size of the hidden layer neurons, which states that the number of hidden layer neurons should 

be between 70% and 90% of the sum of the input and output layer neurons (S. Karsoliya, 2021). In this analysis, an input 

consisting of four injection parameters and one permeability change value (for a total of five neurons) corresponds to the 

approximated three hidden layers. Considering both the sensitivity analysis and the general rule of thumb, the hidden 

layer (6, 6, 6) is chosen, which is a three-layered neuron system composed of six neurons per layer. 
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Figure 5. Sensitivity analysis on hidden layer size for the neural network model 

The following section of the sensitivity analysis focused on the neural network model's alpha parameter. Alpha can be 

thought of as the model's learning rate, or the rate at which the model "learns" from previous iterations and applies specific 

weighting to converge on a value. It is a value between 0 and 1, with a value close to 0 indicating more conservative 

weight modifications and a value close to 1 indicating more radical weight modifications. The testing for alpha parameters 

ranging from 1E-2 to 8E-2 is shown in Figure 6 because they have a significant R Square value in comparison to the 

others in the 0 to 1 range. What is striking about this plot is that the R Square performance has a minimum variance of 

0.0001 within these alpha values. However, there is a distinct peak at alpha = 7.75E-2, beyond which a decreasing trend 

is observed, and thus this value is chosen as the optimal value. 

 

Figure 6. Sensitivity analysis on the alpha parameter for the neural network model 
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On the other hand, sensitivity analysis of the neural network model's initial learning rate reveals a greater variance within 

its range. The R Square performance increases significantly from the initial learning rate of 0.0001 to 0.001, before 

gradually decreasing to 0.003, as illustrated in Figure 7 below. This parameter specifies the initial value at which the 

model begins considering the weighting of the input parameters throughout the neural network algorithm. The 

performance of neural network models can be dramatically altered by selecting a small or large initial learning rate value 

(Y. Li, C. Wei, and T. Ma, 2019). While a low initial learning rate enables faster training and improved test performance 

initially, a high initial learning rate results in improved generalization shortly after the initial learning rate is annealed. 

This is dependent on how difficult it is to generalize the input parameters and fit patterns. For this particular research, the 

neural network model will use the highest performing initial learning rate of 0.001. 

 

Figure 7. Sensitivity analysis on initial learning rate for the neural network model 

Momentum is the final hyperparameter that is analyzed. Momentum determines the extent to which a previous weighting 

update influences the current weighting update. As illustrated in Figure 8, the momentum parameter, which also has a 

range of 0 to 1, exhibits a clear trend of increasing fit in the R Square value up to a value of 0.9. This appears to be the 

optimal velocity at which the neural network model operates, as increasing the velocity further appears to result in a 

decrease in performance. 
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Figure 8. Sensitivity analysis on momentum for the neural network model 

This sensitivity analysis of the hidden layer size, alpha parameter, initial learning rate, and momentum parameters 

provides valuable guidance for optimizing the hyperparameter settings for the neural network model based on the input 

datasets analyzed. As expected, the R Square value increases significantly when compared to the linear regression model, 

which achieves a remarkable value of 0.988212. (Table 2). This is an excellent indicator that the model is capable of 

fitting the data to the actual value with a minimum of variance. 

 

Table 2. Performance of the neural network model 

 

As with the linear regression model, Figure 9 to Figure 11 below shows a plot of the predicted RIC and the actual RIC. 

This illustration clearly depicts a consistent and reliable fit between the two datasets with very little deviation from the 

unit slope line. 
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Figure 9. Plot of the predicted data from the neural network model against the measured data 

 

Figure 10. Plot of the predicted data from the neural network model against the measured data for the training 

datasets 
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Figure 11. Plot of the predicted data from the neural network model against the measured data for the testing 

datasets 

Comparison between Linear Regression Model and Neural Network Regression Model 

The results of this chapter are compared and analyzed using both the linear regression and neural network models. Apart 

from the R Square and AAPE values, the mean absolute error, MAE, and root mean squared error, RMSE are also included 

in the statistical analysis to help determine which of the two regression models is more appropriate (Table 3). 

Table 3. Comparison of statistical analysis parameters between the linear regression model and the neural 

network model 

 

Linear 

Regression 

Model 

Neural 

Network 

Model 

R Square 0.9198 0.9882 

Average Absolute Percent 

Error (AAPE) 
0.1893 0.0460 

Mean absolute error (MAE) 5.8394 2.6962 

Root mean squared error 

(RMSE) 
7.1690 3.2315 

 

The first set of statistical analysis parameters, the R Square value, has already indicated that the neural network model is 

more favorable than the linear regression model, with a value of 0.9882 versus 0.9198. This is a substantial improvement, 

indicating that the neural network model is more capable of fitting and handling the given dataset. Similarly, the AAPE 

values are significantly lower in the neural network model, at 0.0460, than in the linear regression model, at 0.1893. 
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Additionally, additional statistical tests using the MAE and RMSE revealed a trend in favor of the neural network model. 

The MAE is used to quantify accuracy for continuous variables, whereas the RMSE is a quadratic scoring rule that 

emphasizes the error's larger variances. Both the MAE and the RMSE are negative-oriented scores that can be used in 

conjunction to diagnose error variation. In comparison to the linear regression model, the neural network model achieves 

lower values on both scorings, indicating less error and variance. 

This comparison of the two regression models demonstrates that the neural network model is superior to the linear 

regression model at modelling the four different injection parameters toward the desired permeability changes observed.  

V. CONCLUSION 

The objective of this project is to demonstrate a predictive modelling approach for estimating the expected Relative 

Injectivity Change, RIC, in sandstone reservoirs during a typical CO2 injection process. It is well established that the 

combined effect of fines migration and salt precipitation on CO2 injectivity varies with injection flow rate, brine salinity, 

particle size, and concentration of particles. Each injection parameter is mathematically mapped to the observed change 

in injectivity using both the linear regression and neural network methods. This provides a visual representation and 

comprehension of the effect and influence of each injection parameter on the RIC. 

Additionally, it is discovered that the regression model developed using the neural network method outperforms the linear 

regression method in statistical analysis. The high degree of fitness observed is a strong indicator of the developed model's 

accuracy and reliability. This means that the regression model can be used effectively to forecast the expected 

permeability change in sandstones as a function of the four manipulated variables. The findings from this project may be 

used to stimulate future CO2 injection and to help design the optimal injection parameters that result in the least amount 

of RIC, thereby assisting in achieving the emission reduction targets associated with these CO2 sequestration procedures. 
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