
agronomy

Review

Co-Application of Charcoal and Wood Ash to Improve
Potassium Availability in Tropical Mineral Acid Soils

Puvan Paramisparam 1, Osumanu Haruna Ahmed 1,2,3,* , Latifah Omar 1,2, Huck Ywih Ch’ng 4 ,
Prisca Divra Johan 1 and Nur Hidayah Hamidi 1

����������
�������

Citation: Paramisparam, P.; Ahmed,

O.H.; Omar, L.; Ch’ng, H.Y.; Johan,

P.D.; Hamidi, N.H. Co-Application of

Charcoal and Wood Ash to Improve

Potassium Availability in Tropical

Mineral Acid Soils. Agronomy 2021,

11, 2081. https://doi.org/10.3390/

agronomy11102081

Academic Editor: Tim Weaver

Received: 20 July 2021

Accepted: 10 September 2021

Published: 18 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Crop Science, Faculty of Agricultural Science and Forestry, Bintulu Sarawak Campus,
Universiti Putra Malaysia, Bintulu 97008, Malaysia; puvanify@gmail.com (P.P.);
latifahomar@upm.edu.my (L.O.); prisca.divra@gmail.com (P.D.J.); dayahmidi@gmail.com (N.H.H.)

2 Institut Ekosains Borneo (IEB), Faculty of Agriculture and Forestry Sciences, Bintulu Sarawak Campus,
Universiti Putra Malaysia, Bintulu 97008, Malaysia

3 Institute of Tropical Agriculture, Universiti Putra Malaysia (ITAFoS), Seri Kembangan 43400, Malaysia
4 Faculty of Agro-Based Industry, Jeli Campus, Universiti Malaysia Kelantan, Jeli 17600, Malaysia;

huckywih@umk.edu.my
* Correspondence: osumanu@upm.edu.my; Tel.: +60-19-3695095

Abstract: Potassium (K) is a macronutrient required by plants for energy production, enzyme
activation, formation of cell wall, production of protein, and photosynthesis. However, K in the
soil solution is leached from the rhizosphere before it interacts with soil colloids because of the
abundance of kaolinite clay minerals in mineral acid soils such as Ultisols and Oxisols. These soils
are highly weathered, low in organic matter, low in pH, but high aluminium (Al), and iron (Fe)
ions. As a result, K becomes unavailable for plants, and this affects crop production and farmers’
profitability. This problem has steered the attention to the application of amendments to minimise K
loss. Animal manures, plant residues, and composts applications are some of the corrective measures
taken to improve the K availability in tropical acid soils. However, there is dearth of information
on co-application of charcoal and wood ash as soil amendments to improve the K availability and
the changes they cause to the dynamic equilibrium of K in mineral acid soils. Hence, this review
discusses the dynamics, availability of K, and proposed mechanisms involved when charcoal and
wood ash are used to amend tropical acid soils. The optimisation and understanding of the role of
charcoal and wood ash co-application as soil amendments have potential benefits to improve the K
availability and physicochemical properties of mineral acid soils.

Keywords: deprotonation; chelation; sorption capacity; functional groups; kaolinite; neutralising
compounds; leaching

1. Introduction

The efficacy of chemical potassic fertilizers in nourishing plant needs are often com-
promised because most of the nutrients from fertilizers are commonly lost via leaching.
Loss of plant nutrients is common in tropical mineral acid soils partly because of a high
rainfall intensity and abundance of kaolinite clay minerals. This causes an unavailability of
K in the soil for plant uptake. In general, tropical acid soils have low available nutrients
because of extensive soil weathering, relatively high temperature, and annual rainfall.
Highly weathered soils are high in Al3+ and Fe2+ because of their low pH [1,2]. These ions
are adsorbed onto the soil exchange complexes through replacement of H+. This cation
exchange causes the release of H+ ions into the soil solution (deprotonation). The Al3+

and Fe2+ are also able to displace base cations, one of which is K+, from the soil exchange
complexes. When this occurs, it is difficult for K to be retained in the soil. Additionally, this
cation exchange causes Al3+ and Fe2+ to replace Ca2+, Mg2+, and Na+ into the soil solution;
after which, they are lost through leaching. This chemical reaction causes a significant
decrease in soil pH, hence decreasing the reactivity of K in soils.
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As nutrient availability depends on soil pH, farmers who grow crops on tropical
acid soils resort to excessive fertilisation to replenish K+. However, the excessive use of
chemical fertilisers will not benefit the agricultural sector, because this practice degrades
the soil quality with time. Moreover, the K availability cannot be solved sustainably by the
excessive use of chemical fertilizers. A viable option is to use organic amendments such
as charcoal and wood ash to reverse the aforementioned problem by dealing with the soil
condition itself. Apart from soil pH, the soil texture, cation exchange capacity (CEC), and
organic matter could be improved to increase the nutrient availability [3–6]. The perspective
of agriculture and nutrient management has shifted to the use of organic amendments such
as manures, plant residues, composts, and agro-industrial waste [7,8]. The application of
organic amendments could improve the soil conditions (soil physicochemical properties),
thus enhancing the K availability. The adoption of organic amendments in crop cultivation
could increase soil CEC because of the high content of organic matter. Although there is
evidence on organic amendments’ capability in increasing the nutrient availability [9–12],
there is dearth of information on improving the K availability of mineral tropical acid soils
using charcoal and wood ash.

The utilisation of charcoal as a soil amendment is promising, because it provides
reactive negatively charged surfaces, which enhance nutrient holding in the synchrony of
crop nutrient uptake and, at the same time, chelating acidic cations such as Al3+ and Fe2+,
which have been implicated in phosphorus (P) fixation [13–15]. Additionally, Al3+ and
Fe2+ cause H+ build up in mineral soil, because their hydrolysis releases H+. For example,
for every mole of Al3+ that undergoes complete hydrolysis, three H+ are released, and
for Fe2+, two H+ are released. Upon applying charcoal to soils, it decomposes to produce
organic compounds [16] to bind Al3+ and Fe2+. At the same time, the pH of soils needs to
be increased to ensure base cations such as K are more reactive and available for plants.
Most wood ash has a high pH. The pH of wood ash ranges between 8.9 and 13.5 [17]. It
was also reported that application of wood ash can neutralise soil acidity and Al3+ and
Fe2+ [18,19]. With these aspects in focus, the utilisation of charcoal and wood ash could be
pivotal in improving the physicochemical properties and K availability of tropical acid soils.
Therefore, it is hypothesised that the combined use of potassic fertilizers, charcoal, and
wood ash in tropical acid soils could improve the K availability because of their acid, Al3+,
and Fe2+ neutralizing effects. The high CEC of charcoal and sago bark ash could further
enhance the K availability because of their ability to temporarily retain K+. Therefore, the
objectives of this review were to (i) discuss the dynamics and availability of K in tropical
acid soils and (ii) propose possible mechanisms involved when charcoal and wood ash
used to amend potassic fertilisers in tropical mineral acid soils.

2. Development of Soil Acidity

Approximately half of Earth’s arable land is acidic, and approximately 60% of it occurs
in the tropics and subtropics [20]. Acidity develops in soils for several natural and anthro-
pogenic factors. Soil acidity is attributed to atmosphere, rainwater, mineral weathering,
mineral transformation, decomposition of organic residues, microbes, root respiration, root
secretion, and the release of hydrogen ions in exchange of bases. Additionally, the excessive
use of chemical fertilizers in particular has been implicated in the occurrence of soil acidity.
Moreover, the development of soil acidity is associated with organic and inorganic acids;
the replacement of base cations by H+, Al3+, Fe2+; and the leaching of bases.

Acid rain is the primary cause of soil acidification in the soils of highly industrialised
regions [21]. Rainwater becomes acidic because of the dissolution of atmospheric carbon
dioxide (CO2), which undergoes a reaction as presented in chemical Equations (1)–(3).

H2O + CO2 → H2CO3 (1)

H2CO3 → HCO3
− + H+ (2)

HCO3
− → CO3

2− + H+ (3)
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Rainwater in equilibrium with atmospheric CO2 has a pH approximately 5.5 unless
it contains dissolved bases. Similarly, the formation of carbonic acid occurs in soil water
because CO2 is produced by atmospheric diffusion, the decomposition of organic residue,
and root and microbial respiration [22]. The rate of carbonic acid formation may differ with
climate and vegetation. Likewise, sulphur and nitrogen oxides in the atmosphere form
acids in rainwater, as presented in chemical Equations (4)–(6).

NO + 1/2O2 → NO2 (4)

3NO2 + H2O→ 2HNO3 + NO (5)

SO2 + H2O→ H2SO3 (6)

In the humid tropics, soils experience intensive weathering and leaching, during
which minerals are decomposed because of weathering and the soluble products are
removed by leaching [23]. Low-activity 1:1 clay minerals such as kaolinite, in addition to
iron and aluminium oxides or sesquioxides, dominate the finer fraction of the soils with
kaolinite. These soils have low buffering capacities, because they have low CEC and base
saturation percentages (BSP). As a result, they are commonly acidic. These characteristics
are noticed in Oxisols and Ultisols. Aluminium ions are adsorbed on exchange complexes
via hydrolysation, generating hydrogen ions as products. For a mole of Al3+ that undergoes
complete hydrolysis, three H+ are released, as demonstrated in chemical Equations (7)–(10).
The hydrogen ion replaces bases that are absorbed to cause soil acidity [24].

Al3+ + H2O→ Al(OH)2+ + H+ (7)

Al(OH)2+ + H2O→ Al(OH)2
+ + H+ (8)

Al(OH)2
+ + H2O→ Al(OH)3 + H+ (9)

Al3+ + 3H2O→ Al(OH)3 + 3H+ (10)

Base cations such as Calcium (Ca) and magnesium (Mg) are leached from the soil in
regions with high rainfall triggering its acidification.

Apart from carbonic acid, inorganic acids such as nitric, hydrochloric, and sulfuric
acids may be produced in soils and become accountable for the acidification of soils.
Sulphur oxidation is a significant reaction of inorganic acidification in soils. In some areas
such as mine spoils, mangrove swamps, and estuarine areas, pyrite (FeS2) is high in their
soils [25]. Pyrite oxidizes to produce sulphuric acid, and this compound decreases the soil
pH. The rapid decrease in pH is because of two hydrogen ions that are produced for every
sulphur ion being oxidized, as demonstrated in Equation (11). Soils facing this problem are
known as acid sulphate.

2FeS2 + 7O2 + 6H2O→ 4SO4
2− + 8H+ + 2Fe(OH)2 (11)

Atmospheric deposition and canopy throughfall contribute to a small portion of
organic acids in the soil. Greater amounts of organic acids come from root exudation,
lysis in addition to the release of microorganisms [26]. The decomposition of rice straw
produces citric, oxalic, formic, and malic acids [27]. Although how these acids influence soil
acidity has not been studied, citric and oxalic acids are known to affect the solubilisation of
phosphorus (P) from Ca phosphate and rock phosphate.

Organic matter in different forms also leads to soil acidification. This depends on
plants from which the organic matter originates. For example, some plant residues have
low bases. Hence, the cultivation of such crops without sustainable soil management for
a long time causes soil acidity. In other words, plants or vegetation play a major role in
affecting the pH of soils. Soil pH could decrease or increase depending on the removal
of cations and anions from the soil. Legumes can be used as an analogy for the case of
soil acidification. This is related to the fact that legumes take up more cations compared
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with anions. Leguminous plants consume a small amount of nitrate (NO3
−) from the soil,

because microbial nitrogen (N) fixation within the plant structure makes up for most of
the N requirement [28]. Additionally, fertilisers cause soil acidity. Nitrogen fertilisers with
ammonium (NH4

+) release hydrogen ions to the soil as ammonium are converted to nitrate,
as demonstrated in the chemical Equation (12).

NH4
+ + 2O2 → NO3

− + 2H+ + H2O (12)

In Equation (12), the conversion of one mole of ammonium ion to nitrate produces
two hydrogen ions. As an example, urea [CO(NH2)2] decomposes when the soil pH is
below 6.3 (Equation (13)).

CO(NH2)2 + 2H+ + 2H2O→ 2NH4
+ + H2CO3 (13)

Although this chemical reaction uses two hydrogen ions, the overall reaction is acidi-
fying, because the decomposition of urea produces two ammonium ions. Thereafter, these
ions are converted to nitrate, generating four hydrogen ions [29]. As for phosphate fer-
tilizers, triple superphosphate and monocalcium phosphate [Ca(H2PO4)2] are commonly
applied to soils. Dicalcium phosphate (CaHPO4) and phosphoric acid (H3PO4) are formed
when phosphate fertilisers react with water in soils. The latter product further breaks down
to produce hydrogen ions, as demonstrated in chemical Equations (14) and (15).

Ca(H2PO4)2 + H2O→ CaHPO4 + H3PO4 (14)

H3PO4 → H+ + H2PO4
− → 2H+ + HPO4

2− → 3H+ + PO4
3− (15)

This reaction causes soil to be acidic. Although phosphorous (P) fertilisers are com-
monly placed in bands around crop rows, the hydrogen ions slowly disperse throughout
the soil causing progressive acidification of a particular soil. Moreover, characteristics
of parent materials are major components that determine the soil acidity. They include
type, texture, composition, and the level of weathering. Acidic parent materials such as
granites, rhyolites, and diorites have greater fractions of quartz, feldspar, and sesquioxide
minerals [30]. Lower base cations make these types of soil more acidic and less fertile
for cropping.

In acidic conditions, the availability of plant nutrients such as N, P, K, S, Ca, Mg, and
molybdenum is compromised (Figure 1). In addition, nutrients could be positionally less
available because of poor root growth in acidic soils as a result of Al and Fe toxicity. When
root growth is restricted, plants are unable to explore sufficient soil volume to compensate
for the reduced availability. Besides, at low pH, Al and Fe tend to displace K+ from soil
colloids. The removal of K+ ions from the colloids increases their loss through leaching [31].
Hence, more K fertilizers would be required for optimal plant growth.Agronomy 2021, 11, x FOR PEER REVIEW 5 of 31 
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Acidic Mineral Soils

Ultisols and Oxisols are the two dominant soils in the tropics. Ultisols and Oxisols
occur as result of the intense and prolonged weathering of shale, granite, sandstone, schist,
serpentinite, basalt, and andesite [33]. Typically, Ultisols originate from the weathering
of shale and sandstone, whereas Oxisols occur from shale schist [34]. The products of
weathering include kaolinite (dominant clay fraction), halloysite, gibbsite, goethite, and
hematite in the clay fraction [35].

Ultisols and Oxisols are mostly infertile and have low CEC because of their pH (4
to 5). They are composed of kaolinite and sesquioxides (oxides of Fe and Al), which are
prone to K leaching [33] (Figure 2). To make these soils arable, liming and fertilisation are
required. Ultisols have more sesquioxides and higher exchangeable Al compared with
Oxisols, because they are extensively weathered. This causes Ultisols to be acidic, thus
having lower pH and exchangeable bases compared to Oxisols [31]. Hence, Ultisols and
Oxisols require the addition of organic matter-rich amendments to increase the CEC of
these soils, which are inherently low in organic matter [34].
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3. Clay Mineralogy of Tropical Soils

Soils in the tropics are classified into four different clay mineralogy [36]. The soil clay
minerals consist of kaolinitic, oxidic, allophanic, and smectitic soil. The occurrence of these
clay mineral is in the following order of: kaolinitic soils > oxidic soils > smectitic soils > allophanic
soils [37]. Nonetheless, in terms of agricultural potential, the order is: allophanic = smectitic
soils > oxidic soils > kaolinitic soils.

3.1. Kaolinitic Soils

Kaolinitic soils are severely weathered and have either sand, loamy sand, or sandy
loam textures on the surface [38]. Clayey texture usually ranges from 20 to 60% in the
B horizon. Kaolinitic soils have low CEC (<12 cmol kg−1) and high bulk density [39,40].
Although kaolinitic soils have good water percolation under natural vegetation, they are
less permeable when cultivated with crops. The major constraint in these soils is soil erosion,
compaction, and the leaching of base cations [41]. Kaolinite is the predominant mineral in
kaolinitic soils, because they make approximately 90% of the clay fractions [42,43]. Kaolinite
is the simplest layer silicate (1:1 lattice). It is made up by a union of one tetrahedral sheet
with an octahedral sheet. The layers are neutral in charge, except for the broken bonds at
the crystal edges. These broken bonds serve as nutrient holding sites, despite low amount.
Kaolinite minerals form thick layers because of hydrogen bonding [44]. Hydrogen from the
hydroxyl ions of the octahedral sheet of one kaolinite layer is attracted to the free oxygen
in the tetrahedral sheet of another kaolinite layer. As a consequence of the strong hydrogen
bond, many layers are stacked together. This prevents water and nutrients from entering
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between the layers [44]. Hence, kaolinite has low CEC, and it is hard to swell or shrink,
depending on the wetness or dryness of the soil (nonexpanding clay). In addition, the low
negative charge density of kaolinite results in the leaching of base cations from soil [45].

3.2. Oxidic Soils

Oxidic soils are highly weathered red and yellowish soils. These soils have fine texture
and low bulk density [46]. Similar to kaolinitic soils, kaolinite is the predominant clay
mineral in oxidic soils. However, clay sized iron oxides and hydrous oxides provides these
soils with stable soil structure and lower bulk density, unlike kaolinitic soils. Red and
yellow distinguish the dominance of high surface area hematite (red oxidic soil) or high
specific surface area goethite. The effective CEC of oxidic soils is 12 cmol or less per kg
clay [47]. These soils have pH ranging from 4.3 to 5.7 and CEC of 2.23 to 3.06 cmol kg−1 [48].
Soil management constraints when using oxidic soils for crop production are a low water-
holding capacity, low nutrient reserve, and high phosphate fixation causing a deficiency of
available P for plant uptake [49,50].

3.3. Smectitic Soils

Smectitic soils are alluvial soils that are loamy to clayey. These soils contain 30% or
more smectite clay mineral in the clay fraction. The pH of smectitic soils ranges from
6.3 to 6.7 [48]. Smectite clay minerals shrink and swell, depending on the soil wetness
or dryness [51,52]. There is also the presence of other 2:1-layer silicate minerals (illite,
vermiculite, and chlorite) and 1:1-layer silicate (kaolinite) in small amounts in the clay
fraction of these soils. Smectitic soils have moderately high CEC, ranging between 10 and
50 cmol kg−1 [53–55]. As a result, these soils have a high base saturation and water-holding
capacity [56]. Smectitic soils are regarded as the best soil for rice cultivation [57]. Smectite
clay mineral is formed via the union of two tetrahedral sheets with one octahedral sheet.
The two tetrahedral sheets are held on opposite sides of the octahedral sheet. The absence
of hydrogen bonding to lock layers of smectite together [58] enables water and nutrients
to enter in between the layers. Smectites have a large negative charge density, enabling
the attraction of cations to their surfaces. Nevertheless, the forces of attraction are not
very strong, enabling displacement of the cations. The loosely held cations are known as
exchangeable cations, which serve as a nutrient reserve in the soil system [59].

3.4. Allophanic Soils

Allophanic soils are young soils that are dark in colour, and they originate from
volcanic ash. Allophanic soils are fertile; yet, they are only found in regions with active
volcanoes [60]. The traits of these soils are a low bulk density and high-water holding
capacity. The pH of these soils ranges from 4.8 to 5.7 [48]. Allophanic soils are predomi-
nated by allophones, imogolite, halloysite, and amorphous aluminium silicate in the clay
fraction [61].

4. Soil Factors Affecting Nutrient Availability

The nutrient availability in the soils is regulated by several soil factors such as the
texture, CEC, pH, and organic matter.

4.1. Soil Texture

The relative proportion of sand, clay, and silt in soils is known as the soil texture [62].
The soil texture is closely associated with the movement and the retention of soil water [63].
Since most available nutrients for plants exist in the soil solution, the soil texture has a direct
influence on soil nutrient retention. Sandy soils have large pores and a poor water-holding
capacity. In such soils, leaching occurs rapidly, and the soils are unable to hold nutrients
for the optimum plant uptake [64,65]. In contrast to sandy soils, clayey soils can hold water
and nutrients because of the smaller pores and charged surfaces. Smaller pores provide
these soils with high net charges that act as nutrient-binding sites [63].
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4.2. Soil pH

Soil pH serves as a scale to determine the acidity or alkalinity of soils. Soil pH enables
the determination of hydrogen ions (H+) in soils, specifically in the soil solution [66]. In
general, soil pH ranges between 4 and 8 [67], where pH 4 is strongly acidic and pH 8 is
basic. Soil pH contributes to nutrient availability in several ways. The pH of a soil regulates
the degree of weathering and dissolution of materials in soils. In addition, soil pH is
directly related to the CEC of soils, because it affects the surface charge of soil colloids [68].
For example, at a low pH, where the H+ concentration is high, the negative charges on soil
colloids are neutralised. As a result, acidic soils often experience nutrient deficiency. In the
case of N, the mineralisation rate of the element from organic matter is rapid when the soil
pH is in the range of 6–8. Likewise, pH 6.5–7.5 is the range where P is readily available for
plants. In acidic soils, iron and aluminium fix P, hence rendering P unavailable for plants.
On the other hand, at high pH, Ca phosphates are formed. Potassium leaching occurs
extensively in acidic soils, because the soil colloids in such soils have very low negative
charges. Similar to P, K becomes unavailable at high pH because of the antagonistic effects
of Ca and Mg [69].

4.3. Soil Organic Matter

Any organic material in soils is considered a soil organic matter [70]. These organic
materials may vary in terms of the origin and decomposition rate. Organic matter con-
tains many proteins, carbohydrates, amino acids, fatty acids, and organic acids with low
molecular weights [71]. All these can be degraded through microbial activity and serve
as nourishments for plants. The high CEC (150–300 cmol kg−1) enables organic matter to
retain nutrients in the soil. Besides that, soil organic matter improves the soil aggregation
and water-holding capacity by reducing the soil bulk density; thus, the loss of nutrients
through leaching can be minimised [72].

4.4. Soil Cation Exchange Capacity

The soil cation exchange capacity is the sum of the ability of soil to adsorb exchange-
able cations on its colloidal constituents [66]. As the definition, the CEC of soil is related
to soil colloid. In addition, CEC is closely related to pH, where the CEC increases with
the increasing soil pH [73]. Soils with low CEC have a poor nutrient retention capacity.
This is more notable when such soils experience large volumes of precipitation. Most of
the cations in the A horizon are leached, causing nutrient deficiencies [68]. The cation
exchange capacity is essential in creating a mechanism of ion exchange in soil to make
nutrients available for plant uptake. The displacement of nutrient cations (Ca, Mg, and
K) from the exchange complex by H+ enables the release of these cations to move into soil
solution and, therefore, are absorbed by plants [74].

5. Potassium and Its Importance to Plants

Potassium is a macronutrient required by plants [75]. Potassium is the second-most
abundant plant nutrient and, also, a non-renewable resource. In general, K is essential for
cellular energy production, osmoregulation via the control of stomatal function, enzyme
activation, formation of the cell wall, production of proteins, and photosynthesis. In
most horticultural crops, K boosts plant ontogeny [76]. Moreover, K contributes to the
colour, shape, size, taste, texture, shelf life, and processing characteristics of fruit and
vegetable plants [77]. For example, a higher K content increases the content of vitamin C
and improves the utilisation of N [78]. In this way, it influences protein formation in plants.
Potassium is not only an integral component of transport in plants, it also increases the
oil content in plants [79,80]. Furthermore, K plays vital role in some plant growth aspects,
such as the smooth progress of cell division and growth, increase of disease resistance,
and tolerance to drought (stomatal regulation) [81]. Potassium is required by plants in
comparatively larger amounts compared with other essential plant nutrients [82]. Brady
and Weil [31] asserted that plants absorb K approximately five to ten times as much as P.
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Potassium is extracted in large quantities by intensive cropping systems extracting large
amount of K [83] and, thus, leading to extensive application in most agricultural areas [84].

6. Potassium Dynamics in Soil

Soil K is categorised into water-soluble K, exchangeable K, nonexchangeable K, and
mineral K or fixed K [85,86]. Water-soluble K are K source that are readily available for
plant uptake. Exchangeable K are K reserve that are easily mobilized. Both water-soluble
K and exchangeable K are plant available K, and they make up approximately 1 to 2% of
the soil total K [31]. On the other hand, nonexchangeable K is poorly mobilized in soil
and takes a long time to be available for plants. Similarly, mineral K is K that is inert and
unweathered in soil. In tropical acid soils such as Ultisols and Oxisols, the bioavailability
of K is extremely low due to intense weathering and constant leaching [87,88]. Besides,
the weathering of sandstone usually produces soil that has low water-soluble K, whereas
soil originating from young volcanic rocks have a high content of the available K [87].
The order of the K availability is water-soluble K > exchangeable K > nonexchangeable
K > mineral K [85,89]. These K fractions correlate to an equilibrium system in soils and
dynamically shift its direction to replenish itself when depleted [90]. Figure 3 demonstrates
the interrelationships between the fractions of K in soils.
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6.1. Water-Soluble Potassium

Water-soluble K, also referred to as soil solution K, is the K fraction that exist in soil
water, and it is directly taken up by plants. Water-soluble K is usually very low in soils,
thus leading to the need for K fertilization. The amount of water-soluble K depends on the
equilibrium and kinetic reactions that takes place in all forms of soil K [91], soil moisture
content [92], concentration of bivalent cations in solution, and the exchanger phase [93].
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Additionally, water-soluble K can be replenished by the nonexchangeable K fractions. The
reduction in water-soluble K pool initiates the movement of K from the nonexchangeable
K reserve [94]. Leaching or removal by crop reduces the concentration of water-soluble K
in soil. Additionally, the concentration of water-soluble K in soil is related to clay mineral
buffering. A high K concentration in the soil solution creates a diffusion gradient to enable
the movement of K into an actively absorbing root. Nevertheless, in most soils, water-
soluble K only represents a minute proportion of the total soil K, which is lower than the
crop requirement for a growing season.

6.2. Exchangeable Potassium

The exchangeable K is readily available to plants, and its name is derived from the
ability of K in this fraction to be interchanged with other cations. The exchangeable K
fractions are bound electrostatically at different strengths on the adsorption sites of clay
minerals and humic substances. Exchangeable K are able to be adsorbed on carboxylic
and phenolic groups of humus colloids, which are negatively charged, in addition to the
planar or vertices of the clay minerals [95]. The factors that contribute to the amount
of exchangeable K adsorbed on clay minerals may be either kinetic or thermodynamic
factors [96]. The affinity of the adsorption sites for K depends on the nature of the soil
surface, which determines the amount of the exchangeable K fractions. Besides, the K
concentration near the adsorption sites in contrast to the concentration of other cations,
especially bivalent cations, also affects the amount of the exchangeable K adsorbed.

6.3. Nonexchangeable Potassium

Nonexchangeable K is defined as interlayer K and slowly exchangeable or available
K [97]. The main difference between nonexchangeable K and mineral K is that the former
fraction is not bonded within the crystal structures of the soil mineral particles. Instead,
nonexchangeable K is held or trapped between adjacent tetrahedral layers of clay minerals
such as micas, vermiculites, and chloritized vermiculite. Nonexchangeable K can only be
freed by a slow diffusion-controlled process, since K+ ions are fixed in between the layers,
because the high binding forces between the surfaces of the layers and K, which exceed
the hydration forces between individual K+ ions, can cause a partial collapse of the crystal
structure. Moreover, the nonexchangeable K fraction can also be present in the wedge
zones of weathered micas and vermiculites, and the K is displaced by cations with similar
sizes to K+ (NH4+ and H3O+), because larger hydrated cations (Ca2+ and Mg2+) do not fit
into the wedge zones. The release of nonexchangeable K (to exchangeable form) is induced
when there is decrease in the levels of exchangeable and soil solution K due to leaching or
crop uptake [98,99].

6.4. Mineral Potassium

Mineral K is also referred to as structural or fixed K, which is an unweathered and
inert form of K [100]. Parent materials and the age of soil are two factors that determine
the mineral K proportion in soil [93]. The mineral K fraction is unavailable for plants and
can only become available through the weathering of minerals, which proceeds extremely
slow [85]. The rate of weathering of the primary minerals depends on the environment
and the composition and structure of the minerals. Potassium in soils is mostly in the
mineral fractions, because it exists in the primary minerals, including muscovite, biotite,
and feldspar. They are bound covalently within the crystalline structure of these K-bearing
minerals. Sometimes, weathered minerals generate secondary layer silicates, which can
retain some of the mineral K [95,101].

6.5. Potassium Fixation

Potassium moves readily in submerged lowland rice soils, but it is not mobile in most
soils. Compared to N and P, K ions have less mobility compared with N but move more
readily than the ions of P [102]. The type of soil clay mineral and the amounts of the mineral
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present and the soil CEC are the factors that determine the availability of K in a particular
soil [100]. Potassium ions are highly fixed by illite, vermiculite, and montmorillonite
compared with kaolinite [85,103], and this contradicts the P fixation where clays of 1:1
lattice tend to adsorb more P than those with 1:2 lattice in tropical soils. The potassium
fixation begins when K ions are adsorbed on sites in the interlayers of weathered sheet
silicates. Potassium fixation depends on the clay mineral type and charge density, moisture
content, presence of competing ions, and soil pH [104]. The potassium fixation is crucial in
preventing a total loss of K after fertilisation in tropical acid soils where leaching occurs
drastically. The replenishment of water-soluble K from nonexchangeable K is induced
when there is a drop in the concentration of K+ in the soil solution because of leaching or
crop removal [105]. Fixed K acts as a reservoir for K in soil. Soil wetting and drying enables
the weathering of clay, which, in turn, enhances the release of K from nonexchangeable
fractions [106]. Nevertheless, the release mechanism occurs slowly, and this is attributable
to the strong binding forces between K+ and clay minerals [107]. Hence, it is important
to optimise the soil properties that favour cropping through the timely release of fixed K
while preventing K leaching.

6.6. Loss of Potassium through Leaching

In Malaysia, high precipitation and temperature leads to the chemical weathering
of Ultisols and Oxisols [33]. Irrigation also increases the rate of leaching of K. Troeh and
Thompson [67] stated that humid regions have low soil total and available K compared
with the soils in arid regions. Potassium immobilisation occurs less frequently when the
degree of weathering is higher. Kaolinite clay is common in highly weathered soils and its
1:1 lattice structure with relatively low charge density in its layers, causing the leaching
of K to be more intense. Moreover, the CEC of kaolinite contributes to fewer storage
sites for not only K but, also, other cations [108]. Quartz, secondary phyllosilicates, and
sesquioxides with or without muscovite are formed when rocks and mineral weather in
the humid tropics, and this depends on the intensity of weathering [34]. The dissolution
of feldspar (orthoclase) in water causes K leaching [34]. The K ions in feldspars occur
in spaces surrounded by tetrahedral but in a three-dimensional shape instead of layers.
Potassium is released from the weathering of a potassium feldspar and is subsequently
leached because of the low CEC of kaolinite.

6H2O + CO2 + 2KAlSi3O8 → A12Si2O8(OH)4 + 4SiO(OH)2 + K2CO3

(feldspar) (kaolinite)

Additionally, the leaching of K depends on clay content in soils and soil organic
matter. The leaching of K is more prevalent in soils with lower clay and organic matter
compared with soils with a higher clay content and amount of organic matter [69]. The
leaching of soil solution K can increase the release of K from soil minerals [109], but the
induction of this replenishment mechanism depends on the soil pH, movement of K in
soils, soil CEC, liming, and rate of K uptake by plants and microbes [35,87]. The loss of
K through leaching can be managed by practicing good erosion control measures (cover
crop, mulching, contour farming, reforestation, conservative tillage, and wind breakers);
the improvement of soil pH (in acidic soil); enhancing soil CEC using organic amendments
such as animal manures, plant residues, or composts; and split applications of K fertilizers
according to the plant growth stage [110].

7. Sources and Role of Organic Amendments on Nutrient Availability

Commercial mineral fertilisers have high solubility, which eases the nutrient uptake of
plants. However, the extensive applications of chemical fertilisers cause soil degradation,
environmental pollution, and loss of biodiversity. For example, the leaching of excess
nutrients from chemical fertilisers causes groundwater contamination and affects the
human consumption of clean water [111]. Biosolids, animal manures, municipal solid
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waste, plant residues, forest litter, leguminous trees, seaweeds, and blood and bone meals
are examples of organic amendments used in agriculture [112–114]. With the increasing
global demand for energy production and cost of inorganic fertilisers, the utilisation of
organic amendments will be able to compensate the nutrient deficiency in addition to
ensuring the sustainability of agricultural lands [7,8]. Additionally, the utilisation of
organic amendments is reported to improve the soil carbon content, microbial activity, and
agronomic benefits [115].

7.1. Animal Manures

Animal manure directly supplies nutrients such as K, P, and N in agriculture, and
it improves the nutrient availability because of an improved pH [116]. The application
of aged manure from a dairy farm on an Alfisol Udalf increased the soil organic matter
and soil exchangeable K content [117]. A greenhouse pot study of soybeans grown in acid
soils amended with manure increased the pH compared with the control treatment (soil
alone) [118]. The improved pH enhanced the uptake of P and K, nodule formation, and pro-
ductivity of soybeans. A manure application also increased exchangeable K and Mg [119].
A manure application is reported to increase the soil CEC and nutrient availability [120,121].
An increase in CEC was noted after a savanna Alfisol was cultivated continuously for
45 years when the soil was amended with manure compared with inorganic fertilisa-
tion [122]. In summary, manuring improves the K availability and uptake by altering
the soil organic matter, CEC, and soil pH [123]. Nevertheless, it is essential to optimise
the utilisation of manure to avoid the emission of greenhouse gases and volatile organic
compounds; soil metal contaminations such as arsenic, copper, and zinc; and eutrophica-
tion, which is commonly caused by the leaching of N and P [124,125]. Qaswar et al. [126]
cautioned that heavy metals in pig manure need to be adjusted before field applications to
produce high crop yields with a minimum risk of heavy metal contamination in soil and
food crops.

7.2. Plant Residues

The application of wheat and clover plant residue in an incubation study increased
the soil pH within seven days because of the oxidation of organic anions [127]. Moreover,
plant residues improve the soil structure and increase the soil carbon and water-holding
capacity [128]. The improvement of the water-holding capacity enables the retention of
potassium-rich water in soil, whereas an increased soil carbon provides additional exchange
sites for K adsorption. This indicates that plant residues could increase the water-soluble K
and exchangeable K retention. Properties such as the water infiltration and water-holding
capacity were reported to increase with the incorporation of plants residues [129], and
this directly relates to reducing leaching in tropical acid soils. Hence, the management
of crop resides will improve the soil health and productivity. However, in some farming
systems, crop residues are burnt, and this practice leads to greenhouse gas emissions [130].
Additionally, leaving crop residues on soil surfaces could influence ammonia volatilisation,
whereas the incorporation could stimulate denitrification [131,132].

7.3. Compost

Compost is reputed for not only its ability to increase soil aggregate stability, porosity,
carbon, and plant nutrients but reduces the pH and risk of erosion [133]. In an incuba-
tion study carried out by AyanfeOluwa et al. [134], amending Ultisol and Alfisol with
conventional and accelerated composts increased the pH, carbon, N, P, and K compared
with a conventional practice (NPK fertilisation only). In a field study that was carried
out to determine the benefits of the combined use compost and zeolite on the fertility
of organic-rich Mediterranean soils, the available K concentration significantly increased
compared with the control and zeolite only [135]. Although composts can improve the soil
physical, chemical, and biological properties, there are some setbacks to it. For example,
animal-based compost such as animal litter compost vary in their physicochemical proper-
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ties because of the different types of feeds animals consume [136]. On the other hand, the
production and application of plant-based compost was reported to contaminate soils with
heavy metals, salts, weed seeds, and pathogens [137]. Besides, during composting, C and
N losses cause a decrease in the agronomic value of the compost and lead to greenhouse
gases emission [138].

7.4. Amending Acid Soils Using Organic Amendments to Improve the K Availability

The application of organic amendments is one of the most promising options to
improve the soil physicochemical properties. The improvement of the soil pH, nutrient
availability and uptake, and yield are some of the effects reported after the application of
organic amendments (Table 1).

Table 1. Organic amendments application on the physicochemical properties of acid soils.

Amendment Application
Rate Soil Type Impact on the K Availability Reference

Chicken manure 15 t ha−1 Typic Halpludox

(i) pH increased from 4.2 to 5.3 and
exchangeable Al reduce from 0.38 to 0.20
cmol kg−1 after six months of application

(ii) K improved from 0.41 to 0.57 cmol kg−1

O’Hallorans et al.
[139]

Trifolium
alexandrinum L.

residue
Not stated

Awagat series and
(loamy) Shahpur

series (silty)

Higher and more immediate plant K uptake in
coarse loamy soil compared to fine silty soil

Rafique et al.
[140]

Rice husk 10 t ha−1 Inceptisol
pH improved from 5.47 to 7.23, organic carbon

increased from 0.43 to 14.48%, and total K
improved from 0.42 to 0.47% after rice pot trial

Roy et al. [141]

Coffee pulp and
husk

5, 10, and
20 t ha−1 Arenosol

Increased soil pH, exchangeable Ca, Mg, and K by
5 to 7, 2 to 3, and 7 to 14-fold, respectively, whereas

reducing Al toxicity

Kasongo et al.
[142]

Citrus pulp
residues

30 and
90 t ha−1 Sandy loam Increase soil exchangeable K, other cations, and soil

organic matter content Meli et al. [143]

Rice straw
compost 5 t ha−1 Inceptisol

Available K for the amended treatment was 257.2
kg ha−1 compared with conventional practice was

230.9 kg ha−1

Meena and
Biswas [144]

Swine and cattle
manures

100, 200,
and 400 kg
total N ha–1

Cudworth loam

Repeated application of liquid swine and solid
cattle manure contributes to increases in extractable

soil K, and enhanced K concentration in plants
grown on the soils

Qian et al. [145]

City finished
compost

10, 20, and
40 t ha−1 Sandy loam

(i) Radish dry weight were higher for treatments
added with compost (10, 20, and 40 t ha−1) in
the absence of NPK fertilisation compared
with treatment with 100% recommended rate
of NPK

(ii) Treatment with 40 t ha−1 compost
demonstrated higher K uptake compared
with 100% recommended rate of NPK

Sarker et al. [146]

Cattle manure 40 g kg−1 Silt loam

(i) Increase available K, P, and Ca immediately
after application

(ii) Soils amended with 40 g kg−1 had three to
four times more plant available P and K than
unamended soils after 8 weeks of incubation

Whalen et al.
[147]
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8. Humic Substances

Humic substances are composed of heterogeneous and relatively small molecules that
are produced through the breakdown of plant, animal, and microbial residues, which as-
semble themselves to form a supramolecular structure [148–150]. These smaller molecules
consist of aromatic rings, aliphatic chains, and ionisable functional groups, which combine
to generate complex colloids [151–153]. Stevenson [154] recorded that humic substance
molecular weights range from a few hundred to millions of daltons. The structures of
humic substances vary in relation to the pH and the type of metal present [155]. Previously,
the formation of humic substances was known as the humification process. However, the
‘humification’ model itself has been abandoned, but the ‘humic’ nomenclature is main-
tained. For example, the large molecular size of ‘humic substances’ has been refuted but not
their existence [152]. The issue has also been approached by redefining ‘humic substances’
as the portion of soil organic matter that cannot be molecularly characterised [156,157]
or by calling all soil organic matter ‘humus’ [158]. Humic substances are divided into
three major fractions: namely, humic acids, fulvic acids, and humin. Humic substances are
categorised into three distinctive fractions based on their solubility in water adjusted to
different levels of pH: namely, humin, humic acid, and fulvic acid [154,159].

8.1. Humic Acid

Humic acids are dark brown to grey black in colour, comprising a mixture of weak
aliphatic (carbon chains) and aromatic (carbon rings) organic acids that are not soluble in
water under acidic conditions but are soluble in water under alkaline conditions [160,161].
Humic acids are precipitated from aqueous solution when the pH decreases below two.
Due to their variable chemical features, they are termed colloidal polydispersed [162].
From a three-dimensional perspective, these complex carbon-containing compounds are
known as flexible linear polymers that exist as random coils with crosslinked bonds. On
average, 35% of humic acid molecules are aromatic, whereas the remaining components
(65%) are aliphatic molecules [163]. The molecular sizes of humic acids vary from 10,000 to
100,000 [164].

Various molecular structures describing the structure of humic acids have been pro-
posed from the work of Stevenson [154] to more recent models of Schulten [165,166],
Kujawinski et al. [167], and Stenson et al. [168,169]. A generally accepted structure for
humic acids is one of the dynamic heterogeneous complexes of many different molecules
at various stages of degradation that easily complex further with organic molecules, metal
ions, or minerals [154,170,171]. Each of these complex compounds affects the solubility
of humic acid differently, possibly because they bind different regions of the acid, form
crosslinks between different acid molecules, or alter the exposed surface of the complex.

8.2. Fulvic Acid

Fulvic acids are a mixture of weak aliphatic and aromatic organic acids that are soluble
in water under all pH conditions (acidic, neutral, and alkaline) [161]. After the removal of
humic acids by acidification, fulvic acids remain in the solution [172]. Fulvic acids are light
yellow to yellow brown [173], and they serve as a natural chelator of minerals and metals in
soils. The size of fulvic acids is smaller than humic acids, with molecular weights ranging
between 1000 and 10,000 [164]. Due to their relatively small-size molecules, they can easily
enter plant roots, stems, and leaves. As they enter these plant parts, trace elements are
transferred from plant surfaces to plant tissues. However, the oxygen content in fulvic
acids is twice that of humic acids. They have many carboxyl and hydroxyl groups that
make them more chemically reactive [174]. Additionally, the total acidity of the fulvic acids
(900–1400 meq/100 g) is significantly higher than the humic acids (400–870 meq/100 g).
Fulvic acids are also low in phenols and are less aromatic compared with humic acids from
same source.
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8.3. Humin

Humin is the fraction of humic substances that is neither soluble in alkali (high pH)
nor in acid (low pH) and is black in colour [161,175,176]. The complexes of humin are
considered macro-organic (very large) substances, because their molecular weights range
from approximately 100,000 to 10,000,000 [164]. The chemical and physical properties of
humin are only partially understood because of the extraction problems [177,178]. Among
all the humic substances, humin is most resilient to decomposition in soils [175], as seen by
the humin soil water-holding capacity, soil structure, fertility, soil stability, and CEC. The
composition of humin is similar to those of the humic acids and fulvic acids. Humin may
be a humic substance in association with mineral oxides or hydroxides [179]. Alternatively,
humin may be coated with hydrocarbons or lipids (fats) that were stripped during the
reaction, making them insoluble to aqueous solvents.

8.4. Humates

Mineral salts of humic acid and fulvic acid that are formed based on their ability
to form negatively charged anions are known as humates [164]. Deprotonation of the
functional groups of humic acid and fulvic acid results in the formation of negatively
charged anions such as carboxyl and carbonyl. These negatively charged sites are able
to bind cations such as K+, Mg2+, Fe2+, Ca2+, and Mn+ [180]. Nevertheless, there is a
significant variability in the molecular composition of different humic substances [181].
Humates from different mineral deposits have their own distinctive features.

8.5. Variability of Chemical Structures in Humic Substances

The elemental analysis of the humic substances demonstrates complex and variable
structures [165]. The degradation of humic substances produces molecular components
such as phenolic, carboxylic acids, N-alkanes, and N-fatty acids [182]. Most of the phenolic
acids produced have approximately three hydroxyl group and approximately one to five
carboxyl groups [183]. Table 2 summarises the functional groups of the humic substances.

Table 2. Chemical structures of the functional groups of the humic substances (adapted from Troeh and Thompson [67]).

Functional Group Chemical Structure Explanation

Carboxyl
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8.6. Functions of Humic Substances

Humic substances contribute to the structure of the soil, water retention, diversifica-
tion, activity of soil biota, and nutrient availability (ion exchange capacity). Carbon bonds
in humic substances supply energy for various beneficial soil organisms that lack photosyn-
thetic capabilities [184]. These organisms rely on the residual carbon to carry out metabolic
reactions. In turn, the beneficial soil organisms contribute by making the soil richer through
different metabolic functions [185]. Moreover, the large surface area and internal electric
charges of humic substances increases the water-holding capacity of the soil. Presence of
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humic substances make the soil structure to be more convenient for water infiltration and
water retention, especially in the root areas. Bot and Benites [186] affirmed that humic
substances are able to retain water seven times more than their volume, which is, in fact,
higher than soil clays. Furthermore, the ability to buffer H+ concentration in soils enables
humic substances to neutralise the changes in pH in addition to liberating CO2 [164]. This
feature prevents nutrient unavailability because of soil acidity or alkalinity. The liberation
of CO2 from Ca carbonates in the soil by humic substances can be taken up by plants or
form carbonic acids that act on soil minerals to release plant nutrients. Additionally, humic
acids and fulvic acids are involved in the chelation and sorption of cations. Chelation is the
termed coined when a cation (with the exception of monovalent cations) enters a part of the
molecule where the positive charge of the cation pulls negatively charged groups towards
it like a self-entrapment [187]. As a result, the toxicity of Al3+ and Fe2+ are reduced with
the presence of humic substances. The high negative charge density of humic substances
prevents the leaching of important cations such as K+ by increasing their sorption capacity
in soils [188].

9. Charcoal and Its Properties

Charcoal is the product derived from the thermal degradation in absent or low oxygen
atmosphere (pyrolysis) of lignocellulosic residues from either forestry (sawdust, woodchips,
and bark) or agriculture (corn stalks, coconut, rice husks, and manure) [189]. These aromatic
structures are stable and are responsible for the recalcitrance of charcoal [190]. Charcoal
has high adsorptive capacity because of carbonisation [191,192]. Charcoal has a high initial
carbon density (70–85%) relative to a typical woody biomass (<50%), and it is primarily
made up of irregularly arranged aromatic rings, with a highly porous structure [193,194].
The proportion of aromatic carbon in charcoal increases with the increasing temperature
because of an increased loss of volatile matter and the conversion of alkyl groups to aryl
groups [195]. The loss of volatile matter creates voids that form an extensive pore network
in the charcoal’s structure [191].

9.1. Amending Soil with Charcoal

Charcoal has recently been heralded for its ability to increase plant productivity and
ameliorate poor soil conditions across a variety of systems while mitigating anthropogenic
climate change by enhancing soil carbon sequestration [196]. Charcoal’s ability in enhanc-
ing plant growth is attributed to an increased soil pH and the sorption of growth-inhibitory
compounds [197]. In addition, the presence of a highly porous aromatic structure provides
charcoal with the ability to hold cations [198,199]. The negative charge density of charcoal
increases the CEC of soil, hence increasing the adsorption of cations and P. [108,200]. The
enhancement of soil CEC showed that adding charcoal is not only a soil conditioner but
also capable of acting as a fertiliser [201–203]. Table 3 demonstrates the other effects of
charcoal application on acid soils.

Table 3. Charcoal application on the nutrient availability in acid soils.

Effect of Charcoal on Nutrient Availability References

NH4
+ availability reduced and 35% increase in available K in

flooded or anaerobic soil Barbosa de Sousa et al. [204]

C and exchangeable K contents increase, NH4+ was retained
in the soil, and Al contents reduced Lehmann et al. [205]

Improvement in the pH, K availability, and CEC, whereas Ca
and Mg decreased Major et al. [197]

Although Na, Cu, Ni, and Cd uptake by plant decreased, K,
Mg, and Zn increased Glaser et al. [206]
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9.2. Potential Risks of Using Charcoal as Soil Amendments

Nevertheless, there is increasing evidence that charcoal does not always have favourable
effects on soil and soil biota. Excessive doses of charcoal (for example, 30 mg kg−1)
added to clay soils could cause water insufficiency in agricultural soils, thus reducing
yields [207]. Charcoal application also hampers the soil formation rate because of its re-
calcitrance and charcoal alone application is likely to outstrip the natural soil formation
rate [208,209]. Due to its porosity and large specific surface area, the use of charcoal could
reduce the efficacy of such agrochemicals [210]. An increased charcoal absorption capacity
reduces the fraction of agrochemicals bioavailable to microbial degraders; thus, a higher
dose of pesticide or herbicide is required [211–214]. Moreover, charcoal could be a source
of organic contaminants, including polycyclic aromatic hydrocarbons (PAHs), volatile
organic compounds (VOCs), potentially toxic elements (PTEs), and dioxins. Therefore, it is
essential to evaluate charcoal’s long-term effects before it is used as a soil amendment to
minimise the adverse effects on both the environment and human health.

10. Wood Ash and Its Properties

Wood ash is the inorganic and organic residue remaining after the combustion of
wood or unbleached wood fibre [17]. Organic compounds are mineralised, whereas the
base cations form oxides that are slowly hydrated and carbonated under atmospheric
conditions [17]. However, carbon and nitrogen are usually in negligible amounts, if not
absent, because both elements are oxidised and transformed into gas during combustion.
The physical and chemical properties of wood ash vary significantly, depending on several
factors. The key determinants of wood ash chemistry are the tree species combusted,
the nature of the burn process, and the conditions at the application site [215,216]. The
particle size of most ash is less than 1.0 mm [217], and the bulk density is approximately
0.27 g cm−3 [218].

10.1. Amending Soil with Wood Ash

Wood ash has a small particle size, and this enables a faster pH alteration period
compared with commercial lime. Furthermore, wood ash provides a considerable amount
of plant nutrients such as P, Ca, K, and Mg [19,219–223]. Despite the ability to increase the
major cations and anions in a soil solution, wood ash does not prevent nutrient loss through
leaching losses [222,223]. Wood ash does not only substitute lime or provide macronutri-
ents; it can also offer a substantial amount of sulphur, boron, and other micronutrients.
Wood ash is being used in farms after its potential to substitute commercial lime was made
known [224]. The smaller particle size makes wood ash superior in terms of time taken to
improve the pH [217]. Additionally, wood ash is a good source of K, P, and Mg [225]. The
oxides and carbonates of Ca and K of wood ash make it alkaline [226,227]. The nutrient com-
position depends on the tree species used, whether it originates from bark or wood and the
combustion process efficiency. It also can replace the macro- and micronutrients removed
during plant growth and harvesting. Wood ash is more soluble and reactive than ground
limestone [228] and brings about a change in soil pH more rapidly than lime [229,230].
Lime can take six months to one year to fully take effect. Wood ash is a good source K
(5%), Ca (25%), P (2%), and Mg (1%), which are essential plant nutrients [220,231,232].
Crops positively respond to K and P from wood ash. Other micronutrients in wood ash
include boron, copper, molybdenum, sulphur, and zinc [233]. Each ton of wood ash can
substitute up to one ton of agricultural lime and could supply 25–70 pounds of potash
(K2O) and 30–32 pounds of phosphate (P2O5) [224]. Chang et al. [234] found an increased
water conductivity of soil at with ash amendments. Table 4 demonstrates the effects of
wood ash application on the K availability in acid soils.
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Table 4. Wood ash application on the potassium availability in acid soils.

Effects of Ash on the K Availability and Soil Properties Reference

The K content in the soil of the sample plots one year after the application of wood ash increased two
to six times in comparison to the control plots, depending on wood ash concentration. Jansone et al. [235]

Wood ash treatments enhanced uptake of K+ compared with the control. Potassium uptake increased
proportionally with ash application rates. Sharifi et al. [236]

Application of plant derived ash increased the availability of K and Mg in soil and K content in plant
tissue. Application of ash at 1500 mg K2O improved soil pH to 7.4 within two months after

application but reduced afterwards.
Baon et al. [237]

After the application of wood ash, the P2O5 and K2O content of the soil rose significantly. The
treatments also increased the Mg, S, and Zn content in the soil. Füzesi et al. [238]

10.2. Potential Risks of Using Wood Ash as Soil Amendment

The long-term application of wood ash to soil could increase the soil salinisation.
Soil salinity increases through the release of both ash water-soluble and water-insoluble
salts into the soil solution. Increased salt concentration is a major environmental problem
affecting crop production worldwide, because approximately 20% of cultivated land is
currently salt-affected and degraded [239,240]. Additionally, excessively raised soil pH
following the application of wood ash results in the unavailability of important plant
nutrients. For example, at alkaline pH, P precipitates with Ca to form calcium phosphate,
which is unavailable for plant uptake [67]. Thus, there is a need to determine the pH of
the specific ash before its application to susceptible soil types. Another concern of ash
application in agriculture is the presence of heavy metals. Ash contains several potentially
toxic elements, such as As, Cu, Zn, Cd, Pb, Co, Mo, Mn, Hg, Ni, Cr, Se, and B [241]. These
heavy metals can be leached from soils and can lead to the pollution of land and water
bodies. The studies by Ram and Masto [242], Singh et al. [243], and Ferreira et al. [244]
reported that 5–30% of heavy metals in ash are leachable.

11. Prospects of Co-Applying Charcoal and Wood Ash as Soil Amendments

Charcoal and ash have different mechanisms that benefit soil fertility. The ability of
charcoal to improve soil fertility revolves within three main mechanisms: (i) a direct modi-
fication of soil chemistry through its inherent elements and composition, (ii) exchange sites
that regulate the soil nutrients dynamics, and (iii) the improvement of soil physical charac-
teristics in a way that promotes root growth, nutrient uptake, and water retention [245].
On the other hand, wood ash is mainly associated with the physicochemical improvements
of soil because of its high alkalinity. The oxides from ash could activate the functional
groups of charcoal to provide synergistic benefits, such as enhanced nutrient availability,
pH buffering capacity, and decrease bioavailability of heavy metals [246].

Several literatures have the outlined effects of applying charcoal and ash on acid
soils (alone and combined application). Separate applications of ash and charcoal sig-
nificantly reduced Al3+ concentration compared with control treatment [247,248]. The
addition of ash demonstrated largest increased in available K concentration compared
with charcoal and commercial lime. After the first planting season, soil amended with ash
had 1.68 cmol kg−1 K, whereas soil amended with charcoal and lime contained 0.49 and
0.04 cmol kg−1 K, respectively [247]. This is caused by the nutrient addition effects of ash.
The ashing process burns organic portion of biomass materials, resulting in a product that
is enriched with nutrients such as K, Ca, and Mg [243]. Bieser and Thomas [249] reported a
higher metal availability in soils amended with wood ash compared with charcoal. This is
mainly attributed to the ability of charcoal to precipitate the heavy metals. Hale et al. [247]
revealed that the average maize yield increased by seven-fold for biochar and eight-fold for
ash and are greater than commercial lime, which increased the yield by five-fold compared
with the control. Although information on the co-application of charcoal and wood ash
is limited, some studies used fly ash as an alternative to wood ash. Masto et al. [250]
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reported that the pH of charcoal and fly ash treated soils increased from 6.09 to 6.64 and
6.58, respectively. A combined application of charcoal and fly ash further increased the soil
pH to 6.69. The addition of organic amendments along with ash was reported to result in
an additional pH buffering capacity because of the Ca2+ present in ash [242]. Nevertheless,
fly ash alone only increased the K content in soil at the vegetative state. Charcoal alone
and a co-application with fly ash treatments increased the soil available K at all crop stages
(vegetative, tasselling, and grain filling). Charcoal was reported to sorb significant amounts
of heavy metals because of the structured carbon matrix of charcoal with a high degree
of porosity and extensive surface area [251,252]. The increase in soil pH by ash promotes
charcoal’s ability to form complexes with heavy metals [250].

12. Mechanisms behind Using Charcoal and Wood Ash to Increase Potassium Availability

The co-application of charcoal and wood ash has the potential to improve the K
availability through several mechanisms. The alkaline nature of both amendments increases
soil pH. In addition, further decomposition of charcoal releases organic compounds [16],
which could chelate Al3+ and Fe2+ to stop these ions from hydrolysing to release hydrogens,
which have been implicated in causing soil acidity. The high surface area and porous
structure of charcoal could reduce mobility of water-soluble K by trapping nutrient-rich
water. Furthermore, charcoal and wood ash co-application could increase the K sorption
capacity of tropical acid soils by providing exchanges sites for K and reducing leaching.

12.1. Increasing Potassium Sorption Capacity

The adsorption capacity of soil is an important property that regulates leaching and
redistribution of both anions and cations [253]. To temporarily hold nutrients before being
taken up by plants, high CEC of soil amendments can be exploited [6]. The CEC is one
of the most important indicators for evaluating soil fertility more specifically for nutrient.
For example, exchangeable base cations and ECEC (effective cation exchange capacity)
can be increased using ash [254]. Besides, surface oxidation of aromatic rings of charcoal
causes carboxylation which results in creating large numbers of negative-charged sites [255].
Negative surface charges of charcoal increase soil CEC causing adsorption of cations and P
to increase, whereas nutrient leaching is reduced. Moreover, application of charcoal in soils
increases humic and fulvic acids which have numerous functional groups such as R-COO-,
R-C=O, R-COH, R-SH, and others. These functional groups have the ability to adsorb
or chelate cations to improve their future availability [256–258]. Addition of charcoal
improves K+ retention by reducing its mobility in soil [155]. Eventually, the likelihood
of K being held onto the soil colloids can be increased and leaching could be reduced
significantly (Figure 4). Since leaching and plant uptake will deplete water-soluble K, it
is essential to maintain the exchangeable K, where this pool can be activated to replenish
the K in soil solution. At the same time, pH of the soil has to be raised to deprotonate the
functional groups of charcoal and make the basic cations such as K to be more reactive and
available for plants.

12.2. Retention of Water to Reduce Mobility of Potassium in Soil

The particle size, structure, and organic matter contents of amendments influence
the soil water holding capacity [259,260]. Charcoal is known for its high surface area
because of its porosity. Charcoal pore size ranges between sub-nanometres and tens of
micrometres [261,262]. The pores are classified into macro-pores, meso-pores, and nano-
pores depending on their internal diameter [263,264]. Macro-pores are sized greater than
50 nm and they make up approximately 95% of charcoal’s total porosity [265]. Macro-pores
facilitate microbial activity and water retention. On the other hand, meso-pores and micro-
pores are known charcoal’s active site where nutrient retention occurs, and they are sized
2–50 nm and less than 2 nm [191]. Meso-pores and micro-pores contribute approximately
5% of charcoal’s total porosity. Tryon [266] reported increase in soil water holding capacity
by 18% with the application of 45% charcoal to a sandy soil. Glaser et al. [202] asserted
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that the large internal surface area of charcoal and the high number of residual pores are
the reasons behind charcoal’s ability to retain water. Since polyaromatic backbones are
hydrophobic in nature, they increase the water availability by limiting the water backflow
into the pores [155]. Eliche-Quesada et al. [267] characterized rice husk ash and wood ash
using scanning electron microscopy and energy dispersive X-ray spectrometry (SEM/EDX)
and it demonstrated the highly porous structure and small particle size of both types
of ash. Two other preceding studies have detected improved soil water retention and
hydraulic conductivity via the application of soil amendments with high surface area
and porosity [268,269]. Increase in water holding capacity enhances uptake of nutrient
because the uptake is mediated by soil solution [270]. This creates an environment where
leaching of K is minimized by regulating water loss from the soil profile. Hence, making
K+ available in the soil solution for plants to uptake and expend.
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12.3. Improvement Soil pH upon Application of Charcoal and Wood Ash

Most ash pH range between 8.9 and 13.5 [17]. It was also reported that application of
wood ash can reduce soil acidity, as well as Al3+ and Fe2+ toxicity [18,19]. Previous studies
on ash from different sources indicated its potential as soil amendment [271–273]. Calcite,
lime and Mg oxides in ash neutralise the soil acidity [187]. It could also break the bonds of
functional groups through the effect of Ca and Mg [176]. The utilisation of charcoal as soil
amendment showed nascent feedbacks as it provides reactive negatively charged surfaces
that can assist in nutrient holding or chelation of detrimental cations (Al3+ and Fe2+) [274].
Upon its application, charcoal decomposes in soils to produce organic compounds which
have affinity for Al3+ and Fe2+ (Figure 5). As the pH increases, not only is K+ adsorbed into
the exchange sites (due to deprotonation of functional groups), it is more reactive, hence
easing the uptake by plants.
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13. Future Perspectives and Recommendations

To date, the co-application of charcoal and wood ash to improve the K availability
in tropical acid soils is scarcely explored. It is important to continue and extend research
concerning the effect of co-application of charcoal and wood ash as soil amendments.
Firstly, research should be carried out on the long-term impact of these amendments on
soil properties, microbial activity and diversity, and crops quality. Furthermore, the fate of
toxic compounds in these amendments (including heavy metals and radionuclides) should
be carefully investigated. Additionally, potential contaminants leaching from soil enriched
with charcoal and wood ash and their impact on the surrounding environment should be
continuously monitored. Moreover, there are limited information on the optimal use of
these amendments. To address the research gap on using charcoal and wood ash on the K
availability, there is a need to carry out laboratory and field trials to verify the proposed
mechanisms. The optimal rates of charcoal and wood ash to improve the K availability
can be obtained through such studies. Plant response towards co-application of these
amendments could be identified to avoid exceeding the toxic threshold.

14. Conclusions

The availability of soil K requires systemic evaluation because of its association with K
fractions in soil. The chemical and physical processes and the retention-release mechanisms
regulating the K availability in the soil need to be studied. The suppression of Al and Fe
toxicity in tropical acid soils needs to be evaluated to increase K reactivity. At the same time,
decreasing K mobility in soil solution by providing exchange sites for K to be adsorbed
requires thorough understanding. The co-application of soil amendments, particularly
charcoal and wood ash is believed to not only decrease K leaching but also improve the
K availability and use efficiency in acid soils. This could be accomplished by the large
numbers of negative-charged sites in organic substances of charcoal that not only alter K
sorption capacity in soils but chelate the Al and Fe oxides. On the other hand, application
of wood ash can be regarded as substitute for commercial lime because of the presence of
acid neutralising compounds that could inhibit Al and Fe hydrolysis and deprotonate the
functional groups in charcoal’s organic substances. Extended research is required to study
the effects of charcoal and wood ash application towards soil, crop, and environment to
achieve sustainable agriculture.
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