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Abstract. The increasing demand for wireless network connections requires ef-

ficient network resource allocation. The non-orthogonal multiple access 

(NOMA) technology offers users sharing the same radio bandwidth to increase 

the bandwidth efficiency. However, the increase in the number of users demand-

ing for the radio bandwidth and network connections will increase the required 

computational load for grouping the users to share the radio resources. This paper 

studies a heuristic method for grouping the users based on the discrete particle 

swarm optimization. The throughput, the average square error and the fitness 

function values obtained by the proposed method and the existing schemes are 

measured and observed. It has been demonstrated that the proposed scheme based 

on discrete particle swarm optimization has produced the throughput close to the 

upper limit. The average mean square error is also close to the lower limit. The 

convergence of the proposed method is mainly less than 10 iterations at different 

numbers of resource blocks.   

Keywords: Particle Swarm, Discrete, User Grouping. 

1 Introduction 

High speed cellular networks in the future, which include 5G and beyond, are antic-

ipated to offer higher network resources to an increasingly larger number of users. In 

providing services to more users, 5G networks have been proposed to be implemented 

with certain methods to ensure that the users are equally or fairly allocated with the 

available network resources. One of the most notable features in 5G for utilizing and 

allocating the available network resources such as the bandwidth is the non-orthogonal 

multiple access system (NOMA) 1–5. Instead of allocating dedicated bandwidth to the 

users, as what typically applied in the orthogonal multiple access system (OMA), a 

NOMA system allows the users to share the bandwidth 6. Not only does it efficiently 

utilizes and allocates the bandwidth 7,8, but this mechanism also improves the effective 

sum capacity which can be achieved by the sharing users.   

As the number of users grows bigger, the computational load required to perform 

the bandwidth allocation in NOMA systems tend to rise. Choosing the best users to be 

clustered in the same group which is allocated with the same radio bandwidth or fre-

quency carriers requires a number of computations. This number is certainly dependent 
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on the total number of users, which will be likely increasing. Therefore, it is important 

to devise computationally efficient methods for grouping the users and allocating them 

with the shared bandwidth.  This is certainly timely and essential in  improving the 

NOMA systems, which have been demonstrated to be viable in supporting the Ultra 

Reliable and Low Latency Communication (URLLC) and Massive Machine Type 

Communication (mMTC) 9 by permitting more users to share the resource blocks and 

network connections 10–12.  

The computational load incurred in NOMA is also contributed by the implementa-

tion of successive interference cancellation (SIC) operation13–17. After detecting one of 

the users who share the same radio bandwidth, the SIC operation will be carried out to 

remove the signal of the users which has been detected to increase the probability of 

detecting the next user who shares the same bandwidth. Consequently, the effective 

sum capacity achievable by both users will be improved. Although the sum capacity 

improvement is achieved by using the SIC operation, the total required computational 

complexity will further increase as the number of cellular network users is on the rising 

trend18–20. Therefore, the need for a user grouping and bandwidth allocation mechanism 

with a relatively lower computational complexity is higher. The users that should be 

fairly allocated 21 with the same bandwidth should be chosen so as to increase the sum 

capacity using a computationally lower approach. 

Due to complexity, most of the user grouping methods proposed in NOMA only 

consider user grouping, which allocates the shared bandwidth to a pair of selected users 
22. A user grouping method known as the power fixed fairness allocation (PFFP) is 

proposed in 22 to reduce the computational complexity and time. When compared with 

the exhaustive search (ES) scheme, which considers all possible pairs of users before 

determining the final pairs, this approach performs better in the complexity reduction. 

However, the PFFP approach has only considered a limited number of cellular network 

users. When the number of users increases, the computational complexity tends to rise, 

requiring computationally lower user grouping methods such as the heuristic methods 

which include particle swarm23–25, ant-colony and drosophila optimization algorithms 
26–30. 

 Although particle swarm optimization (PSO) has been implemented in 5G NOMA, 

most of the problems addressed are related to power domain NOMA and the corre-

sponding power allocation. None of the proposed PSO methods addresses the issue of 

grouping the users. Furthermore, the nature of PSO algorithm is not suitable for user 

grouping problems as PSO is naturally employed for solving continuous desired pa-

rameters such as the power allocation. In this paper, an improved PSO is designed for 

user grouping in NOMA for finding the best pairs of users to be allocated with the 

available bandwidth in the forms of resource blocks and frequency carriers. This dis-

crete particle swarm optimization (DPSO) approach is designed with the SIC scheme 

to run a 5G NOMA user grouping model. Comparisons with the existing methods such 

as the PFFP and the ant-colony optimization approach will also be carried out. This 

paper is organized as follows: 
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2 Discrete Particle Swarm Optimization for User Grouping 

A cellular network with 𝑁𝑠𝑖𝑡𝑒𝑠 cells and 𝑁𝑆 sectors per cell is studied where NOMA 

is assumed to be implemented in each cell.  There are a total of 𝑁𝑢𝑠𝑒𝑟𝑠 users in a cell 

and each of these users will be paired using the user grouping schemes that will be 

further described in this paper. Each of the pairs will be allocated with one resource 

block from a total of 𝑁𝑟𝑏
 resource blocks.  

In the downlink direction, the total power allocated to a pair of two user signals is 𝑃𝑡 

and each user 𝑢 will have an average transmitted power of 𝑃𝑢 =  𝛼𝑢𝑃𝑡, with  𝛼𝑢  repre-

sented as the allocated power ratio to user 𝑢 from 𝑃𝑡, where 0 <  𝛼𝑢 ≤ 1 and 𝑢 ∈ {1,2}. 

The antenna gain and the fast fading function of user 𝑢 at cell 𝑖 and sector j are 

𝐺𝑎𝑛𝑡𝑒𝑛𝑛𝑎(𝑗, 𝑖, 𝑢) and 𝑓𝑗,𝑖,𝑢,𝑟𝑏
 respectively, where 𝑗 ∈ {1, ⋯ , 𝑁𝑆}, 𝑖 ∈

{1, ⋯ , 𝑁𝑠𝑖𝑡𝑒𝑠} and 𝑟𝑏 ∈ {1, ⋯ , 𝑁𝑟𝑏
}. The fading shadow and the path gain of user 𝑢 at 

cell 𝑖 are represented as 𝑐𝑢,𝑖 and 𝐺𝑝𝑎𝑡ℎ(𝑖, 𝑢) respectively. Hence, the average received 

power of a user signal 𝑢 at cell i and sector 𝑗 is given as 

 

𝑃𝑗,𝑖,𝑢,𝑟𝑏
=  𝑃𝑢𝐺𝑎𝑛𝑡𝑒𝑛𝑛𝑎(𝑗, 𝑖, 𝑢)𝑓𝑗,𝑖,𝑢,𝑟𝑏

𝑐𝑢,𝑖𝐺𝑝𝑎𝑡ℎ(𝑖, 𝑢)   

 

(2.1) 

NOMA is implemented by first measuring the signal to interference plus noise ratio 

(SINR) of all users, assuming that the users are individually and independently allo-

cated with resource blocks. In other words, this is an OMA setting is first and tempo-

rarily assumed without any bandwidth sharing as this individual SINR is required to 

group the users. When choosing the pairs, the first user must possess a higher SINR 

than the second user so that the first user can first be detected before SIC is performed 

to detect the second user. At the first cell and the first sector, the individual SINR 

𝛾𝑢,𝑟𝑏

1,1  of user 𝑢 is written as: 

 

𝛾𝑢,𝑟𝑏

1,1 =   
𝑃1,1,𝑢,𝑟𝑏

∑ ∑ 𝑃𝑖,𝑗,𝑢,𝑟𝑏
3
𝑗=2  𝑁_𝑠𝑖𝑡𝑒𝑠

𝑖=1

 , 

 

(2.2) 

where the noise is assumed negligible in this interference-limited scenario. 

By comparing between all SINR values, the first and the second user, which are 

going to be allocated with the same resource blocks, are selected by comparing between 

the SINR values. Therefore, the first and the second user are selected such that 𝛾𝑢1,𝑟𝑏

1,1
>  

𝛾𝑢2,𝑟𝑏

1,1
, where both users are assumed to be allocated with the same transmit power for 

the purpose of determining the temporary OMA SINR and user selection. As the shar-

ing users are now selected, the NOMA SINR value for the first user 𝑢1 can be deter-

mined as follows: 

 

𝛾𝑢1,𝑟𝑏

1,1 (𝑢1) =   
𝑃1,1,𝑢1,𝑟𝑏

∑ ∑ 𝑃𝑖,𝑗,𝑢1,𝑟𝑏
3
𝑗=2  

𝑁𝑠𝑖𝑡𝑒𝑠
𝑖=1

 . 

 

(2.3) 



4 

The NOMA SINR 𝛾𝑢1,𝑟𝑏

1,1 (𝑢1) for the first user 𝑢1 appears to be very similar to that of 

OMA SINR calculated before because there is no SIC operation carried out on the first 

user during the detection process. However, the transmit power allocation for the first 

user is 𝑃𝑢1
=  𝛼𝑢1

𝑃𝑡 where 0 <  𝛼𝑢1
≤ 1. In other words, the total transmit power 𝑃𝑡 

is shared between the first and the second user, whose NOMA SINR 𝛾𝑢1,𝑟𝑏

1,1 (𝑢2)  is given 

as 

𝛾𝑢1,𝑟𝑏

1,1 (𝑢2) =   
𝑃1,1,𝑢2,𝑟𝑏

∑ ∑ 𝑃𝑖,𝑗,𝑢2,𝑟𝑏
3
𝑗=2 − 𝑃1,1,𝑢1,𝑟𝑏

 𝑁_𝑠𝑖𝑡𝑒𝑠
𝑖=1

 . 

 

(2.4) 

 

Based on the SINR functions given in (2.3) and (2.4), the total mean throughput 

achieved by both users who share the same resource block can be written as 

𝑓(𝑢1, ⋯ , 𝑢𝑁𝑢𝑔
) =   2𝑊 ∑ log2 𝛾𝑢𝑛,𝑟𝑏

𝑠,𝑐 (𝑢𝑛) ,

𝑁𝑢𝑔

𝑛=1

 
(2.5) 

2.1 Discrete Particle Swarm Optimization for User Grouping 

The proposed algorithm based on discrete particle swarm optimization approach to 

group the users in 5G NOMA systems. As seen from Algorithm 1, the DPSO algorithm 

begins by populating 𝑆 samples required before calculating the distances and velocity 

variables. Using an initialized set of distances 𝑥𝑡(𝑖, 𝑗) for ∀ 𝑖 = 1, ⋯ , 𝑆 and 𝑗 =
1, ⋯ , 𝑀, the algorithm begins the for loop in line 3 to run the iteration up to 𝑁 times. 

 At each iteration 𝑡, the distance will be recalculated and formulated in discrete form, 

as given in line 5, Equation (2.7). The current best value will also be updated and the 

distance which corresponds to the current best value is updated in line 6, Equation (2.8). 

If the current best value is larger than the global best value, the global best value will 

be updated accordingly, as shown in line 7 and 8. 

 From line 10 to 14, the velocity and the distance will be updated based on the general 

particle swarm optimization formula. The algorithm repeats itself until the maximum 

iteration has been reached. As explained before, the discretization of the distance hap-

pens in line 6. This signifies the main difference proposed in this paper than the other 

approaches implemented for the general particle swam optimization problems. 

 The discretization process will sort the values of the currently calculated distances 

in an ascending order. Once the distances are ordered, the indices of the ordered dis-

tances will be read and output as the discrete version of the distances. In literature there 

have been a number of approaches proposed to produce a discrete particle swarm opti-

mization formula. 

 Some of the formula proposed in literature apply the exponential operation. Alt-

hough this approach allows convergence of the learning process, the incurred compu-

tational load is relatively high due to the need to perform the exponential operation. For 

this reason, a more computationally lower approach is proposed in this paper to deter-

mine the discrete distance, hence completing the proposed DPSO algorithm.  

 



5 

 

Algorithm 1: Discrete Particle Swarm Optimization for NOMA User Grouping 

Require: Maximum number of iterations, 𝑀; acceleration factor, 𝑐1,  𝑐2;inertia weight, 

𝑤; population size, 𝑆; number of particles, 𝑀. 

1: Generate 𝑆 population samples. 

2: Generate initialized distances 𝑥𝑡(𝑖, 𝑗) for ∀ 𝑖 = 1, ⋯ , 𝑆 and 𝑗 = 1, ⋯ , 𝑀 

3: for 𝑡 =  1: 𝑁 

4:        for 𝑖 =  1: 𝑆 

5: 𝑥𝑑,𝑡(𝑖, 𝑗) = sortindex
𝑗

𝑥𝑡(𝑖, 𝑗)  (2.7) 

𝟔: 𝑝𝑏 =  arg max
𝑥𝑡(𝑖,𝑗)

𝑓 (𝑥𝑑,𝑡(𝑖, 𝑗)) (2.8) 

7:   if 𝑓(𝑝𝑏) > 𝑓(𝑔𝑏) (2.9) 

8:    𝑔𝑏 =  𝑝𝑏  (2.10) 

9:   end 

10:   for 𝑗 =  1: 𝑀 

11:    𝑣𝑡(𝑖, 𝑗) =  𝑤𝑣𝑡−1(𝑖, 𝑗) + 𝑐1𝑟1,𝑡(𝑝𝑏 − 𝑥𝑡−1(𝑖, 𝑗)) 

12:              +𝑐2𝑟2,𝑡(𝑔𝑏 − 𝑥𝑡−1(𝑖, 𝑗))                                                 (2.11)  

13:     𝑥𝑡(𝑖, 𝑗) = 𝑥𝑡−1(𝑖, 𝑗) + 𝑣𝑡(𝑖, 𝑗) (2.12) 

14:   end 

15:  end 

16: end 

17:return fitness function value, 𝑓(𝑔𝑏), user indices in each group 

 

In the next section, the proposed DPSO algorithm will be implemented on a 5G 

NOMA model to group the users. 

3 Results and Discussions 

In order to test and validate the proposed scheme, a NOMA model is considered in 

a 5G cellular network. The total number of cells is 19 and the number sectors per cell 

is three. The gain and loss parameters and data used in this paper are the established 

data, as presented in 22,29, which follow the 3GPP standard. The output parameters of 

the tests and simulations run on the proposed DPSO scheme and the existing methods 

include the mean throughput, the number of iterations and the average mean square 

error per user, which has been given and described in the previous section. As for the 

DPSO parameter settings, the inertia weight, 𝑤 is chosen between 0.9 and 1.2, the pop-

ulation size, 𝑆 is varied between 8 and 50, the maximum iteration, N is between 3 to 

100 and the acceleration parameters, 𝑐1, 𝑐2 are set to 2 27.  

The first test is run to measure the fitness function values achieved at each iteration 

for a range of 𝑁𝑟𝑏 values, from 1 to 5. The resource block number 𝑁𝑟𝑏 determines the 

number of users which can be paired. Therefore, 5 resource blocks can be allocated up 

to 10 users since each resource block will be shared by two users. Figure 1 shows the 

resulted fitness function values when the proposed DPSO method is run at iteration for 
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different 𝑁𝑟𝑏 values ranging from 1 to 5. It general, the quickest convergence is 

achieved when 𝑁𝑟𝑏 = 1 and the slowest convergence occurs when 𝑁𝑟𝑏 = 5.  The max-

imum fitness value is achieved at a value more than 0.9 when 𝑁𝑟𝑏 = 5 and the mini-

mum fitness value is achieved at a value of about 0.2 when 𝑁𝑟𝑏 = 1. It can be also 

further observed that the maximum number of iterations before the graph curve is con-

verged is 8, which is for the case of 𝑁𝑟𝑏 = 5, and the minimum number of iterations 

achieved before the graph is converged is 3, which is for the case of 𝑁𝑟𝑏 = 1.  

 
Figure 1: Measurement of fitness function values at different 𝑁𝑟𝑏 values. 

 

The results obtained and shown in Figure 1 shows that the convergence of the pro-

posed DPSO is considerably quick. This is due to the discrete nature of the proposed 

DPSO algorithm used to group the users, leading to a faster convergence. 

Apart from measuring the fitness function values, the mean throughput achieved is 

also measured. The proposed DPSO scheme has been run along with PFFP and ES 

schemes to record the mean throughput achieved in Mbps. As can be seen in Figure 2, 

the proposed DPSO scheme has achieved the mean throughput close to the theoretical 

upper limit set by the ES scheme, which considers all options to perform the pairing of 

the users for allocating the resource blocks. The lowest mean throughput is recorded 

for PFFP method, although it has a relatively low computational complexity. It can be 

also observed that the proposed DPSO scheme has gained more than 4 Mbps as opposed 

to the PFFP scheme when 𝑁𝑟𝑏 = 5. This results further demonstrates the better per-

formance of DPSO against the existing scheme, PFFP. 
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Figure 2: Measurement of the mean throughput achieved by the proposed DPSO, 

PFFP and ES. 

In Figure 3, the average mean square error (MSE) per user is measured as 𝑀𝑆𝐸 =
1/(1 + 𝑆𝐼𝑁𝑅) from all schemes under consideration when the number of resource 

blocks is between 𝑁𝑟𝑏 = 1 and when 𝑁𝑟𝑏 = 5. The mean square error is a good meas-

urement of the performance of the SIC operation. As generally seen from the figure, 

the highest and the worst error is produced by the PFFP and the lowest error is achieved 

by the ES scheme. The proposed DPSO scheme follows closely the ES scheme in the 

error performance. This result further signifies the improved performance of the pro-

posed DPSO as opposed to the existing PFFP scheme. 
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Figure 3: Measurement of the average MSE per user. 

4 Conclusion and Future Work 

In supporting the increasing number of users demanding the network connections 

from 5G networks and beyond, the proposed DPSO has been demonstrated to perform 

well in increasing the achievable mean throughput whiles reducing the average MSE 

per user. It has also been demonstrated that the required computational complexity by 

the proposed DPSO at each iteration is also low, hence potentially suitable to be imple-

mented with more users. In the future, the proposed DPSO can be further enhanced and 

integrated with power domain NOMA systems which requires power allocation. A 

larger number of users can also be considered and compared against other heuristic 

approaches such as the ant-colony optimization method. 
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