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ABSTRACT In this work, we describe the model of a new 4-D hyperchaotic system with no balance point
and deduce that the new hyperchaotic system has a hidden attractor. We present a detailed bifurcation
analysis for the new hyperchaotic dynamo system with respect to the system parameters and also exhibit
that the new hyperchaotic system displays multistability with coexisting attractors. Using NI Multisim 14.0,
we design an electronic circuit for the implementation of the new 4-D hyperchaotic system and present the
circuit simulation results. We also show the implementation of the new 4-D hyperchaotic system by using
a field programmable gate array (FPGA). The hardware resources are reduced by designing single-constant
multipliers, adders, subtractors and multipliers. The FPGA design is done for three numerical methods,
namely: Forward-Euler, Backward-Euler and fourth-order Runge-Kutta. We demonstrate that experimental
chaotic attractors are in good agreement with theoretical simulations. To verify the ability of the presented
hyperchaotic system for designing robust cryptosystems, we suggest a novel image cryptosystem using
the proposed hyperchaotic system. Simulation outcomes confirm the effectiveness of the proposed image
cryptosystem, and consequently, the effectiveness of the proposed 4-D hyperchaotic system in designing
diverse cryptographic purposes.

INDEX TERMS Hyperchaotic systems, hyperchaos, multi-stability, bifurcations, Lyapunov exponents,
circuit simulation, FPGA, numerical methods, image encryption.

I. INTRODUCTION
Hyperchaos theory deals with hyperchaotic dynamical sys-
tems and has several applications in engineering due to
the high complexity of hyperchaotic dynamical systems
equipped with two or more positive Lyapunov characteristic
exponents.

The associate editor coordinating the review of this manuscript and

approving it for publication was Di He .

Bonatto [1] observed hyperchaotic behavior of light
polarization states in the output of a free-running laser
diode. Barakat et al. [2] obtained a hyperchaotic attrac-
tor from a two-photon laser with multi-intermediate states.
Petavratzis et al. [3] described a new enhanced technique for
themotion control of amobile robot using a hyperchaotic sys-
tem dynamics as chaotic path generator for the mobile robot.
Vaidyanathan et al. [4] reported a hyperchaotic mechani-
cal system exhibiting Hopf bifurcations and discussed its
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circuit simulations. Luo et al. [5] reported the circuit design
and control of a memristor-based hyperchaotic system.
Zhang al. [6] proposed a new symmetric image encryption
method using a hyperchaotic system, Arnold transform and
phase-truncated fractional Fourier transform. Bian and Yu [7]
proposed a new cryptosystem for communication using a new
6-D hyperchaotic system.

Bifurcation analysis for a hyperchaotic system deals with
the dynamic analysis of the system with respect to changes in
the various parameters [8]–[11]. For a hyperchaotic system,
multistability refers to the coexistence of two or more attrac-
tors of the system for the same values of the parameters but
differing values of the initial states [12]–[14].

This work proposes a new 4-D hyperchaotic system with
no balance point. Such systems are known to have hidden
attractors. In Section II, we state a dynamic model of the
new system and show that it has no balance point. We also
observe that the new 4-D hyperchaotic system has rotational
symmetry about the third coordinate axis. In Section III,
we present a detailed bifurcation analysis of the new hyper-
chaotic system presented in this work and also exhibit that it
has multistability with coexisting attractors.

Circuit design of chaotic and hyperchaotic systems
is very important for practical applications [15]–[17].
Mobayen et al. [18] discussed a family of chameleon chaotic
systems with quadratic nonlinearities and designed an elec-
tronic circuit for a chameleon chaotic system. Petrzela [19]
carried out an experimental verification of a new hyper-
chaotic system based on a two-stage amplifier. In Section V,
we present the design of an electronic circuit of the new
hyperchaotic system via NI Multisim 14.0, and describe its
circuit simulations.

It has been shown that any chaotic system can be
implemented by using field-programmable gate arrays
(FPGAs) [20], this is due to the advantage of fast verification
and reconfigurability of the device. Once the mathemati-
cal model is given, one must consider the use of different
numerical methods [21] to proceed to the FPGA imple-
mentation, and also, one can reduce hardware resources by
designing single-constant multipliers [22], adders, subtrac-
tors and multipliers. In this work, FPGA design of the new
4-D hyper-chaotic system is performed by applying three
numerical methods, namely: Forward-Euler, Backward-Euler
and fourth-order Runge-Kutta numerical methods.

In Section VI, we demonstrate that experimental chaotic
attractors are in good agreement with theoretical simulations,
and also provide hardware resources for different numerical
methods.

Information security acts a vital purpose in our daily
lives [23]. Digital images exemplify the common model of
data description. Image data can be secured via utilizing one
of the image cryptosystems [24]–[28] or using one of the
image data hiding methods [29], [30].

In Section VII, we propose a new image encryption
mechanism based on the new hyperchaotic system. In our
image cryptosystem, the hash code for the pristine image is

calculated at first and utilizes this hash code for updating the
primary conditions of the presented hyperchaotic system to
guarantee pristine image sensitivity. The output of iterating
the hyperchaotic system is four chaotic sequences in which
the last chaotic sequence is utilized for constructing a new
sequence from the other first three sequences, and the pris-
tine image is permutated then substituted utilizing the new
sequence. Simulation outputs confirm the effectiveness of the
proposed image cryptosystem.

II. A NEW HYPERCHAOTIC SYSTEM WITH
NO BALANCE POINT
The dynamical equations of the new 4-D system proposed in
this work are given by

ẏ1 = a(y2 − y1)−by2y3 + y4
ẏ2 = y1(1−cy3)
ẏ3 = y1y2−d
ẏ4 = −y1 − y2

(1)

Eq. (1) represents a 4-D system with the state Y =

(y1, y2, y3, y4) and the system involves three quadratic non-
linearities y1 y2, y2 y3 and y1 y3. We assume that the system
constants a, b, c, d are all positive.
By calculating Lyapunov characteristic exponents, it will

be shown in this work that the system (1) has a hyperchaotic
attractor for the value of constants as

a = 0.6, b = 0.1, c = 25, d = 4 (2)

For numerical simulations, we take (a, b, c, d) = (0.6,
0.1, 25, 4). We choose the initial state as Y (0) = (0.6, 0.8,
0.6, 0.8). Then the Lyapunov characteristic exponents for the
4-D system (1) were computed for T = 1E5 seconds as
follows:

LE1 = 0.8367, LE2 = 0.1642,

LE3 = 0, LE4 = −1.6009 (3)

The presence of two positive Lyapunov characteristic
exponents in Eq. (3) pinpoints that the 4-D system (1) is
hyperchaotic.

The Kaplan-Yorke dimension of the 4-D hyperchaotic
system (1) is obtained by the following calculation:

DKY = 3+
LE1 + LE2 + LE3

|LE4|
= 3.6252 (4)

The 4-D system (1) has high complexity since it has a large
value of DKY .
We also remark that the hyperchaotic system (1) has rota-

tion symmetry about the y3-axis since it is invariant under the
transformation of coordinates

(y1, y2, y3, y4) 7→ (−y1,−y2, y3,−y4) (5)

The balance points of the hyperchaotic system (1) are
found by solving following algebraic system of equations:

a(y2 − y1)−by2y3 + y4 = 0 (6a)
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y1(1−cy3) = 0 (6b)

y1y2−d = 0 (6c)

−y1 − y2 = 0 (6d)

From Eq. (6d), we get

y2 = −y1 (7)

Substituting y2 = −y1 into Eq. (6c), we get

y21 + d = 0 (8)

which admits no real solution since d > 0.
Hence, we conclude that the 4-D hyperchaotic system (1)

does not have any balance point. Thus, the hyperchaotic
system (1) belongs to the class of systems with hidden
attractors [31]–[33].

The 2D signal plots of the 4-D hyperchaotic system (1)
for the constants (a, b, c, d) = (0.6, 0.1, 25, 4) and the initial
state Y (0) = (0.6, 0.8, 0.6, 0.8) are depicted in Figure 1.

FIGURE 1. 2-D signal plots of the 4-D hyperchaotic system (1) for
(a,b, c,d ) = (0.6,0.1,25,4) and the initial state Y (0) = (0.6,0.8,
0.6,0.8): (a) (y1, y2) plane, (b) (y2, y3) plane, (c) (y2, y4) plane and
(d) (y3, y4) plane.

III. BIFURCATION ANALYSIS AND MULTISTABILITY OF
THE NEW HYPERCHAOTIC SYSTEM
Lyapunov exponents spectrum and bifurcation diagram rep-
resent the two most important tools to analyse the dynam-
ical behavior of a system. Furthermore, the Kaplan-Yorke
fractal dimension is an effective index of system complexity.
In this section, dynamical behavior and complexity of the new
4-D hyperchaotic system (1) are investigated by using numer-
ical calculations with the positive parameters a, b, c and d
varying.

A. PARAMETER A VARYING
Here, we fix the values of the system parameters as

b = 0.1, c = 25, d = 4 (9)

and vary the parameter a.
Lyapunov exponents spectrum and the corresponding

bifurcation diagram of system (1) when a takes values in the
interval [0.5, 5] are depicted in Figure 2. We can see a good
agreement between the bifurcation diagram and the Lyapunov
exponents spectrum.

FIGURE 2. Bifurcation diagram (a) and Lyapunov exponents spectrum
(b) of the new 4-D hyperchaotic system (1) when b = 0.1, c = 25,d = 4
and a ∈ [0.5,5].

It can be seen from Figure 2 that the proposed 4-D sys-
tem (1) can exhibit hyperchaotic behavior with two positive
Lyapunov exponents and different levels of complexity.

When a = 5, the new 4-D system (1) generates hyper-
chaotic behavior. The corresponding Lyapunov exponents
are:

LE1 = 1.297, LE2 = 0.130,

LE3 = 0, LE4 = −6.425 (10)

and the corresponding Kaplan-Yorke fractal dimension is
equal to DKY = 3.222.
When a = 2, the new 4-D system (1) generates hyper-

chaotic behaviour. The corresponding Lyapunov exponents
are:

LE1 = 0.484, LE2 = 0.305,

LE3 = 0,LE4 = −2.710 (11)

and the corresponding Kaplan-Yorke fractal dimension is
equal to DKY = 3.291 which indicates more complexity of
the hyperchaotic attractor.

When a = 0.5, The Lyapunov exponents are:

LE1 = 0.902, LE2 = 0.103,

LE3 = 0, LE4 = −1.501 (12)

and the corresponding Kaplan-Yorke fractal dimension equal
to DKY = 3.670, which is the highest value obtained for the
new system (1) when a varies in [0.5, 5], indicating extreme
complexity of the dynamics.
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TABLE 1. Dynamics, Lyapunov exponents and Kaplan-Yorke dimension of the 4-D system (1) versus its parameters.

Various phase portraits of the new 4-D system (1) for
parameters values as in (9) and different values of a are given
in Figure 3.

Now, in order to identify the other types of behaviour of
the 4-D system (1) when the bifurcation parameter a varies,
we plot the bifurcation diagram for other values of the con-
stant parameters b, c and d .

We fix the values of the parameters as

b = 1.5, c = 25, d = 10 (13)

and vary the parameter a.
Lyapunov exponents spectrum and the corresponding

bifurcation diagram of system (1) when a takes values in the
interval[1, 10] are depicted in Figure 4. We can see a good
agreement between the bifurcation diagram and the Lya-
punov exponents spectrum. Figure 4 shows that the proposed
4-D system (1) can exhibit periodic behavior, chaotic behav-
ior and hyperchaotic behavior.

When a ∈ [1, 1.6], the new 4-D system (1) exhibits
periodic behavior with no complexity. When a ∈ [1.6, 5.7],
system (1) exhibits chaotic behavior with one positive Lya-
punov exponent. When a ∈ [5.7, 10], the new 4-D system (1)
exhibits hyperchaotic behavior with two positive Lyapunov
exponents and high complexity.

Various phase portraits of the new 4-D system (1) for
parameters values as in (13) and different values of a are given
in Figure 3.

FIGURE 3. 2-D plot of the new 4-D hyperchaotic system (1) in the (y1, y2)
-plane for b = 0.1, c = 25,d = 4 and different values of a.

In addition, Table 1 gives dynamics, Lyapunov expo-
nents and Kaplan-Yorke fractal dimension of the proposed
4-D system (1) for different values of a.

144558 VOLUME 9, 2021



S. Vaidyanathan et al.: New 4-D Multi-Stable Hyperchaotic System With No Balance Point

FIGURE 4. Bifurcation diagram (a) and Lyapunov exponents spectrum
(b) of the new 4-D hyperchaotic system (1) when b = 1.5, c = 25,d = 10
and a ∈ [1,10].

FIGURE 5. 2-D plot of the new 4-D hyperchaotic system (1) in the (y1, y2)
-plane for b = 1.5, c = 25,d = 10 and different values of a: (a) Periodic
attractor (a = 1), (b) Chaotic attractor (a = 3) and (c) Hyperchaotic
attractor (a = 9).

B. PARAMETER B VARYING
Here, we fix the values of the system parameters as

a = 0.6, c = 25, d = 4 (14)

and vary the parameter b.
Lyapunov exponents spectrum and the corresponding

bifurcation diagram of system (1) when b takes values in the
interval [0, 0.25] are depicted in Figure 6. We can see a good
agreement between the bifurcation diagram and the Lyapunov
exponents spectrum.

It can be seen from Figure 6 that the proposed 4-D sys-
tem (1) can exhibit hyperchaotic behavior with two positive
Lyapunov exponents and different levels of complexity.

When b = 0.15, the new 4-D system (1) generates
hyperchaotic behavior. The corresponding Lyapunov

FIGURE 6. Bifurcation diagram (a) and Lyapunov exponents spectrum
(b) of the new 4-D hyperchaotic system (1) when a = 0.6, c = 25,d = 4
and b ∈ [0,0.25].

exponents are:

LE1 = 0.725, LE2 = 0.205,

LE3 = 0, LE4 = −1.526 (15)

and the corresponding Kaplan-Yorke fractal dimension is
equal to DKY = 3.609.
When b = 0.12, the new 4-D system (1) generates hyper-

chaotic behaviour. The corresponding Lyapunov exponents
are:

LE1 = 0.819, LE2 = 0.214,

LE3 = 0, LE4 = −1.633 (16)

and the corresponding Kaplan-Yorke fractal dimension is
equal to DKY = 3.633 which indicates more complexity of
the hyperchaotic attractor.

When b = 0, The Lyapunov exponents are:

LE1 = 1.026, LE2 = 0.126,

LE3 = 0, LE4 = −1.744 (17)

and the corresponding Kaplan-Yorke fractal dimension equal
to DKY = 3.661, which is the highest value obtained for the
new system (1) when b varies in [0, 0.25], indicating extreme
complexity of the dynamics.

Various phase portraits of the new 4-D system (1) for
parameters values as in (14) and different values of b are given
in Figure 7.
Now, in order to identify the other types of behaviour of

the 4-D system (1) when the bifurcation parameter b varies,
we plot the bifurcation diagram for other values of the con-
stant parameters a, c and d .

We fix the values of the parameters as

a = 1, c = 25, d = 10 (18)

and vary the parameter b.
Lyapunov exponents spectrum and the corresponding

bifurcation diagram of system (1) when b takes values in
the interval[0, 2] are depicted in Figure 8. We can see a
good agreement between the bifurcation diagram and the
Lyapunov exponents spectrum. Figure 8 shows that the
proposed 4-D system (1) can exhibit periodic behavior,
chaotic behavior and hyperchaotic behavior.
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FIGURE 7. 2-D plots of the new 4-D hyperchaotic system (1) in the
(y1, y3) -plane for a = 0.6, c = 25,d = 4 and different values of b.

FIGURE 8. Bifurcation diagram (a) and Lyapunov exponents spectrum
(b) of the new 4-D hyperchaotic system (1) when b = 1.5, c = 25,d = 10
and a ∈ [1,10].

When b ∈ [0, 0.5], the new 4-D system (1) exhibits
two positive Lyapunov exponents and high value of fractal
dimension. When b ∈ [0.5, 0.85], the system (1) exhibits
chaotic behavior with one positive Lyapunov exponent.When
b ∈ [0.85, 2], the new 4-D system (1) exhibits periodic
behavior with no complexity.

Various phase portraits of the new 4-D system (1) for
parameters values as in (18) and different values of a are given
in Figure 7.
In addition, Table 1 gives dynamics, Lyapunov expo-

nents and Kaplan-Yorke fractal dimension of the proposed
4-D system (1) for different values of b.

C. PARAMETER C VARYING
Here, we fix the values of the system parameters as

a = 0.6, b = 0.1, d = 4 (19)

and vary the parameter c.

FIGURE 9. 2-D plots of the new 4-D hyperchaotic system (1) in the
(y1, y3) -plane for a = 1, c = 25,d = 10 and different values of b:
(a) Periodic attractor (b = 1.9), (b) Chaotic attractor (b = 0.8) and
(c) Hyperchaotic attractor (b = 0.1).

Lyapunov exponents spectrum and the corresponding
bifurcation diagram of system (1) when c takes values in the
interval [3, 30] are depicted in Figure 10. We can see a good
agreement between the bifurcation diagram and the Lyapunov
exponents spectrum.

It can be seen from Figure 10 that the proposed 4-D system
(1) can exhibit chaotic behavior or hyperchaotic behavior
when c varies.

When c ∈ [3, 10], the new system (1) exhibits chaotic
behavior with one positive Lyapunov exponent.

When c ∈ [10, 30], the new system (1) exhibits hyper-
chaotic behavior with two positive Lyapunov exponents and
high complexity.

Various phase portraits of the new 4-D system (1) for the
values of parameters as in (19) and different values of c are
given in Figure 11. Also, Table 1 gives dynamics, Lyapunov
exponents and Kaplan-Yorke fractal dimension of the sys-
tem (1) for different values of c.

D. PARAMETER D VARYING
Here, we fix the values of the system parameters as

a = 0.6, b = 0.1, c = 25 (20)

and vary the parameter d .
Lyapunov exponents spectrum and the corresponding

bifurcation diagram of system (1) when d takes values in the
interval [−5, 15] are depicted in Figure 12.We can see a good
agreement between the bifurcation diagram and the Lyapunov
exponents spectrum.
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FIGURE 10. Bifurcation diagram (a) and Lyapunov exponents spectrum
(b) of the new 4-D hyperchaotic system (1) when a = 0.6,b = 0.1,d = 4
and c ∈ [0,30].

FIGURE 11. 2-D plots of the new 4-D hyperchaotic system (1) in the
(y1, y4) -plane for a = 0.6,b = 0.1,d = 10 and different values of c .

FIGURE 12. Bifurcation diagram (a) and Lyapunov exponents spectrum
(b) of the new 4-D hyperchaotic system (1) when a = 0.6,b = 0.1, c = 25
and d ∈ [−5,15].

It can be seen from Figure 12 that the proposed 4-D system
(1) can exhibit chaotic behavior or hyperchaotic behavior
when d varies.
When d ∈ [−5, 0], the new system (1) exhibits chaotic

behavior with one positive Lyapunov exponent.
When d ∈ [0, 15], the new system (1) exhibits hyper-

chaotic behavior with two positive Lyapunov exponents and
high complexity.

Various phase portraits of the new 4-D system (1) for the
values of parameters as in (20) and different values of d are
given in Figure 13.
Now, in order to identify the other behavior of the 4-D

system when the bifurcation parameter d varies, we plot the
bifurcation diagram for other values of the constant parame-
ters a, b and c.

FIGURE 13. 2-D plots of the new 4-D hyperchaotic system (1) in the
(y2, y3) -plane for a = 0.6,b = 0.1, c = 15 and different values of d .

FIGURE 14. Bifurcation diagram (a) and Lyapunov exponents spectrum
(b) of the new 4-D system (1) when a = 1,b = 0.8, c = 20 and d ∈ [0,5].

We fix the values of the parameters as

a = 1, b = 0.8, c = 20 (21)

and vary the parameter d .
Lyapunov exponents spectrum and the corresponding

bifurcation diagram of the system (1) when d takes values
in the interval [0, 5] are depicted in Figure 14. We can see
a good agreement between the bifurcation diagram and the
Lyapunov exponents spectrum. Figure 14 shows that the
proposed 4-D system can generate periodic behavior, chaotic
behavior and hyperchaotic behavior.

We define two sets

I = [3.8, 4] ∪ [4.4, 4.7] ∪ [4.9, 5] (22)

and

J = [0, 0.6] ∪ [3, 3.8] ∪ [4, 4.4] ∪ [4.7, 4.9] (23)

When d ∈ I , the new 4-D system (1) exhibits periodic
behavior with no complexity.

When d ∈ J , the new 4-D system (1) exhibits chaotic
behavior with one positive Lyapunov exponent.

When d ∈ [0.6, 3], the new 4-D system (1) exhibits hyper-
chaotic behavior with two positive Lyapunov exponents.

Various phase portraits of the new 4-D system (1) for the
values of parameters as in (21) and different values of d are
given in Figure 15. Also, Table 1 gives dynamics, Lyapunov
exponents and Kaplan-Yorke fractal dimension of the sys-
tem (1) for different values of d .

VOLUME 9, 2021 144561



S. Vaidyanathan et al.: New 4-D Multi-Stable Hyperchaotic System With No Balance Point

FIGURE 15. 2-D plots of the new 4-D system (1) in the (y1, y4) -plane for
a = 1,b = 0.8 c = 20 and different values of d : (a) periodic attractor
(d = 4.7), (b) chaotic attractor (d = 0.2) and (c) hyperchaotic attractor
(d = 2).

IV. MULTISTABILITY AND COEXISTING ATTRACTORS IN
THE NEW 4-D HYPERCHAOTIC SYSTEM
To investigate the impact of initial conditions on the
behaviour of the new 4-D system (1), the bifurcation diagram
of system (1) versus parameter a for two different initial
conditions is calculated and plotted. The system (1) remains
invariant under the transformation of coordinates

S : (y1, y2, y3, y4) 7→ (−y1,−y2, y3,−y4) (24)

Thus, any projection of the attractor has rotational symme-
try in the y3-axis. Thus, the system (1) may exhibit coexisting
attractors. The bifurcation diagram obtained enables us to
observe the phenomenon of multistability and the appearance
of coexisting attractors.

LetX1 andX2 be two different initial conditions for the new
4-D system (1), where:

X1 = (1, 1, 1, 1) (Blue color) (25)

X2 = (−1,−1, 1,−1) (Red color) (26)

We fix the values of system parameters as

b = 1.5, c = 25, d = 10 (27)

It can be observed from the bifurcation diagram shown
in Figure 16 that the new 4-D system (1) has two different
dynamical evolutions when a varies in the interval [1, 5].
When we set a = 1.4, the system (1) shows two coexisting

periodic attractors starting from X1 (blue color) and X2 (red
color) as shown in Figure 17 (a).

FIGURE 16. The bifurcation diagram of the system (1) with b = 1.5,
c = 25,d = 10 and a ∈ [1,5]: X1 (blue color) and X2 (red color).

FIGURE 17. Matlab phase plots of the various coexisting attractors of the
system (1) in the (y1, y4)-plane: (a) the coexisting periodic attractors for
a = 1.4, (b) the coexisting chaotic attractors for a = 1.75 and (c) the
coexisting hyperchaotic attractors for a = 3.5.

When we set a = 1.75, the system (1) shows two coexist-
ing chaotic attractors starting fromX1 (blue color) andX2 (red
color) as shown in Figure 17 (b). The two coexisting attractors
have the same values of Lyapunov exponents:

LE1 = 0.022, LE2 = 0,

LE3 = −0.622, LE4 = −1.084 (28)

When we set a = 3.5, the system (1) shows two coexist-
ing hyperchaotic attractors starting from X1 (blue color) and
X2 (red color) as shown in Figure 17 (c). The two coexisting
attractors have the same values of Lyapunov exponents:

LE1 = 0.135, LE2 = 0.040,

LE3 = 0, LE4 = −3.665 (29)
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FIGURE 18. Schematic diagram of the electronic circuit of the 4-D hyperchaotic system (32).

V. CIRCUIT DESIGN OF THE NEW HYPERCHAOTIC
SYSTEM
In this section, the 4-D hyperchaotic system (1) with no
balance point is designed by NI Multisim 14.0 software.
The circuit includes 7 operational amplifiers, 3 multipliers,
4 capacitors and 16 resistors. It is noted that the operational
amplifiers (U1A,U3A,U5A,U6A) are configured as integra-
tors while three operational amplifiers (U2A, U4A, U7A) are
configured as inverting amplifier.

For the circuit design, the new 4-D hyperchaotic system (1)
has to be rescaled by using

Y1 =
1
2
y1,Y2 =

1
2
y2,Y3 =

1
2
y3, Y4 =

1
2
y4 (30)

This results in the following 4-D hyperchaotic system in
the new coordinates:

Ẏ1 = a(Y2 − Y1)−2bY2Y3 + Y4
Ẏ2 = Y1−2cY1Y3
Ẏ3 =2Y1Y2 − 2
Ẏ4 = −Y1 − Y2

(31)

The circuit equation of the 4-D hyperchaotic system (31)
after using Kirchhoff’s electrical circuit laws can be derived
as follows:

Ẏ1 =
1

C1R1
Y2 −

1
C1R2

Y1 −
1

C1R3
Y2Y3

+
1

C1R4
Y4

Ẏ2 =
1

C2R5
Y1 −

1
C2R6

Y1Y3

Ẏ3 =
1

C3R7
Y1Y2 −

1
C3R8

V1

Ẏ4 = −
1

C4R9
Y1 −

1
C4R10

Y2

(32)

Here, Y1,Y2,Y3,Y4 are the voltages across the capacitors,
C1,C2,C3,C4, respectively. We choose the values of the
circuital elements as follows: R1 = R2 = 666.67 k�, R3 =
2 M�, R4 = R5 = R9 = R10 = 400 k�, R6 = 8 k�,
R7 = R8 = 200 k�, R11 = R12 = R13 = R14 = R15 =
R16 = 100 k� and C1 = C2 = C3 = C4 = 3.2 nF.
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FIGURE 19. 2D signal plots of the 4-D hyperchaotic circuit (32) using NI
Multisim 14.0 circuit simulation.

The electronic circuit of the new 4-D hyperchaotic
system (32) is constructed and shown in Figure 18. The
NI Multisim 14.0 phase portraits in Figure 19 verify the
hyperchaotic behavior of the 4-D circuit (32).

The Fourier spectral distributions for the variables
Y1,Y2,Y3,Y4 of the circuit (32) are shown in Figure 20.
The frequency range is 5 kHz and maximum peak 500 Hz.
It corresponds to a prevailing frequency of the implementing
oscillating loop. The power spectra of the output signals
in Figure 20 are broadband, which are typical of hyperchaotic
signals.

VI. FPGA DESIGN OF THE NEW 4-D HYPERCHAOTIC
SYSTEM
It is well-known that FPGAs are quite useful for fast
prototyping, easy of reprogrammability and reconfigurabil-
ity, and they provide low development cost applications,
while maintaining good performance. However, for solv-
ing hyper-chaotic systems, the required hardware resources
and processing time depend on the numerical method.
In this manner, this section shows the FPGA implemen-
tation of the new 4-D hyperchaotic system given in (1)
by applying three numerical methods, namely: Forward-
Euler, Backward-Euler and fourth-order Runge-Kutta meth-
ods. As highlighted in [22], each numerical method provides
different accuracy and requires a good estimation of the
step-size to diminish numerical errors. For instance, by apply-
ing the Forward Euler method, one gets the discrete equations
given by (33), fromwhich one can infer the use of multipliers,

FIGURE 20. Fourier spectral analysis plots of the 4-D hyperchaotic
circuit (32) using NI Multisim 14.0 circuit simulation.

adders and subtractors for the FPGA implementation.

y1n+1 = y1n + h[a(y2n − y1n )− by2ny3n + y4n ]

y2n+1 = y2n + h[y1n (1− cy3n )]

y3n+1 = y3n + h[y1ny2n − d]

y4n+1 = y4n + h[−y1n − y2n ] (33)

From the discretized equations given in (33), one can
design the block description as shown in Figure 21. In this
figure, one can appreciate the block called single-constant
multiplier (SCM), who implements the multiplication of a
state variable by a constant a, b, c, d . This SCM block is
designed with adders, subtractors and shift registers in order
to reduce hardware resources compared to using a traditional
multiplier [20]. The SCM is also designed for all the blocks
multiplying the step-size h in the blocks labeled as Predictor
Forward-Euler.

The synthesis of all the blocks can be designed by adopting
fixed-point representation with the format 13.19 (32 bits),
using one bit for the sign, 12 for the integer part, and 19 for the
fractional part. It is worth mentioning that this 13.19 format
is established by the computer arithmetic and depends on the
amplitudes of the state variables. For example, simulation
results for this new 4-D hyperchaotic system (1) provide
the ranges [−10, 13] for y1, [−28, 28] for y2, [−8, 8] for y3
and [−15, 20] for y4, but in the discretization of the second
equation, the expected result of y1n (1 − cy3n ) is ±2500, and
therefore, this value can be represented by using 12 bits in the
integer part.

The block description of the new 4-D hyper-chaotic sys-
tem (1) by applying Backward-Euler method, is shown
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FIGURE 21. Block diagram of the new 4-D hyperchaotic system given in
(1) discretized with the Forward Euler method.

FIGURE 22. Block diagram of the new 4-D hyperchaotic system (1)
discretized with the Backward Euler method.

in Figure 21. It can be appreciated that this description
embeds the Forward Euler method in the blocks labeled as
Predictor Forward Euler, and it does a correction by the
blocks labeled Corrector Backward Euler. Again, the hard-
ware resources are reduced for FPGA implementation by
using SCMs, adders and registers. The application of the
fourth-order Runge-Kutta method is performed in the same
way, as detailed in [20].

In this work, we set h = 0.01, and Table 2 shows
the resources of the implementation of (1) by using the
FPGA Cyclone IV EP4CGX150DF31C7 along the synthe-
sizer ‘‘Quartus II 13.0’’. It is worthy mentioning that the row
called ‘‘Clock cycles by iteration’’ represents the number of
clock cycles that are required to process a new iteration to
compute y1n+1 , y2n+1 , y3n+1 and y4n+1 with a valid data, and the
‘‘Latency’’ row represents the time to compute a new iteration
with a 50 MHz clock signal.

Figure 23 shows the experimental setup to implement the
new 4-D hyperchaotic system (1) in the FPGA Cyclone IV
EP4CGX150DF31C7. A 16-bit Digital-to-Analog converter

TABLE 2. Hardware resources for the implementation of the 4-D
hyperchaotic system (1) by using the FPGA cyclone IV EP4CGX150DF31C7,
and by applying the Forward Euler, Backward Euler and fourth order
Runge-Kutta methods with h = 0.01.

FIGURE 23. Experimental setup to implement the 4-D hyperchaotic
system (1) using a FPGA Cyclone IV EP4CGX150DF31C7, a 16-bit
Digital-Analog converter and a Teledyne Lecroy oscilloscope
to visualize the attractor.

is used to visualize the results in the Teledyne Lecroy oscil-
loscope. Figure 24 shows the experimental time series of
the state variables of (1) applying Forward Euler method.
Figures 25, 26, and 27, show the experimental hyperchaotic
attractors of FPGA implementation of (1)by applying the
Forward Euler, Backward Euler and the fourth-order Runge
Kutta methods.

VII. IMAGE CRYPTOSYSTEM BASED ON THE NEW
4-D HYPERCHAOTIC SYSTEM
In this section, we design a novel image encryption algorithm
using the nonlinear features of the proposed 4-D hyperchaotic
system (1). To accommodate the hyperchaotic system (1) for
the aims of designing modern cryptographic purposes such
as high security and low computational power, the proposed
hyperchaotic system (1) is adapted to be iterative as presented
in Eq. (34).

y1t+1 = (a (y2t − y1t )− b y2ty3t + y4t)mod1
y2t+1 = (y1t (1− cy3t ))mod1
y3t+1 = (y1ty2t − d)mod1
y4t+1 = (−y1t − y2t)mod1

(34)

A. ENCRYPTION ALGORITHM
The proposed image cryptosystem utilizes the hash code for
the pristine image to update the primary conditions of the
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FIGURE 24. Experimental time series of the 4-D hyperchaotic system (1)
observed by applying the Forward Euler method with step-size
h = 1× 10−5.

FIGURE 25. Hyperchaotic attractors of the 4-D system (1) from the FPGA
implementation by applying the Forward Euler method with step-size
h = 1× 10−5. (a) y1-y2 view, (b) y2-y3 view, (c) y2-y4 view and
(d) y3-y4 view).

hyperchaotic system. The outcome of iterating the hyper-
chaotic system is four chaotic sequences (Y1, Y2, Y3, and
Y4), the last chaotic sequence (Y4) is utilized for construct-
ing a new chaotic sequence (Q) from the other sequences

FIGURE 26. Hyperchaotic attractors of the 4-D system (1) from the FPGA
implementation by applying the Backward Euler method with step-size
h = 1× 10−3. (a) y1-y2 view, (b) y2-y3 view, (c) y2-y4 view and
(d) y3-y4 view).

FIGURE 27. Hyperchaotic attractors of the 4-D system (1) from the FPGA
implementation by applying the fourth order Runge Kutta method with
step-size h = 1× 10−3. (a) y1-y2 view, (b) y2-y3 view, (c) y2-y4 view and
(d) y3-y4 view).

(Y1, Y2, and Y3), and the pristine image is permutated then
substituted utilizing sequence Q. The proposed encryption
mechanism is described in Figure 28, while the steps of the
encryption procedure are described in Algorithm 1.
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Algorithm 1 Encryption Procedure
Input: Pristine image (PrImg)
Parameter: Initial conditions and control parameters for iterating the hyperchaotic system (y1initial , y2initial , y3initial ,
y4initial ,

a, b, c, d)
Output: Cipher-image (CrImg), some information about the hash value (H1, H2, H3, H4)
1: Hash← SHA256(PrImg) // Acquire the hash value for the pristine image
2: h← uint8(Hash) // Convert each 8-bit into an integer number
3: H1← (h1 ⊕ h2 ⊕ · · · ⊕ h8)/256
4: H2← (h9 ⊕ h10 ⊕ · · · ⊕ h16)/256
5: H3← (h17 ⊕ h18 ⊕ · · · ⊕ h24)/256
6: H4← (h25 ⊕ h26 ⊕ · · · ⊕ h32)/256
// Update initial conditions (y1initial, y2initial, y3initial, y4initial)

7: y1new← (y1initial + H1)/2
8: y2new← (y2initial + H2)/2
9: y3new← (y3initial + H3)/2

10: y4new← (y4initial + H4)/2
11: [Rows Columns Depth]← size(PrImg) // Acquire the dimension of the pristine image
12: [Y1 Y2 Y3 Y4]← System(y1new, y2new, y3new, y4new, a, b, c, d,Rows× Columns× Depth) // Iterating the

hyperchaotic system (34) for Rows × Columns × Depth times
13: Pt ← round(Y4t × 104) mod 3 for t ← 1, 2, . . . ,Rows× Columns× Depth

14: Qt ←

 Y1t if Pt = 0
Y2t if Pt = 1
Y3t if Pt = 2

for t ← 1, 2, . . . ,Rows× Columns× Depth

// Permutation process
15: A← arrange(Q) // Arrange the ingredients of Q in ascending order
16: V ← index(Q,A)// Take the index of every element of Q in A
17: ImgVec← reshape(PrImg,Rows× Columns× Depth, 1) // Convert the pristine image to a one

vector
18: ImgPer(t)← ImgVec(V (t)) for t ← 1, 2, . . . ,Rows× Columns× Depth

// Substitution process
19: Key← round(Q× 1014) mod 256 // Transforming Q sequence into integers
20: CrImgVec← ImgPer ⊕ key// Pixel substitution
21: CrImg← reshape(CrImVec,Rows,Columns,Depth) // Cipher image

FIGURE 28. Representation of the encryption procedure for the suggested
image cryptosystem.

B. EXPERIMENTAL OUTCOMES
To prove the cryptographic characteristics of the proposed
image encryption algorithm, a PC with IntelR CoreTM 2 Duo
CPU 3GHz and RAM 4GB and prepared with MATLAB

software R2016b. The used dataset of images was token from
Kodak database [34] each of size 768 × 512 and labeled as
PrImg01, PrImg02, PrImg03, and PrImg04 (see Figure 29).
The primary key parameters employed for iterating the hyper-
chaotic system (34) are fixed as (y1initial ← 0.6, y2initial ←
0.8, y3initial ← 0.6, y4initial ← 0.8, a ← 0.6, b ← 0.1,
c← 25, d ← 4).

1) CORRELATION ANALYSIS
To evaluation the meaningful of an image, the correlation
coefficient of neighboring pixels (Cpc) is utilized, in which
pristine images have Cpc values nearby to 1 per direc-
tion while the values of Cpc for cipher images should
around 0 [25]. To compute the values of Cpc in each direction
of the pristine and cipher images, we randomly picked 104

pairs of adjoining pixels per direction.

Cpc =

∑N
i=1 (pi − p̄) (ci − c̄)√∑N

i=1 (pi − p̄)
2∑N

i=1 (ci − c̄)
2

(35)
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FIGURE 29. Experimental dataset of images and their ciphered ones.

here N refers to the full number of neighboring pixel pairs
per direction and ci, pi are point to the values of neighbor-
ing pixels. Table 3 displays the outputs of Cpc for pristine
images and their analog cipher version, in which the values
of encrypted images are very near to 0. Also, Figs. 30, 31,
and 32 plot the correlation distribution per direction for pris-
tine imagePrImg01 and its analogue cipher version. From the
results listed about correlation coefficients, no valuable data
acquired about the pristine image by analyzing Cpc values.

2) PRISTINE IMAGE SENSITIVITY
To evaluate the outcome of slight modification in the pris-
tine image on its analog cipher version, two measures are
employed: ‘‘Number of Pixels Change Rate’’ (NPCR) and
‘‘Unified Average Changing Intensity’’ (UACI). NPCR and
UACI can be expressed mathematically as follows:

NPCR =

∑
i;j Diff (i, j)

N
× 100%,

Diff (i, j) =
{
0 if Cp1(i, j) = Cp2(i, j)
1 if Cp1(i, j) 6= Cp2(i, j)

(36)

TABLE 3. Cpc values of adjacent pixels for the investigated dataset.

FIGURE 30. Correlation distributions for red component of
PrImg01 image, in which the top row provides the distribution for pristine
image PrImg01 while the second row indicates the distribution for
ciphered image CrImg01.

UACI =
1
N

∑
i,j

|Cp1(i, j)− Cp2(i, j)|
256

× 100%

(37)

where N refers to the total number of pixels that repre-
sent the image and Cp1, Cp2 are two ciphered images
for one pristine image with a difference in one bit. NPCR
and UACI values are listed in Table 4, in which the
average value of NPCR for the investigated dataset is
99.6125%, therefore the presented image cryptosystem has
a high sensitivity for small pixel changes in the pristine
image.
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FIGURE 31. Correlation distributions for green component of
PrImg01 image, in which the top row provides the distribution for pristine
image PrImg01 while the second row indicates the distribution for
ciphered image CrImg01.

FIGURE 32. Correlation distributions for blue component of
PrImg01 image, in which the top row provides the distribution for pristine
image PrImg01 while the second row indicates the distribution for
ciphered image CrImg01.

TABLE 4. Values of NPCR and UACI for investigated images.

3) HISTOGRAM ANALYSIS
To provide the distribution rate of pixel values in an image,
histogram test is utilized. The histogram of encrypted images
utilizing a good-designed image encryption approach should
ensure the identical distribution of different encrypted images
to resist statistical attacks [35]. Fig. 33 presents the his-
tograms of image PrImg01 before and after the encryption
procedure, in which the histograms of the pristine image
are distinct from each other while the histograms of the
ciphered image CrImg01 are uniform with each other. Nev-
ertheless, we need a quantitative tool to measure the pixel
distribution in an image. Consequently, we utilized chi-square

FIGURE 33. Histograms of image PrImg01, in which the first row
describes the histograms of pristine image PrImg01 and the last row
denotes the histograms of ciphered image CrImg01.

TABLE 5. χ2 values of the investigated images.

TABLE 6. Information entropy for the investigated dataset.

test (χ2) [27].

χ2
=

255∑
t=0

(ft − d)2

d
(38)

where ft refers to the frequency of pixel value t , and d
indicates the size of the image. By considering the significant
level is 0.05, then χ2

0.05(255) = 293.25. For a given image,
if the value of χ2 is less than 293.25, this points that the
given image has an identical distribution; else, the image
holds non-identical distribution. Table 5 provides the out-
come of χ2 for the examined images, in which the χ2 val-
ues for all encrypted images is less than 293.25. Therefore,
the provided encryption mechanism can withstand histogram
analysis attacks.

4) INFORMATION ENTROPY ANALYSIS
To provide the distribution of pixel values per level in an
image, information entropy test is utilized and can be stated
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TABLE 7. Encryption time (in s) for the stated cryptosystem alongside
other related cryptosystems for different dimensions of images.

mathematically as given in Eq. (39):

E(X ) = −
255∑
t=0

p(xt ) log2 (p(xt )) (39)

where p(xt ) refers the probability of xt . The possible values
for a grayscale image are 28, so the optimal entropy value is
equal to 8-bit [36], [37]. Subsequently, to approve the effec-
tiveness of the proposed encryption algorithm, the entropy
value of the ciphered images should be close to 8. Table 6
provides the outcome of the entropy test for the pristine
images and their analogous encrypted version, in which all
information entropy values for encrypted images are very
nearby to 8-bit. Consequently, the suggested encryption algo-
rithm is secure against entropy attacks.

5) KEY SENSITIVITY ANALYSIS
The sensitivity of the secret key to the decryption effect is
known as the key sensitivity. To value the key sensitivity
of the proposed cryptosystem, the ciphered image CrImg01
decrypted several times with slight modification in the secret
key each time, in which the results are stated in Fig. 34.

6) OCCLUSION ATTACKS
Data may suffer from losing some of its parts when trans-
mitted over a noisy channel [30]. Hence, the proposed image
cryptosystem must have the capability to resist occlusion
attacks. To value the proposed encryption approach against
these attacks, we clipping out some parts of the encrypted
image and then trying to decrypt the defective cipher image.

FIGURE 34. Decryption process for the ciphered image CrImg01 several
times with slight modification in the secret key each time: (a) True key,
(b) True key except for y1initial = 0.6+ 10−16, (c) True key except for
y2initial = 0.8+ 10−16, (d) True key except for y3initial = 0.6+ 10−16,
(e) True key except for y4initial = 0.8+ 10−16, (f) True key except for
a = 0.6+ 10−16, (g) True key except for b = 0.1+ 10−16, (h) True key
except for c = 25+ 10−14 and (i) True key except for d = 4+ 10−15.

Figure 35 provides results of occlusion attacks, in which the
pristine image is recovered effectively from the defective
cipher image without information losing in the clipped part.

7) TIME EFFICIENCY AND COMPARISON ANALYSIS
The main contribution of designing modern cryptographic
mechanisms is to provide high security in addition to low
computational power. To confirm that the suggested image
cryptosystem is efficient in time encryption, we calculate the
time required to encrypt one image. Table 7 provides the time
taken to encrypt several grayscale images with diverse dimen-
sions alongside other related cryptosystems, in which the
proposed image cryptosystem is effective in time encryption.
To confirm that the suggested image cryptosystem has high
security compared to other related cryptosystems, Table 8
gives a simple comparison in terms of average values of cor-
relation, information entropy, NPCR, UACI, and Chi-square.

TABLE 8. Comparison of the proposed encryption mechanism with other related mechanisms in terms of average values of correlation, information
entropy, UACI, NPCR, and Chi-square.
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FIGURE 35. Results of occlusion attack, in which the first row expresses
the defective ciphered images and the last row express the corresponding
recovered ones.

From the stated values in Tables 7 and 8, we declare that
the presented image cryptosystem is effective and has high
security besides low encryption time.

VIII. CONCLUSION
This work started with a dynamical model of a new
4-D hyperchaotic system with no balance point and
presented a detailed bifurcation analysis for the new hyper-
chaotic dynamo system with respect to the system param-
eters. We noted that the new hyperchaotic system displays
multistability with coexisting attractors. Using NI Multisim
14.0 software, we designed an electronic circuit for the imple-
mentation of the new 4-D hyperchaotic system and presented
the circuit simulation results. We also detailed the implemen-
tation of the new 4-D hyperchaotic system by using a field
programmable gate array (FPGA). The FPGA design was
done by applying three numerical methods, namely: Forward-
Euler, Backward-Euler and fourth-order Runge-Kutta meth-
ods. We demonstrate that experimental chaotic attractors
were in good agreement with the Matlab simulations.
In addition, this work presented a new image cryptosystem
using the nonlinearity features of the new 4-D hyperchaotic
system with no balance point, which the simulation outcomes
confirm the effectiveness of the proposed cryptosystem and
the reliability of the hyperchaotic system in designing various
modern cryptographic applications.
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