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Abstract: This study employs exact line search iterative algorithms for solving large scale unconstrained
optimization problems in which the direction is a three-term modification of iterative method with
two different scaled parameters. The objective of this research is to identify the effectiveness of the
new directions both theoretically and numerically. Sufficient descent property and global convergence
analysis of the suggested methods are established. For numerical experiment purposes, the methods
are compared with the previous well-known three-term iterative method and each method is evaluated
over the same set of test problems with different initial points. Numerical results show that the
performances of the proposed three-term methods are more efficient and superior to the existing
method. These methods could also produce an approximate linear regression equation to solve the
regression model. The findings of this study can help better understanding of the applicability of
numerical algorithms that can be used in estimating the regression model.

Keywords: steepest descent method; large-scale unconstrained optimization; regression model

1. Introduction

The steepest descent (SD) method, founded in 1847 by [1], is said to be the simplest gradient
and iterative method for minimization of nonlinear optimization problems without constraints.
This method is categorized in a single-objective optimization problem which attempts to obtain only
one optimal solution [2]. However, due to the low-dimensional property of this method, it converges
very slowly. Therefore, since far too little attention has been paid to the modification of the search
direction for this method, this study suggests the three-term direction to solve large-scale unconstrained
optimization functions.

The standard SD method for solving unconstrained optimization function is defined as

min
x∈Rr

f (x)

has the following form of direction
dk = −gk

where f (x) is a continuous differential function in Rn and gk = ∇ f (xk). This minimization method has
the following iterative form

xk+1 = xk + λkdk (1)
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where λk is the step size. This study is particularly interested in using exact line search procedures to
obtain λk given by

λ∗k = min
λ>0

{
f (xk + λkdk)

}
(2)

Throughout this paper, without specification, gk is used to denote the gradient of f at the current
iterate point, xk and ‖.‖ to denote the Euclidean norm of vectors. The study will also use fk as the
abbreviation of f (xk). The superscript T signifies the transpose.

Line search rules is one of the methods to compute (1) by estimating the direction, dk and the
step size, λk. Generally, it can be classified into two types, exact line search and inexact line search
rules. The inexact line search represents methods known as Armijo [3], Wolfe [4] and Goldstein [5].
Despite the fact that the exact line search is quite slow compared to inexact line search, in recent years,
an increasing number of studies adopting the exact line search was discovered due to faster computing
powers such as in [6]. This research emphasized the exact line search as we assume that this new era of
fast computer processors will give an advantage in using this line search.

The remainder of this study is organized as follows: in Section 2, the evolution of the SD method is
discussed while in Section 3, the proposed three-term SD methods with two different scaled parameters
and their convergence analysis are presented. Next, numerical results of the proposed methods are
illustrated and discussed in Section 4 while in Section 5, the implementation in regression analysis
of all proposed methods is demonstrated. A brief conclusion and some future recommendations are
provided in the last section of this paper.

2. Evolution of Steepest Descent Method

The issue on search direction modification for SD method has grown importance in light of recent
as in 2018, [7] introduced a new descent method that used a three-step discretization method which has
an intermediate step between the initial point, x0 to the next iterate point, xk+1. In 2016, [8] proposed a
search direction of the SD method that possessed global convergence properties. The search direction
of the proposed, named as ZMRI taken by the name of the researches Zubai’ah, Mustafa, Rivaie and
Ismail, has improved the behavior of the SD method where a proportion of previous search directions
is added to the current negative gradient. This search direction is given by

dZMRI
k = −gk − ‖gk‖gk−1 (3)

The numerical result of the method revealed that ZMRI has superior performance compared to
the standard SD and the method was also 11 times faster than SD.

Recently, inspired by (3), [9] proposed a scaled SD method that also satisfied global convergence
properties. The search direction is known as dRRM

k which abbreviated from the researcher’s name
Rashidah, Rivaie and Mustafa, is given by

dRRM
k =

{
−gk if k = 0
−θkgk − ‖gk‖gk−1 if k ≥ 1

The value of θk was taken from the coefficient in [10] and defined as

θk =
dT

k−1yk−1

‖gk−1‖
2

where yk−1 = gk − gk−1. The method was then compared with standard SD and (3). The results showed
that RRM is the fastest solver for about 76.79% of the 14 selected test problems and solved 100% of
the problem.
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Several modifications to the SD method have been made. Recently, [11] presented a three-term
iterative method for unconstrained optimization problems motivated from [12–14] defined as follows:

dk =

{
−gk, if k = 0
−gk + βkgk−1 − θkyk−1, if k ≥ 1

(4)

where

βk =
gT

k yk−1

‖gk−1‖
2 ,θk =

‖gk‖
2

‖gk−1‖
2

As researchers can see, the author put a restart feature that directly addresses the jamming problem.
When the step xk − xk−1 is too small, then the factor yk−1 approaches the zero vector. The author has also
proven that the method is globally convergent under standard Armijo-type line search and modified
Armijo-type line search. As a result, the numerical experiments for the proposed method is much
better than the methods in [12–14].

3. Algorithm and Convergence Analysis of New Three-Term Search Direction

This section presents the new three-term search direction for SD method to solve large-scale
unconstrained optimization problems. This research highlights the development of SD method that can
lessen the number of iterations and CPU time while establishing the theoretical proofs under exact line
searches. Motivated by the above evolutions on SD, the new direction formula is obtained as follows:

dk =

{
−gk, if k = 0
−gk − βkgk−1 + θkyk−1, if k ≥ 1

(5)

In this research, by employing the parameter from the conjugate gradient method which is said to
have faster convergence and lower memory requirements [15], two different scaled parameters, βk and
θk, are presented. For the first direction, the parameters are called as three-term SD and abbreviated as
TTSD1 are

βk =
‖gk‖

2

‖gk−1‖
2 andθk =

gT
k gk−1

‖gk−1‖
2

while the second direction known as TTSD2 which is an extension of TTSD1, the parameters are

βk =
‖gk‖

2 + ‖gk−1‖
2

‖gk−1‖
2 andθk =

gT
k gk−1 − ‖gk−1‖

2

‖gk−1‖
2

The idea of the extension arises from the recent literature reviews, for instance in [16–20], which seek
to improve the performance and effectiveness of the existing methods. The proposed directions with
the exact line search procedure were implemented in the algorithm as follows.

Algorithm 1: Steepest Descent Method.

Step 0: Given a starting or initial point x0, set k = 0.
Step 1: Determine the direction, dk using (5).
Step 2: Evaluate step length or step size, λk using exact line search as in (2).
Step 3: Update new point, xk+1 ← xk + λkdk for k← k + 1 . If ‖gk‖ ≤ ε, then, stop, else go to Step 1.

3.1. Convergence Analysis

This section indicates the theoretical prove that (5) holds the convergence analysis both in sufficient
descent directions and global convergence properties.
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3.1.1. Sufficient Descent Conditions

Let sequence {dk} and {xk} be generated by (5) and (1), then

gT
k dk ≤ −‖gk‖

2 for k ≥ 0. (6)

Theorem 1. Consider the three-term search direction given by (5) with the TTSD1 as scaled parameters and the
step size determined by the exact procedure (2). Then condition (6) holds for all k ≥ 0.

Proof. Obviously, if k = 0, then the conclusion is true.
Then, to show that for k ≥ 1, condition (6) will also hold true.
Multiply (5) by gk and by noting that gT

k dk = 0 for exact line search procedure, we will get

gT
k dk= −‖gk‖

2
− gT

k (βkgk−1 − θkyk−1)

= −‖gk‖
2
−
‖gk‖

2

‖gk−1‖
2 gT

k gk−1 +
gT

k gk−1

‖gk−1‖
2 gT

k (gk − gk−1)

= −‖gk‖
2
−

‖gT
k gk−1‖

2

‖gk−1‖
2

≤ −‖gk‖
2

Therefore, condition (6) holds and thus the proof is complete, which implies that dk is a sufficient
descent direction.�

3.1.2. Global Convergence

The following assumptions and lemma are needed in the analysis of the global convergence of
SD methods.

Assumption 1. The level set Ω =
{
x ∈ Rn

∣∣∣ f (x) ≤ f (x0)
}

is bounded where x0 is the initial point.
In some neighborhoods N of Ω, the objective function is continuously differentiable, and its gradient is Lipchitz
continuous, namely, there exists a constant l > 0 such that ‖g(x) − g(y)‖ ≤ l‖x− y‖ for any x, y ∈ N.

These assumptions yield the following Lemma 1.

Lemma 1. Suppose that Assumption 1 holds true. Let xk be generated by Algorithm 1, dk satisfies (6) and λk
satisfies exact minimization rule, then there exists a positive constant h such that

λk ≥ h
‖gk‖

2

‖dk‖
2

and one can also have,
∞∑

k=0

‖gk‖
4

‖dk‖
2 < ∞

This property is known as Zoutendijk condition. Details of this condition are given in [21].
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Theorem 2. Assume that Assumption 1 holds true. Consider xk generated by Algorithm 1 above, λk is calculated
using exact line search and possesses the sufficient descent condition. Then,

lim
k→∞
‖gk‖ = 0 or

∞∑
k=0

(
gT

k dk
)2

‖dk‖
2 < ∞

Proof. The proof is done using a contradiction rule. By assuming that Theorem 2 is not true,
that is, lim

k→∞
‖gk‖ , 0. Then, there exists a positive constant δ1, such that ‖gk‖ ≥ δ1 for all value of k.

From Assumption 1, we know that there exists a positive constant δ2 such that ‖gk‖ ≤ δ2 for all values
of k. From (5) and using the first scaled parameters (TTSD1), we have

‖dk‖≤ ‖gk‖+
∣∣∣βk

∣∣∣‖gk−1‖+ |θk|‖yk−1‖

≤ ‖gk‖+
‖gk‖

2

‖gk−1‖
2 ‖gk−1‖+

‖gk‖‖gk−1‖

‖gk−1‖
2

(‖gk‖+ ‖gk−1‖)

≤ 2‖gk‖+ 2
‖gk‖

2

‖gk−1‖

≤ 2δ2 + 2
δ2

2

δ1

,M1 where M1 = 2δ2 + 2
δ2

2

δ1

The above inequality implies
∞∑

k=0

‖gk‖
4

‖dk‖
2 ≥

∞∑
k=0

δ4
1

M2
1

(7)

Thus, from (7), it follows that
∞∑

k=0

‖gk‖
4

‖dk‖
2 = ∞

which contradicts Zoutendijk condition in Lemma 1.
Therefore,

∞∑
k=0

(
gT

k dk
)2

‖dk‖
2 < ∞

Hence, the proof is complete. �

Remark 1. The sufficient property and global convergence for TTSD2 can also be proven similar to the proof of
Theorem 1 and 2.

4. Numerical Experiments

This section examines the feasibility and effectiveness of Algorithm 1 with the use of (4) and (5)
as the search direction in Step 3 under the exact line search rules by implementing the performance
profile introduced by [22] as a tool for comparison. The test problems with the sources are listed in
Table 1. The codes were written in MATLAB 2017a.
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Table 1. List of test functions.

Number Functions Initial Points

F1 Extended White and Holst [23] (0,0, . . . ,0), (2,2, . . . ,2), (5,5, . . . ,5)
F2 Extended Rosenbrock [24] (0,0, . . . ,0), (2,2, . . . ,2), (5,5, . . . ,5)
F3 Extended Freudenstein and Roth [24] (0.5,0.5, . . . ,0.5), (4,4, . . . ,4), (5,5, . . . ,5)
F4 Extended Beale [25] (0,0, . . . ,0), (2.5,2.5, . . . ,2.5), (5,5, . . . ,5)
F5 Raydan 1 [23] (1,1, . . . ,1), (20,20, . . . ,20), (5,5, . . . ,5)
F6 Extended Tridiagonal 1 [23] (2,2, . . . ,2), (3.5,3.5, . . . ,3.5), (7,7, . . . ,7)
F7 Diagonal 4 [23] (1,1, . . . ,1), (5,5, . . . ,5), (10,10, . . . ,10)
F8 Extended Himmelblau [25] (1,1, . . . ,1), (5,5, . . . ,5), (15,15, . . . ,15)
F9 Fletcher [23] (0,0, . . . ,0), (2,2, . . . ,2), (7,7, . . . ,7)
F10 Nonscomp [23] (3,3, . . . ,3),(10,10, . . . ,10),(15,15, . . . ,15)
F11 Extended Denschnb [23] (1,1, . . . ,1), (5,5, . . . ,5), (15,15, . . . ,15)
F12 Shallow [26] (−2,−2, . . . ,−2), (0,0, . . . ,0), (5,5, . . . ,5)
F13 Generalized Quartic [23] (1,1, . . . ,1), (4,4, . . . ,4), (−1,−1, . . . ,−1)
F14 Power [23] (−3,−3, . . . ,−3), (1,1, . . . ,1), (5,5, . . . ,5)
F15 Quadratic 1 [23] (−3,−3, . . . ,−3), (1,1, . . . ,1), (10,10, . . . ,10)
F16 Extended Sum Squares [27] (2,2, . . . ,2),(10,10, . . . ,10),(−15,−15, . . . ,−5)
F17 Extended Quadratic Penalty 1 [23] (1,1, . . . ,1), (10,10, . . . ,10), (15,15, . . . ,15)
F18 Extended Penalty [23] (1,1, . . . ,1), (5,5, . . . ,5), (10,10, . . . ,10)
F19 Leon [28] (1,1, . . . ,1), (5,5, . . . ,5), (10,10, . . . ,10)
F20 Extended Quadratic Penalty 2 [23] (5,5, . . . ,5), (10,10, . . . ,10), (15,15, . . . ,15)
F21 Maratos [23] (1.1,1.1, . . . ,1.1), (5,5, . . . ,5), (10,10, . . . ,10)
F22 Three Hump [29] (3,3), (20,20), (50,50)
F23 Six Hump [29] (10,10), (15,15), (20,20)
F24 Booth [25] (3,3), (20,20), (50,50)
F25 Trecanni [30] (−5,−5), (20,20), (50,50)
F26 Zettl [25] (−10,−10), (20,20), (50,50)

For the purpose of comparison, the methods were evaluated over the same set of test problems
(see Table 1). The total number of test problems was twenty-six with three different initial points
ranging from 2 to 5000 number of variables. The results were divided into two groups, which in
the first group was the comparison between the proposed directions with standard and previous
SD methods, [8,9] while in the second group the numerical results were compared with another
three-term iterative method introduced by [11] using exact line search procedures. Numerical results
were compared based on the number of iterations and CPU times evaluated. In the experiments,
the termination condition is ‖gk‖ ≤ 10−5. We also forced the routine to stop if the total number of
iteration exceeded 10,000.

For the methods being analyzed, a performance profile introduced by [22] was implemented to
compare the performance of the set solvers S on a test set of problems P. Assuming ns as number of
solvers and np as number of problems, they defined tp,s = computing time (number of iterations or
others) needed to solve problem p bysolver s.

The performance ratio used to compare the performance by solver s with the best performance by
any solver on problem p which they defined as

rp,s =
tp,s

min
{
tp,s : s ∈ S

}
In order to get the overall evaluations of the solver’s performance, they definedas ρs(t) as a

probability for a solver s ∈ S that rp,s was within a factor t ∈ R of the best possible ration. The probability
is described as

ρs(t) =
1
np

size
{
p ∈ P : rp,s ≤ t

}
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in which the function ρs was the cumulative distribution function for the performance ratio.
The performance profile ρs : R ∈ [0, 1] was for a solver was piecewise non-decreasing and continuous
from the right at each breakpoint. Generally, the higher value of ρs(t) or in other words, the solver
whose performance profile plot is on the top right will win the rest of the solvers or represents the
best solver.

Figure 1 show the comparison of the proposed method with the standard SD, ZMRI and RRM
methods. In Figure 2 in order to emphasize the proposed search direction from the direction in [11]
abbreviated as WH, it might call the present formula as first and second three-term SD methods,
TTSD1 and TTSD2, respectively. The performance for all the methods, referring to the number of
iterations evaluated and central processing unit (CPU) time, respectively, are displayed.
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From the above figures, the TTSD1 method outperforms the other methods in both the number of
iterations and CPU time evaluations. This can be seen from the left side of Figures 1 and 2 in which
TTSD1 is the fastest method in solving all of the test problems and from the right side of the figures,
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this method also gives the highest percentage of successfully solved test problems compared to other
methods. The probability of all the solvers or the methods involved was not approaching 1 which
means that they are not able to solve all of the problems tested. The percentage of the successful
problems solved by each solver is tabularized in Table 2. Table 2 also presents the CPU time per single
iteration based on the evaluation of the total iterations and total CPU times. Although the performance
of other methods seems to be much better than the proposed method, TTSD1 and TTSD2 can be
considered as the superior method since it can solve 81.02% and 82.97% of the functions tested.

Table 2. CPU time (in seconds) per single iteration and successful percentage in solving all the functions
using the exact line search.

Methods Total Number
of Iterations

Total Number of
Cpu Times (s)

Cpu Time Per
Iteration (s)

Successful Functions
Solved (%)

SDC 329,978 2638.52 0.007996 74.45
ZMRI 106,316 493.10 0.004638 75.18
RRM 155,271 1412.42 0.009096 72.02
WH 116,822 890.50 0.007623 82.48

TTSD1 70,520 376.43 0.005338 81.02
TTSD2 73,981 430.40 0.005818 82.97

5. Implementation in the Regression Model

In modern times, optimal mathematical models have become common resources for researchers,
for instance, in the construction industry, these tools are used to find a solution to minimize costs and
maximize profits [31]. Steepest descent method is said to have various applications mostly in finance,
network analysis and physics as it is easy to use. One of the most frequent employment of this method
is in regression analysis. This paper aims to investigate the use of the proposed direction in describing
the relationship between fin dorsal length and the total length of silky shark. The data were collected
by [32] from March 2018 to February 2019 at Tanjung Luar Fish Landing Post, West Nusa Tenggara.
The study was carried out to set the minimum size of fin products for international trade and the
author also pointed out that this data can be used by the fisheries authority to determine the allowed
minimum size of silky shark fins for export.

Figure 3 shows the linear approximation between the total length and the length of a dorsal
fin of silky shark as y = 0.125610046x − 0.018027898. In order to measure the model performance,
the coefficient of determination, R2, has been calculated as a standard metric for model errors and it
showed that the value of R2 is close to 1, means there is a strong relationship between the total length
of silky shark with the length of its dorsal fin. The total length of the silky shark was measured from
the anterior tip of the snout to the posterior part of the caudal fin while the dorsal fin length measured
from the fin base to the tip of the fin as shown in Figure 4.
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Figure 4. Silky shark (Carcharhinus falciformis).

The linear regression analysis was implemented by using the dorsal fin length as dependent
variables y and the total length of a silky shark as an independent variable x with a model is indicated as

y = a0 + a1x.

In order to estimate the above linear regression equation, the least square method was conducted
by assuming the estimators are the values of parameters a = (a0, a1)

T which minimize the objective
function as follows:

S = min
a∈R2

f (a) =
n∑

i=1

[yi − (a0 + a1x)]2 (8)

The sum squares of S can be minimized by utilizing the concept of calculus, differentiating (8)
with respect to all the parameters involved. The equations can be written in a matrix form and lead to
the system of the linear equation. By using the inversion of the matrix method to solve the system of
linear equation, the solution is derived as

y = −0.018027898 + 0.125610064x.

Another method to find the solution of a system of linear equation is by using the numerical
method. In this context, the proposed three-term method is implemented as a numerical method
to solve the system as a comparison with the aforementioned inversion of the matrix. To test the
efficiency of the proposed method TTSD1 and TTSD2, Table 3 gives an overview of the estimations
model coefficients using an inverse method, TTSD methods and also WH method with the number of
iterations (with initial point is (0, 0)).

Table 3. Summary of results.

Methods
Parameters

Number of Iterations CPU Time (s) Sum of
Relative Errorsa0 a1

Direct Inverse −0.018027898 0.125610046 − − 0.900514941
TTSD1 −0.01802868 0.125610507 3 0.1257256 0.900507129
TTSD2 −0.018027192 0.125609646 11 0.1104726 0.900523836

WH −0.018025098 0.125608377 65 0.1682789 0.900540824

The accuracy and performance of these methods are measured by the sum of relative errors by
using the total of the differences between the approximation and the exact values of the data. The sum
of relative errors are tabulated in Table 3 where the equation of the relative errors is defined as

Relative Error =

∣∣∣Exact Value − Approximate Value
∣∣∣

|Exact Value|
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where the exact value gained from the actual data and the approximate value is the value obtained
by each method involved. From Table 3, it can be observed that TTSD1 has the least value of errors
followed by the inversion matrix method and TTSD2 which implies that these two methods are
comparable with the direct inverse method.

6. Conclusions and Future Recommendations

The main objective of this paper is to propose a three-term SD method also known as the iterative
method with two different scaled parameters. The effectiveness of the method, TTSD1 and TTSD2,
were tested by comparing with the previous SD (standard, ZMRI and RRM) and three-term method
presented in [13], named the WH method, using the same set of test problems under exact line search
algorithms. The proposed method possesses sufficient descent and global convergence properties.
Through several tests, the method TTSD1 and TTSD2 really outperform the previous SD and other
three-term iterative methods. The reliability of TTSD1 and TTSD2 was found to be consistent with
the results obtained by the direct inverse method for the implementation in the regression analysis.
This finding shows that the methods are comparable and applicable. There is abundant room for
further research on the SD method. In the future, we intend to test this new TTSD1 and TTSD2 using
the inexact line search.
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