
ww.sciencedirect.com

j o u r n a l o f ma t e r i a l s r e s e a r c h a nd t e c hno l o g y 2 0 2 1 ; 1 1 : 1 2 9 0e1 3 0 7
Available online at w
journal homepage: www.elsevier .com/locate/ jmrt
Review Article
Mechanism and factors influence of graphene-
based nanomaterials antimicrobial activities and
application in dentistry
Asanah Radhi a,b,*, Dasmawati Mohamad b,**,
Fatimah Suhaily Abdul Rahman b, Abdul Manaf Abdullah b,
Habsah Hasan c

a Faculty of Bioengineering and Technology, Universiti Malaysia Kelantan, Jeli Campus, Jeli, Kelantan, 17600,

Malaysia
b School of Dental Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan, 16150, Malaysia
c School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan, 16150, Malaysia
a r t i c l e i n f o

Article history:

Received 16 October 2020

Accepted 25 January 2021

Available online 2 February 2021

Keywords:

Antimicrobial

Dental materials

Dentistry

Graphene-based nanomaterials
* Corresponding author.
** Corresponding author.

E-mail addresses: asanah@umk.edu.my (
https://doi.org/10.1016/j.jmrt.2021.01.093
2238-7854/© 2021 The Authors. Published b
creativecommons.org/licenses/by-nc-nd/4.0/
a b s t r a c t

The antimicrobial activity of graphene-based nanomaterials (GBNs) has recently gained

significant attention in numerous biomedical science applications. GBNs exhibit excellent

antimicrobial properties and have been adopted as antimicrobial nanomaterials due to

their abilities to disrupt the integrity of bacterial cell membrane and produce reactive

oxygen species (ROS). This review discussed the various mechanisms of GBNs’ antimi-

crobial effects and factors underlying GBNs’ antimicrobial activity, such as microbial cell

morphology, GBNs’ flake size and concentration, presence of functional groups, exposure

to electromagnetic radiation, and effects of electrical conductivity. The potential applica-

tions of GBNs in clinical treatment were highlighted in this review to provide an in-depth

understanding of the GBNs’ antimicrobial effects in dentistry and provide directions for

future studies. These applications included GBNs incorporation with acrylic resin to

fabricate dentures, composite resin and cement in restorative treatment, adhesive mate-

rials in orthodontic treatment, and implants coating in dental implant treatment.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The oral cavity consists of multiple surfaces that are

commonly covered with oral microorganisms. When dental
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materials (e.g. dental restorative and implants) are placed

within an oral cavity, they become exposed to various types of

bacteria and fungi. These pathogenic microorganisms build

plaque biofilm that is crucial for their growth and survivabil-

ity. Additionally, the plaque biofilm serves as a protection
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Fig. 1 e Structure of graphene, GO, and rGO. The GO was produced from graphene oxidation, while the rGO was produced

from the chemical or thermal reduction of GO.
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from external antimicrobial agents [1,2]. It is worthy to note

that the plaque biofilm is the primary cause of dental caries,

periodontitis, and other dental-related diseases.

Numerous antimicrobial dental materials have been

developed to minimise dental treatment failures caused by

microbial infections [3e8]. The primary approach is to embed

or coat the dental materials with antimicrobial agents (e.g.

chlorhexidine and quaternary ammonium compounds) as

they enhance antimicrobial effects [9e11]. Unfortunately,

there is often a trade-off between antimicrobial and me-

chanical properties of these agents. For instance, the me-

chanical performance of dental materials decreased with the

addition of antimicrobial agents [12].

Alternatively, nanomaterials have been used widely as the

biomaterials to improve the mechanical performance of

dental materials [13e16]. In comparisons to other types of

biomaterials, nanomaterials have a superior antimicrobial

activity that does not comprise the mechanical performance

of dental materials [17e21]. Graphene is one of the most

promising nanomaterials that was discovered in 2004 [22]. It is

a two-dimensional carbonaceous material and serves as a

basic structural element of graphite [22,23]. Graphene
composes of a one-atom-thick layer of sp2 carbon atoms ar-

ranged in a hexagonal honeycomb structure [24,25]. Addi-

tionally, graphene has remarkable characteristics, such as

large surface area [26] and superiormechanical, electrical, and

thermal properties [27]. Due to these characteristics, graphene

has been used inmany applications [28e30]. Nevertheless, the

use of graphene may be limited to agglomeration and pro-

cessing difficulty due to the single carbon component of

pristine graphene [31,32]. Furthermore, chemicalmodification

is required to produce graphene derivatives, such as graphene

oxide (GO) and reduced graphene oxide (rGO), which are more

versatile and applicable in various applications [32].

As shown in Fig. 1, GO (an oxidised derivative of graphene)

has oxygen-containing functional groups, such as epoxy

(eCOCe) and hydroxyl (-OH) groups on its basal planes and

carboxylic acid (eCOOH) groups at its edges [32]. Due to these

oxygen-containing functional groups, GO has better dispersity

and stability in aqueous solutions than pristine graphene. The

presence of these oxygenmoieties also plays a significant role

in antimicrobial activity [33]. For that, GO has a more potent

antibacterial effect against Escherichia coli than graphite,

graphite oxide, and rGO [34]. GO is also commonly used as a
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precursor for preparing rGO [32,35]. The rGO is produced by

removing the covalent functional groups of GO via thermal or

chemical reductions [32]. The rGO exhibits the properties of

pristine graphene and GO d high strength and moderate

water dispersibility [32,36]. However, the properties of rGO

may vary depending on the reduction process employed

during its production [35].

The emergence of graphene and its derivatives has

attracted significant attention to nanomedicine and tissue

engineering. The excellent properties of graphene and its de-

rivatives (e.g. biocompatibility, antimicrobial effect, low

toxicity, and easy chemical functionalisation) have contrib-

uted to their popularity [37]. It was also due to these properties

that graphene and its derivatives hold promise for their use as

restorative materials and medical devices [37].

Biocomposites can be designed with the desired properties

due to GO’s abilities to function or combine with other bio-

materials (e.g. polymer, ceramic, and metal) [38e40]. For

instance, dental materials have been modified with graphene

and its derivatives via colloidal dispersion, direct synthesis,

sintering, and conjugation [41]. However, the current state of

the dental materials’ matrix needs to be considered before the

modification process to ensure graphene and its derivatives

are well dispersed and functionalised in the selected matrix.

Various microorganisms are present in oral cavities, den-

tures, and other removable dental appliances. The microor-

ganisms commonly found in the oral cavity are Streptococcus

mutans (S. mutans), Streptococcus sanguinis (S. sanguinis), Staph-

ylococcus aureus (S. aureus), Streptococcus salivarius (S. salivarius),

Streptococcus sobrinus (S. sobrinus), Streptococcus parasanguinis

(S. parasanguinis), Candida albicans (C. albicans), Porphyromonas

gingivalis (P. gingivalis), Enterococcus faecalis (E. faecalis) and

Fusobacterium nucleatum (F. nucleatum) [42,43]. S. mutans and E.

faecalis are examples of Gram-positive bacteria. S. mutans is

the facultative anaerobic bacteria and the main aetiological

factor in the initiation and development of cariogenic biofilms

[43], whereas E. faecalis is commonly found in reinfected, root

canal-treated teeth. On the other hand, P. gingivalis and F.

nucleatum are Gram-negative anaerobic bacteria associated

with periodontitis and root canal infection [44,45].

In recent years, several studies have examined the anti-

microbial effects of GBNs on dental pathogens. For example, it

has been reported that GO exhibited potent antimicrobial and

antiadhesion activities on bacteria and fungi [39,46]. Addi-

tionally, GO was found to inhibit the growth of S. mutans, S.

aureus, E. coli, and C. albicans, with minimal cytotoxicity

[39,47]. The antimicrobial mechanism of GBNs involves

physical and chemical actions. The mechanism principally

kills pathogens by the sharp edges of the GBNs [48], wrapping

and trapping bacterialmembranes by the nanosheets [49], and

the production of reactive oxygen species (ROS) [50]. Under-

standing the underlying antimicrobial mechanisms of GBNs

can contribute to developing the next-generation of dental

materials resistant to microbial infections.

The present review discussed the recent progress on GBNs

application to improve the antimicrobial activity of bio-

materials in dentistry. Additionally, the mechanism underly-

ing GBNs’ antimicrobial activity on several dental pathogens

(including Gram-positive bacteria, Gram-negative bacteria,

and fungi) were discussed. Possible factors influencing GBNs’
antimicrobial activities were also discussed. Lastly, we dis-

cussed the potential use of GBNs in several dental applica-

tions, including restorative dentistry, endodontics,

periodontics, and dental implants.
2. Antimicrobial mechanisms of GBNs

Knowledge about the mechanism underlying GBNs’ antimi-

crobial activity is currently limited due to its complexity. The

antimicrobial mechanism of graphene and its derivativesmay

vary depending on their physical and chemical properties

[37,51]. Recent findings showed that the physical and chemi-

cal properties of GBNs, such as surface functionality [52],

morphology [53], flake sizes [54], and concentration [54], play a

vital role in their antimicrobial activities. The mechanisms

through which GBNs cause microbial inhibition and death are

not only dependent on their intrinsic and extrinsic factors, but

they also depend on the components and structure of the

microbial cells and stage of maturity [55]. Also, there is a

consensus among researchers that the bacteria’s structure

can affect the antimicrobial agents’ activity [56,57].

Earlier publications reported that the Gram-positive bac-

teria were more susceptible to GO than Gram-negative bac-

teria [58,59]. The higher susceptibility of Gram-positive

bacteria to GO compared to Gram-negative was greatly influ-

enced by their cell wall structure [59]. Bacterial cells composed

of a polymer known as peptidoglycan (PG). Gram-positive

bacteria have a thick layer of PG, whereas Gram-negative

bacteria have a thin layer of PG. The PG layer protects the

bacterial cells from osmotic pressure changes and small

molecule insults [34]. Additionally, the PG layer serves as a

chelating agent due to its adhesive surface proteins (e.g. tei-

choic acids and adhesins). The PG layer of Gram-positive

bacteria is attached to their surface by densely functional-

ised anionic glycopolymers d wall teichoic acids (WTA) and

lipoteichoic acid (LTA). Deokar et al. suggested that Gram-

positive bacteria interacted with carbonaceous nano-

materials through electrostatic or hydrogen bonding [60]. The

reaction of GO to WTA, lipids, and amino acids may cause

morphological deformations [58]. These morphological de-

formations include inhomogeneous thickening of the PG cell

wall, expansion of cell size, and flaws in septal positioning and

number. Alteration of WTA also caused cell growth delay and

cell agglomeration in solution [61].

In contrast to the Gram-positive bacteria, Gram-negative

bacteria interacted with the nanomaterial through direct

physical contact only [60]. Gram-negative bacteria has an

outer membrane essential for their protection in a hostile

environment (e.g. in the presence of antibiotics). This outer

membrane increases the bacterial resistance to antibacterial

activity. It is also due to this outer membrane that the Gram-

negative bacteria has lower antibacterial activity than the

Gram-positive bacteria [62]. Lipopolysaccharide (LPS), a sur-

face protein attached to the outer leaflet of the cells’ outer

membrane, is responsible for the repulsion of hydrophobic

molecules [63,64]. It may also cause overall repulsive forces on

the bacteria through steric repulsion [65]. The dissimilarity of

the bacteria’s structure determines the type of interactions

that occur between the two classes of bacteria with GO [58,60].
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Fig. 2 e Antimicrobial mechanism of GBNs through physical and chemical interactions. 1) Membrane damaged by the sharp

edge of GBNs, 2) extraction of phospholipids, 3) ROS generation for disruption of deoxyribonucleic acid (DNA) and proteins,

and 4) wrapping of the bacterial cells by large surface area GO.
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Moreover, the antimicrobial efficacy of GBNs depends on

the four phases of bacterial growth curve: lag, logarithmic

(exponential), stationary, and death. A study found that each

phase of the bacterial growth curve exhibited a different

susceptibility to GO [66]. Specifically, the study found that the

cells of E. coli treated with 100 mg/mL of GO declined to less

than 4% during the exponential stage. On the other hand, the

bacteria cells’ survivability in the stationary and death phases

was more than 75% and 50%, respectively [66]. A recent study

suggested that the biofilm’s susceptibility to GO nanoparticles

varied with age, which may be associated with changes in the

cells’ physiological state during maturation [55].

Most studies on antimicrobial properties of GBNs against a

broad-spectrum of microbial suggested that the GBNs’ anti-

microbial activity can be explained through these three

possible mechanisms: (i) cellular envelope stress (physical

cutting, “nano-knives” effect, membrane insertion, and

membrane components extraction), (ii) environmental isola-

tion (wrapping effect), and (iii) oxidative stress [67]. These

mechanisms coincided under most experimental conditions

and caused a deadly effect [68]. Nevertheless, themechanisms

underlying GBNs’ antimicrobial activity may vary depending

on their applications. The antimicrobial activities of GBNs

were restricted in a solid matrix, andmost of themechanisms

mentioned above were less pronounced. Concerning this, a

study proposed that the GO’s antimicrobial activity in the

solid matrix was due to the hydration layer formation on its

surfaces [69]. Fig. 2 illustrates the possible mechanisms un-

derlying GBNs’ antimicrobial activity.

Cellular envelope stress associated with cutting mecha-

nism and membrane insertion is commonly related to the

GBNs’ sharp edges. Experimental and simulation studies

suggested that the GBNs’ sharp edges can puncture the bac-

terial cells membrane, leading to cytoplasmic fluid leakage
[34,59,70]. This puncturing process is influenced by the GBNs’

flake size, thickness, hydrophilicity, edge density, and oxygen

functionalities [71e73]. Furthermore, the antimicrobial effi-

cacy of GBNs is affected by their orientation angle during the

interaction with microorganisms. Several speculations can be

made from this interaction, such as insertion into the cellular

envelope, lying parallel to the midplane of the lipid bilayer, or

lying flat on the top of the lipid bilayer [73e75]. The insertion

of GBNs nanosheets into bacterial cells membrane triggers the

formation of pores in membranes or disrupts themembrane’s

phospholipids structure, but either way, these changes lead to

cell death [73,74,76]. Moreover, the stronger bond between

GBNs and membrane lipids than the attraction forces among

lipid molecules within the membrane structures leads to the

destruction of cell membranes [77].

It was observed that the Gram-negative bacteria treated

with GO had hollows and dents on their membrane surface,

indicating that the bacterial cells had corrugated membranes

[58]. This morphological deformation was observed for E. coli

[78] and Pseudomonas aeruginosa [79], which have been asso-

ciated with dental implant failures [80] and periodontal dis-

eases [81], respectively. Destructive extraction of lipid

molecules reduces intracellular density that eventually leads

to cellular membrane corrugations [78,82]. Direct physical

contact between these bacteria (i.e. E. coli and P. aeruginosa)

and GO lowers the bacterial cell membrane integrity and

causes cytoplasmic fluids leakage [82]. It is important to note

that these damages are irreversible [82]. Large surface bacteria

(e.g. P. aeruginosa) have a cylindrical and elongated shape that

increases their contact with GO. However, the contact be-

tween P. aeruginosa and GO may be limited by LPS that in-

crease bacterial resistance. It has been reported that the P.

aeruginosa cells were more affected by rGO due to its cylin-

drical and elongated shape [79]. On the other hand, the
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spherical shape of Gram-positive bacteria (e.g. S. aureus) has a

small surface area [79]. Thus, Gram-positive bacteria are less

affected by rGO.

GO also displays broad-spectrum antimicrobial activity

towards phytopathogenic fungi and bacteria. An antifungal

study of GO showed that the GO’s sharp edges could puncture

the bacterial cells, leading to plasmamembrane stress [83,84].

After being treated with GO nanosheets, the apical cells of

conidia (Fusobacterium graminearum and Fusobacterium oxy-

sporum) became swollen and stopped growing, although some

remained unaffected [84]. Consequently, the GO nanosheets

stopped germination and reduced conidia viability. The GO

nanosheets also disrupted the germination cycle as spores

cannot grow into mature mycelium to initiate the infection

cycle [84]. These processes occur when the conidia interact

with GO nanosheets, where the interaction forms spore-GO

congeries and influences exchange of substance through the

spore wall. As a result, spore germination is inhibited,

resulting in morphological deformation. The growth eventu-

ally stopped due to cell swelling and lysis [84]. A study found

that the fungicidal properties of GO on C. albicans were

remarkable due to the insertion of GO nanosheets into the cell

membrane, leading to cell lysis [85].

Wrapping mechanism is the second mechanism that in-

hibits bacterial activity. This mechanism is associated with

the physical factors of GBNs [86]. An antibacterial study on

graphene and GO nanosheets in suspension assays suggested

that the wrapping mechanism could also cause bacterial cell

damage [49,86]. The GBNs nanosheets wrap around the bac-

terial cells and isolate them from the environment, thus pre-

venting a bacterium from proliferating [86]. This mechanical

disturbance can rupture bacterial cells via electrostatic force,

causing alteration ofmembrane potential, depolarisation, and

disruption of bacterial cell membrane integrity [79]. These

cellular changes later lead to osmotic imbalance, disturbed

cellular respiration, cell lysis, and subsequently, cell death

[79].

The wrapping mechanism has been observed for Gram-

positive bacteria because their cells are usually found in

clusters in the GO suspension. S. aureus and E. faecalis are

commonly associated with dental implant failure and rein-

fection after root canal treatment, respectively [58] These

Gram-positive bacteria were found in clusters upon treated

with GO suspension [58]. Additionally, Gram-positive bacteria

have a large cell surface area as they are found in clusters.

Consequently, Gram-positive bacteria cells are more exposed

to GO nanosheets, causing them to trap easily [58]. An

increased number of trapped cells resulted in a higher cell

death rate [58].

In contrast to Gram-positive bacteria, Gram-negative bac-

teria are found as a single cell or paired cells. As such, they

have small cell surface area that lowers their chance of

exposure to GOnanosheets [58]. For this reason, it is harder for

Gram-negative bacteria to trap [58]. Apart from bacteria, the

wrapping mechanism also occurs in fungi. The mechanism

involves GO nanosheets to trap and wrap the fungal spores,

causing the fungal cells to agglomerate. Additionally, this

mechanism hinders the absorption of nutrients into the

fungal cells as the cell membrane is covered with the GO

nanosheets [87].
Oxidative stress is the third mechanism that inhibits bac-

terial activity. In contrast to the wrapping mechanism,

oxidative stress is associatedwith physicochemical properties

of GBNs [88]. Thismechanism involves oxidation of fatty acids

by lipid peroxides formed by ROS [89]. The lipid peroxides

accelerate chain reaction, induce cell lysis, and produce

abundant ROS traces [89]. In bacterial cells, the reduction of

molecular oxygen to water occurs via a series of proton-

electron transfer reactions, in which adenosine triphosphate

(ATP) is synthesised afterwards. However, the presence of

superoxide anion and other oxygen-containing radicals

interrupt the formation of water molecules, producing ROS

traces in the cell’s mitochondria [79]. These ROS traces dam-

age the ribonucleic acid (RNA) and DNA. Additionally, the ROS

traces impair the bacterial cells’ ability to maintain their

normal physiological redox-regulated function, thus

collapsing the bacterial cell membrane integrity [79]. The

disruption of the bacterial cell membrane through chemical

oxidation leads to cell splitting and produces ROS traces that

eventually cause cell death [90]. Additionally, abundant of ROS

led to the accumulation of intracellular calcium, activation of

transcription factors, and initiation of cytokines changes [91].

A study has shown that obligate anaerobes (e.g. P. gingivalis

and F. nucleatum) are more susceptible to GO than facultative

anaerobes (e.g. S. mutans) [70]. The bacteria’s susceptibility to

GO depends on their sensitivity to oxidative stress. The

Transmission Electron Microscopy (TEM) analysis found that

the P. gingivalis cells experienced a membrane leakage, in

which all the cytoplasmic content flowed out, forming a cir-

cular cell wall. On the other hand, the cell wall of F. nucleatum

was stripped down [70].

The interaction between microbial cells and solid sub-

strates is greatly influenced by the substrates’ surface wetta-

bility (i.e. hydrophilicity, hydrophobicity, and surface free

energy (SFE)) [92e94]. Biological cells such as bacteria adhere

to the solid surface effectively at a position with moderate

hydrophilicity (i.e. water contact angles of 40�e70�) [95].

Incorporation of GBNs (e.g. GO or rGO) with a solid matrix,

mainly that of polymers, creates a hydrophilic surface on the

composite that attracts water molecules to form a hydration

layer [69]. The hydration layer inhibitsmicrobial adhesion and

colonisation at the surface of the composites [96]. The GO

composites’ hydrophilicity and negative surface charge create

a repulsive force against bacteria with a similar charge. This

force resists the adhesion of most Gram-positive and Gram-

negative bacteria, which carry a net negative charge. The

negative charge of Gram-positive bacteria is attributed to the

negative charge of the PG cell wall that consists mainly of

phosphate groups. On the other hand, the negative charge of

Gram-negative bacteria is attributed to the negative charge of

outer membrane that consists mainly of phospholipids and

LPS [97].
3. Factors influencing antimicrobial
activities of GBNs

It has been established that the physicochemical properties of

GBNs are closely related to their antimicrobial activities.

Therefore, the presence of any external factors that can alter
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Fig. 3 e Effect of electromagnetic radiation on GBNs and possible mechanism of GBNs’ antimicrobial activity.
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the physicochemical properties of GBNs would directly affect

their antimicrobial activities. Herein, we discussed several of

these factors, including intrinsic and extrinsic parameters

that could significantly affect GBNs’ antimicrobial activities.

3.1. Electromagnetic radiation

GBNs (notably GO) have been used extensively as photo-

catalytic materials and GO’s excellent photocatalytic activity

has been well-documented [98]. Several studies have shown

that electromagnetic radiation with energy ranging from ul-

traviolet (UV) to infrared can photochemically reduce GO

owing to its strong optical absorbance [98]. The tunability of

oxygen to carbon ratio of GO through chemical reduction is an

effective technique to tailor its bandgap. GO acts as an elec-

trical insulator when it is fully oxidised but acts as a semi-

conductor when it is partially oxidised [99]. In the

semiconductor form, GO consists of the valence band and

conductive band with bandgap energy ranging from 3.26 to

3.39 eV [98,99]. Irradiation of GO with photon energy above its

bandgap energy generates electronehole pairs at its surface

[98]. Transformation of physicochemical features (i.e. semi-

conductor behaviour and catalytic reactivity of GO upon

exposure to photon energy) alters GBNs’ antibiotic effects

[100].

It has been shown that GO can act as a semiconductor

photocatalyst and produces electronehole pairs that are

responsible for the reduction of GO to rGO [101,102]. Fig. 3 il-

lustrates GO’s antimicrobial response under a specific elec-

tromagnetic radiation wavelength. Upon irradiation with

adequate photon energy, an electron from the valence band

rises to the conduction band, thus creating electronehole

pairs. Since microbial cells are present in the system, their

electrons naturally fill the electroneholes. This process pre-

vents the recombination of electronehole pairs. Therefore,

the electroneholes created during the excitation process are

responsible for the oxidisation of biomolecules. At the same

time, the light-induced electrons are captured by the oxygen-

containing groups. This process is responsible for the reduc-

tion of GO. Additionally, oxygen-centred radicals or carbon-

centred radicals were produced during GO reduction [102].

These radicals enhance GO’s antimicrobial activities against

microbial [102]. As shown in Fig. 4, the survival percentage of

E. coli cells treated with 25 mg/mL of GO exposed to simulated

sunlight was reduced to 24.9 ± 5.9%. Meanwhile, E. coli cells
treated with GO but were not exposed to simulated sunlight

had a higher survival percentage of 68.8 ± 9.2%. This finding

suggested that the antibacterial activity of GO was enhanced

by the simulated sunlight [102].

As mentioned above, external light does not only create

electronehole pairs, but it also enhances the formation of ROS

that disrupts the bacterial cell membrane. A study showed

that GO significantly sensitises the formation of singlet oxy-

gen (1O2) upon irradiation with ultra-low doses (65 mW cm�2)

of 630 nm light [103].

3.2. Electrical conductivity

Considering the application of GBNs as coating materials in

which nanosheets merge to form large-area of film, the anti-

microbial effect due to the sharp edge of nanosheet is ex-

pected to be significantly restricted. The antimicrobial action

of graphene film deposited onto a large and flat area of sub-

strates is therefore much dependent on the substrates or

surrounding medium, which can be classified by electrical

characteristics (i.e. conductor, semiconductor, and insulator)

[104,105]. These studies have shown that large-area graphene

films produced via the chemical vapour deposition (CVD) on

copper (Cu), germanium (Ge), and silicon dioxide (SiO2) exert

different microbial activity against Gram-positive and Gram-

negative bacteria [104]. The antimicrobial activity of gra-

phene grown on Cuwasmore pronounced than that grown on

SiO2. It has been observed that the antimicrobial activity of

graphene films coated onto the substrate was greatly influ-

enced by the substrate’s ability to transfer its charge [104]. The

transfer of charge follows the order of Cu > Ge > SiO2 [104].

A similar study has been performed for GO deposited onto

several substrates with different electrical conductivity [105].

The study aimed to provide an in-depth understanding of the

charge transfer mechanism and its relationship with antimi-

crobial effects. It was evident from the study that the anti-

microbial effects of GO depended on the conductive nature of

the substrate onto which a graphene filmwas deposited in the

order of GO/Zn >GO/Ni>GO/Sn>Go/Steel [105]. However, the

non-conducting substrate (i.e. GO/Glass system) did not show

any antimicrobial activity. These findings suggested that

substrates with good electrical conductivity facilitate electron

transfer from the bacterial membrane to electron-

withdrawing or electropositive surfaces. The transfer of elec-

tron subsequently alters the surface potential of the bacterial
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Fig. 4 e Evidence of GO nanosheets killing E. coli with or without exposure to simulated sunlight. (a) Antibacterial activity by

GO under various conditions as assessed by numbers of colony-forming units. Cultured E. coli cells were treated by isotonic

saline (as a control), simulated sunlight, or GO (with or without exposure to simulated sunlight). (b) Antibacterial activities of

GO were influenced by the duration of exposure to simulated sunlight. The data shown are mean values and standard

deviations from a representative of three independent experiments. P values were calculated using the student’s t-test. A

single asterisk (*) indicates P values that are less than 0.05 (p < 0.05). Double asterisks (**) indicates P values that are less

than 0.01 (p < 0.01). Reproduced with permission from [102]. Copyright (2017), American Chemical Society.
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cellmembrane, resulting in the loss of cell viability. Therefore,

it can be said that the antimicrobial activities improve with

increased conductivity [105].

A recent study on GO-coated onto zinc phthalocyanine

(ZnPc) reached a similar conclusion to the relationship of

charge transferwith antimicrobial activities [106]. Specifically,

the study found that the death of E. coli was due to the dissi-

pation of electron from bacterial cell membrane to the

electron-deficit GO. Asmentioned earlier, the deposition of GO

onto a substrate causes GO to lose its electrons. The devel-

opment of ROS-dependent oxidative stress in bacterial cells

and the interaction mechanism between bacterial cells and

GO/substrate are illustrated in Fig. 5.

3.3. Morphology

Wrinkle patterns is an emerging method for surface topog-

raphy, and the presence of the wrinkles may affect the final
Fig. 5 e Schematic diagram illustrating the proposed

interaction mechanism between E. coli cells and ZnPc(B)e

GO [106]. Reproduced with permission from [106].

Copyright (2019) Royal Society of Chemistry.
properties of the film. Interfacial interactions between a ma-

terial and its environment can be controlled by patterning the

material’s surface topography. In principle, the effect of the

wrinkles depends on the final application. The effect may

either be desirable or otherwise. GBNs wrinkled surfaces that

consist of peaks and valleys are suitable for biological in-

teractions (i.e. anisotropic cell growth and antimicrobial ac-

tivity) [107]. A study demonstrated that the peak’s sharp edge

on the wrinkled GO surface inhibited bacterial cells’ adhesion

[53].

Moreover, the sharp edges facilitate the charge transfer in

the GO nanosheets and disintegrate the bacterial cell mem-

brane. On the other hand, bacteria of matching diameter with

the terrains will be trapped inside, resulting in a strong

interaction between GO and bacterial cells. This phenomenon

causes the direct oxidation of cellular components [53]. Fig. 6

shows the effect of wrinkled GO surfaces on the bacterial

cell membrane.

3.4. Functional groups

The physical properties of GBNs are greatly affected by their

surface functionalities. A study found that GO with epoxy and

hydroxyl rich surface functionalities exhibited smaller nano-

sheet size, smoother, less porous, and thinner film than GO

with a carboxylic rich group [108]. The superior properties of

GO with epoxy and hydroxyl groups inhibited bacterial cell

proliferation and prevented biofilm formation. Conversely, GO

with the carboxylic rich group is prone to bacterial cell adhe-

sion owing to GO’s higher surface roughness and non-uniform

thickness [108].

Other studies also demonstrated that GO moieties (epoxy,

hydroxyl, and carboxyl) could react with the bacteria’s bio-

molecules [88]. This reaction disrupts redox reactions that

may continue to affect cell growth and metabolic system

adversely. Apart from that, these surface functional groups

had different oxidative levels in which bacterial killing

https://doi.org/10.1016/j.jmrt.2021.01.093
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Fig. 6 e Scanning electron microscope (SEM) images of E. coli (a and b),M. smegmatis (c and d), and S. aureus (e and f) after the

drop test on the wrinkled GO surfaces. Bacterial cells of each species exposed to the wrinkled GO films were completely

enveloped with thin GO nanosheets. The arrows on the images point to local disruptions of the bacterial cell membrane

caused by the exposure to GO nanosheets. Reproduced with permission from [53]. Copyright (2019), American Chemical

Society.
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efficacy varied [88]. The functional groups associated with

carbon radicals were found to exert a high antimicrobial ac-

tivity. For instance, a study showed that the high density of

carbon radicals on the GO surface enhanced the oxidative

level by increasing lipid peroxidation of the bacterial cell

membrane, thus heightening the antimicrobial activity [34].

As mentioned above, GO with high oxygen-containing

functional groups showed potent antimicrobial activity,

mainly due to oxidative stress damage [52,109]. Nevertheless,

in suspension form, findings from an antibacterial study of GO

against S. mutans suggested that the primary mechanism

underlying bacterial inhibitionwas due to the direct contact of

the bacteria with the extremely sharp edges of GO, and not

due to the oxidative stress damage [70]. GO with high oxygen-

containing functional groups exhibited good dispersity and

wrapping or trapping ability, thereby offering a larger surface

area for interactions with bacterial cells [34,49]. This finding

was further supported by Nanda et al. [48], who also found

that high attachment of bacteria to GO nanosheets’ surface
leads to better bacterial entrapment [48]. Collectively, these

results implied that surface functionality exhibited several

different modes on the antimicrobial mechanism.

A study reported that the mature biofilm of S. mutans was

insensitive to GO isotonic saline dispersions at a concentra-

tion of 80 g/mL [110]. However, themature biofilm of S. mutans

was sensitive to GO dispersed in deionised water [111]. This

contradictory finding can be explained by GO’s stability in

solutions, whereby GO is unstable in solutions containing

electrolytes and forms aggregation, hence decreasing its

antibacterial activity [111].

3.5. Flake size and concentration

Studies have shown that the antimicrobial activities of GBNs

depend on their flake size and concentration [34,58,112]. A

recent study on the relationship between GO size and expo-

sure time with antimicrobial activity showed that the

elongated-normal cells of S. mutans changed to sphere-like
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cells with a crumpled structure when exposed shortly to GO

suspensions for 10 s [112]. This structural change indicated

the cutting effect of GO on bacterial cell morphology [112].

However, this observation was only noted in GO suspensions

with small sizes (1295 and 2015 nm), but not in the GO sus-

pensions with large sizes (3074 and 4544 nm). Although GO

nanosheets with the smallest size had a promising cutting

effect, they cannot wrap and trap the cells, resulting in fewer

cell entrapment [112].

In contrast to short exposure, prolonged exposure of bac-

terial cells to GO suspensions showed different findings.

Large-size GO suspension (3074 nm) had a great cell entrap-

ment effect but a weak cutting effect. No cutting effect was

observed for GO suspension with the largest size (4544 nm).

Interestingly, GO suspension (2015 nm) revealed the highest

antibacterial efficacy on S. mutans due to enhanced cutting

and cell entrapment effects [112]. Although there are some

inconsistencies in this study, flake size has been considered to

influence GO’s antibacterial activity significantly [112]. More-

over, GO’s efficacy depends strongly on its applications and

external parameters.

Another study on the antimicrobial activity of GO-coated

surfaces, in which the GO sheets immobilised the substrate,

revealed that smaller GO nanosheets exhibited higher anti-

microbial activity than larger GO nanosheets [86]. More dis-

torted bacterial cells were found on the surfaces coated with

smaller GO nanosheets than on the surfaces coated with

larger GO nanosheets. GO’s antimicrobial activity was asso-

ciated with oxidative stress induced by higher defect density

of the smaller GO nanosheets that allowed more oxygen to be

absorbed on its surface, explaining the higher oxidative po-

tential [86]. For GO that was applied in suspension, its anti-

microbial activity increased with increasing nanosheet area.

Specifically, the increased antimicrobial activity was due to

the aggregation and cell wrapping mechanism, whereby the

large GO nanosheets completely wrapped the bacterial cells

and isolated them from the environment [113].

Antibacterial activity of GO against the dental pathogen

(i.e. S. mutans) has been investigated in planktonic [44,70] and

biofilm [33] forms. The findings showed that GO exerted a

strong bactericidal effect on planktonic and biofilm forms, and

the susceptibility was observed in a concentration-dependant

manner for both forms [33]. However, biofilm had greater

survivability than planktonic cells due to its highly ordered

structure in the surfaced-attached bacterial communities that

made biofilm more resistant [114,115].
4. Application of GBNs in dentistry

GBNs have been successfully employed as an alternative

material in biomedical, dental, and implants application [116].

GBNs are mainly used as an anti-corrosion coating and anti-

microbial agent [116]. Additionally, GBNs have been used for

drug and therapeutics delivery [117,118]. In this section, we

emphasised on the potential of GBNs as an antimicrobial

agent in dental applications. As discussed above, the mecha-

nism underlying GBNs’ antimicrobial activity includes cell

membrane cutting, isolation of microbes via cell wrapping,

oxidative stress, and hydration layer. However, the
antimicrobial mechanism of GBNs in the solid matrix or

immobilised on the surface differs from that in colloidal sus-

pension [108]. Therefore, the antimicrobial activity of GBNs

incorporated with dental materials should be evaluated as per

application. Herein, we summarised the effect of GBNs on

dental pathogen based on their application in dentistry.

4.1. Restorative materials

The use of GBNs and nanoparticles composites as dental

restorative materials has been intensively investigated

[119,120]. Studies have shown that certain aspects of the

physical and mechanical properties of the dental ceramic,

dental adhesive, and dental resin were significantly improved

with GBNs. Nonetheless, less is known about the biological

effects (e.g. antimicrobial and antibiofilm) of GBNs on dental

restorative materials.

Several studies were performed to incorporate GO-based

nanomaterial with commercial glass ionomer to enhance

GO’s antimicrobial properties [121,122]. An in vitro study

showed that the incorporation of reduced graphene-silver

nanoparticles into conventional glass ionomer cement (GIC)

significantly inhibited the growth of S. mutans [123]. The

antibacterial efficacy of the GIC improves with the increasing

amount of the graphene-silver nanoparticles, and its addition

at about 2.00 wt.% exhibited excellent antibacterial activity

without sacrificing their mechanical properties [123]. To

maintain the aesthetic quality of the GIC, white-coloured

fluorinated graphene (FG) was synthesised and added to the

conventional GIC to create a composite with significant

improvement in mechanical, physicochemical, and antibac-

terial properties. The composites of GIC/FG exhibited excel-

lent performance in inhibiting S. mutans and S. aureus with

efficacy rates that almost doubled the pure GIC [121].

Incorporation of GBNs in teeth filling inhibits antimicrobial

growth and interferes with biofilm formation. In 2019, a study

evaluated the antibacterial activity of GO, hydroxyapatite, and

zirconia teeth filling nanoparticle against the biofilm-forming

ability of E. coli and teeth chromogenic bacteria (i.e. Entero-

bacter ludwigii) [38]. The antibacterial activity was evaluated

based on the growth and survivability of both bacteria against

these nanoparticles. It was demonstrated that GO was the

most efficient filler for infectious teeth with chromogenic

bacteria since it can diminish the bacteria load efficiently [38].

Apart from tooth filling, graphene nanoplatelets were also

used as a filler to the conventional polymer dental adhesive.

Incorporation of this nanomaterial as filler in dental adhesives

significantly inhibited the adhesion and growth of S. mutans

while maintaining the same viscosity as the conventional

ones [124].

Apart from acting as antimicrobial agents, GO nano-

composites can also be used as a treatment agent to prevent

dentin demineralisation by covering the dentin surface.

Nizami et al. [125] successfully synthesised five types of

nanocomposite (i.e. GO-Ag, GO-CaF2, GO-Zn, GO-Ca3(PO4)2
and GO-Ag-CaF2) to evaluate the efficacy of these nano-

composites on the bactericidal and anti-demineralisation ac-

tivities. They found that GO-Ag, GO-Ag-CaF2, and GO-CaF2
nanocomposites prevented demineralisation without tooth

discolouration. Additionally, GO-Ag and GO-Ag-CaF2 inhibited
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S. mutans growth without intoxicating the epithelial cells,

except at a high concentration (0.1 w/v) [125]. Aside from that,

GO can be used to coat dentin surfaces. Immersion of dentin

block in diluted GO suspension successfully covered the

dentin surface with few nanometres of GO film. The combi-

nation effect of GO film and near-infrared (NIR) irradiation

markedly showed photothermal and bactericidal effects

against S. mutans, thus enabled bacterial sterilisation [126].

A recent study demonstrated that GBNs did not only

enhance the mechanical properties of polymethyl methacry-

late (PMMA) denture resin but also displayed antimicrobial

properties against dental pathogen [39]. Antimicrobial prop-

erties of GO nanosheets incorporated with PMMA were stud-

ied using four differentmicrobial species (i.e. E. coli, C. albicans,

S. aureus, and S. mutans). Incorporation of GO nanosheets (up

to 2 wt.%) increased the PMMA’s hydrophilicity and antimi-

crobial effects with minimal toxicity to human cells [39]. It

was suggested that the possible mechanism for the effective

antibacterial activity of GO incorporatedwith solidmatrixwas

due to the increased hydrophilicity [39,127]. Hydrophilic forms

a hydration layer on the composite surface and creates a

tightly bound water layer. Hence, it has been proposed that

the presence of the hydration layer or energetic barrier on the

surface is the key mechanism underlying antimicrobial ac-

tivity that prevents microbial adhesion [33,127]. Bacali et al.

further incorporated graphene-silver nanoparticles with

PMMA denture resin to enhance the composite’s mechanical,

biocompatibility, and antimicrobial activity [128]. It was found

that the addition of graphene-silver nanoparticles improved

the antibacterial activity of PMMA resin against E. coli, S.

aureus, and S. mutans strains [128].

4.2. Endodontics

The use of photodynamic therapy (PDT) is more favourable

than the sodium hypochlorite in root canal treatment owing

to its ability to disinfect the root canal while preserving the

stability of dentin. The principle of PDT is based on a nontoxic

photosensitiser (PS), such as indocyanine green (ICG) that

forms cytotoxic ROS following photoactivation by specific

electromagnetic radiation [129,130]. Studies have suggested

developing nano-PS conjugated to increase the production of

ROS during photoactivation [131,132]. GO has been chosen to

act as the nanocarrier and incorporated with ICG due to its

large specific surface area that enables efficient functionali-

sation of the photosensitisers via various surface functional

groups [133e135]. Besides, strong UV emission of GO also

paved the way for the applications in PDT [136].

A study has investigated the antimicrobial activity of rGO-

phthalocyanine complex against Gram-positive and Gram-

negative bacteria upon photoactivation [133]. The study

showed that Gram-positive bacteria (S. aureus) were more

susceptible to pure GO and GO composites than Gram-

negative bacteria (P. aeruginosa and E. Coli). It has been sug-

gested that the lack of inner membrane was the main factor

responsible for Gram-positive bacteria’s susceptibility to GO

[133]. Another study also showed that the incorporation of ICG

with GO (at one-fifth of its concentration in conventional PD)

significantly reduced the ability of E. faecalis to form biofilm

[134]. Incorporation of GO with ICG enhances the ICG loading
and aqueous stability, thus improving its antimicrobial and

antibiofilm effects against S. mutans. The antimicrobial and

antibiofilm results showed that the incorporation of GO with

ICG could significantly decrease S. mutans survivability up to

86.4% and suppressed biofilm formation up to 63.8% [135]. It

was also suggested that incorporating ICG with GO could be a

new approach to adjuvant treatment of endodontic infections

[135].

Bioactive materials have been rapidly used in the field of

endodontics for regeneration, repair, and reconstruction.

Dubey et al. [137] have conducted a study investigating the

potential of graphene nanosheets (GNS) (1357 wt.%) to

improve two bioactive cements: Biodentine (BIO) and Endo-

cem Zr (ECZ). The results showed that GNS did not interfere

with the pH release profile [137]. The pH release profile plays

crucial roles in bioactivity and antibacterial properties of the

bioactive cements [137].

Apart from bioactive materials, the use of metal or metal

oxide nanoparticles in dental materials offer several advan-

tages, such as improved physical, mechanical, antimicrobial,

and antibiofilm properties. However, the aggregation of these

nanoparticles remains a major challenge. The use of GO as a

matrix in GO-silver nanocomposite improved the stability and

aggregation of the silver nanoparticles, which lead to the high

binding capability [138]. Furthermore, synergistic antimicro-

bial activity from both silver and GO made the GO-silver

nanocomposite more advantageous. Considering these ad-

vantages, Ioanannidis et al. [139] have successfully syn-

thesised silver nanoparticles on an aqueous GO matrix to

study their efficacy against endodontics biofilm. Ex vivo study

on the infected tooth model showed that the Ag-GO nano-

composite successfully killed the microbes and disrupted the

biofilm formation. The use of Ag-GO under ultrasonic activa-

tion also selectively improved microbial killing efficacy in the

lateral canal [139].

A recent study has modified titanium for pulp sealing with

antibacterial and dentino-inductive materials via micro-arc

oxidation (MAO) and self-assembling GO of varying content

[140]. Incorporation of 1.0 mg/mL of GO with titanium-MAO

showed excellent cell adhesion, mineralisation, and antibac-

terial properties [140]. Furthermore, bacterial colonies were

nearly absent. The reduction ratio of bacteria was

93.25% ± 2.47%, which could be explained by the highest ROS

level associated with the abundant oxygen-containing func-

tional groups [140].

4.3. Periodontics

Researchers have extensively investigated the potential use of

GO in tissue engineering therapy and created GO composites

scaffolds. For instance, Nishida et al. [141] fabricated GO-

scaffold where its implantation exhibited high tissue

compatibility and facilitated the healing of tooth extraction

sockets and periodontal defects [141,142]. Furthermore, Chen

et al. [143] suggested that zinc oxi/carboxylated GO nano-

composites induced bone tissue regeneration. Moreover, GO

has attracted significant attention due to its potential in gene

and drug deliveries. GO’s ability to ionically bond to cationic

polyethyleneimine (PEI) polymers offer other advantages in

gene delivery [144]. Antisense walR (ASwalR) RNA was
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reported to inhibit the biofilm formation and sensitised E.

faecalis to calcium hydroxide medication. GO-PEI complex has

been used to load ASwalR plasmid RNA to enhance trans-

formation efficiency in E. faecalis cells using similar ap-

proaches [145]. The results showed that the GO-PEI-ASwalR

complex significantly reduced virulent-associated gene ex-

pressions, suppressed biofilm aggregation, improved bacteri-

cidal effects in the infected canal, and reduced periapical

lesion size.

4.4. Dental implants

Titanium has been recognised as the gold standard in implant

dentistry owing to its high corrosion resistance, long-term

performance, and good biocompatibility with excellent

osseointegration [146,147]. Despite these advantages, the

growth of microbial biofilms in dental implants is the primary

cause of implant diseases and implants’ failure. Therefore, the

development and modification of titanium implant with good

osteogenic, antibacterial, and antibiofilm properties are vital.

For that reason, several surface treatments have been devel-

oped over the last few years to improve the antibacterial ac-

tivity of titanium implants, including nanotechnologies with

antimicrobial properties (e.g. graphene). Graphene coating is

widely used in dental and implants applications as it prevents

metallic biomaterials surface from corrosions [116]. Anti-

corrosion properties of GBNs make them feasible to be used

in orthodontics, endodontics, and prosthodontics [148,149].

Several techniques, such as plasma treatment [150], CVD

[151], wet and dry transfer [152] and electrophoretic deposi-

tion method [153], and have been employed to coat titanium

substrate with GO-based material. The effective coating of

titanium onto an object without changing the basic graphene

properties gives advantages to the implants’ performance in

terms of their durability, osteogenic, and antimicrobial

properties.

Numerous studies have been carried out to evaluate the

performance of GBNs as a coating and anti-corrosionmaterial

to prevent implants from the corrosive environment [153,154].

Furthermore, the addition of GO improves the mechanical

properties of the coating [155] and promotes cell adhesion and

proliferation, which are facilitated by the hydrophilic func-

tional groups (e.g. carboxyl, carbonyl, and hydroxyl)

[153,154,156,157]. The superior performance of GBNs has

inspired researchers to explore the use of GBNs in the treat-

ment of peri-implantitis [158]. A recent study showed that

implants coated with GO exhibited good therapeutic effects

[158]. Nevertheless, studies investigating the antibacterial

properties of GBNs in implant coating are relatively limited.

Although the antibacterial properties of the GBNs have been

well-documented, less is known about their antibacterial

properties as coating materials, especially in dental implants.

Also, the antimicrobial properties of the GBNs upon coated

onto implants may differ from pristine [86]. The changes in

the physicochemical properties of GO such as morphology

and flake size may have different effect on antimicrobial ac-

tivity when applied on surface [86].

Another recent study showed that titanium surfaces

coated with six different graphene nanoplatelets exhibited

different antimicrobial activities against S. aureus [159]. The
graphene nanoplatelets were produced using different tech-

niques [159]. Comparisons on osteogenic and antibacterial

properties between uncoated and graphene-coated titanium

implants via dry transfer technique showed a significant

decreased in the biofilm formation of S. mutans and E. faecalis

on the surface of graphene-coated titanium implants [160].

The study further confirmed that the mechanism of bacterial

and biofilm inhibition was mainly due to the surface proper-

ties and not due to the release of diffusible compounds from

the surface (i.e. electron transfer) [160]. This finding is further

supported by Agarwalla et al. [161], who suggested that gra-

phene has altered the surface andwettability of the graphene-

coated titanium. Compared to uncoated titanium with SFE of

38.3 mN/m, graphene-coated titanium with lower SFE of

13.8 mN/m exhibited a significant reduction in the biofilm

formation of S. mutans, E. faecalis, P. aeruginosa, and C. albicans

[161]. These findings contradict a previous study suggesting

that the antimicrobial properties of GBNs are influenced by

the electron transfer between GBNs and underlying metal

substrate coated with GBNs [105].

Incorporation of GBNs with metal nanoparticles has also

gained substantial interest in coating fabrication. Graphene or

GOwere incorporatedwith other nanoparticles (e.g. zinc oxide

or silver) to enhance the antimicrobial properties of coating

materials [162,163]. The negative charges of carboxyl, hy-

droxyl, and carbonyl groups on the GO surface permitted the

deposition of the positive charges of metal ion, resulting in a

more uniform distribution of metal nanoparticles on its sur-

face [162]. Therefore, implants coated with a higher concen-

tration of GO would have a higher concentration of metal

nanoparticles deposited on the GO surface. The deposition of

metal ions on the GO surface inhibits microbial and biofilm

adhesion. A study using graphene/zinc oxide nanocomposites

(GZNC) as a coating material for dental implants showed a

good antibacterial and anti-biofilm properties of GZNC against

S. mutans [163]. GZNC-coated acrylic tooth surfaces success-

fully inhibited 85% of S. mutans biofilm formation [163].

Furthermore, the low toxicity of GZNC made it an effective

coating agent for dental implants [163].

The presence of a functional group on GO surface endows

good bio-functionalisation with an antibacterial agent

[164,165]. A multi-functional coating that consists of mino-

cycline hydrochloride (MH) and GO has been developed to coat

titanium implants [158,166]. The effect ofMH andGO to inhibit

bacterial growth and induce bone tissue regeneration for the

improvement of bone-implants osseointegration was evalu-

ated using S. aureus and rat bone mesenchymal stem cells

(rBMSCs) [158,166]. The effect of MH was studied in vitro,

whereas the effect of GO was examined in vivo. The results

showed that the MH loaded-GO films on titanium surfaces

exhibited excellent antibacterial and enhanced osteogenic

activity. Therefore, MH loaded-GO films may potentially be

used in clinical applications due to their superior ability in

bone-implants osseointegration [158,166]. Another study on

bio-functionalisation of GO showed that the fabrication of

multilayer coating integrating lysozyme (Lys), tannic acid

(TA), and GO had a significant effect on killing E. coli and S.

aureus [167]. Observations on bacterial cell morphology

showed that the bacterial cell membrane collapsed and bac-

terial structure deformed. Different antibacterial mechanisms
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of Lys, TA, and GO produce a coating layer that kills bacteria

differently [167].

Nevertheless, the multilayer coating of Lys-TA-GO appears

more effective against E. coli than S. aureus. This differential

effect is due to the nature of S. aureus that tends to clone

aggregately, making them less susceptible to GO immobilised

on implants substrate. This finding contradicts an earlier

study [58], which stated that the bacteria in a cluster form tend

to be trapped easily, thus they are more susceptible to GO

suspension. The heterogeneity of these findings can be

explained by the different mechanism of GBNs’ antimicrobial

action in immobilised and suspension forms.
5. Conclusion

The present study discussed current advances of GBNs in the

dental application. Mainly, we focussed our discussion on

GBNs’ antimicrobial properties and mechanisms. Incorpo-

rating GBNs into dental materials improves the antimicrobial

properties of the dentalmaterialswithout compromising their

mechanical properties. The mechanism of GBNs’ antimicro-

bial effects is highly determined by various intrinsic (i.e. size,

shape, surface chemistry) and extrinsic (i.e. electromagnetic

radiation, underlying substrate) parameters. Although the

mechanism of GBNs’ antimicrobial effects is still in debate,

many researchers believed that GBNs could potentially be

used in dentistry to improve the dental materials’ antimicro-

bial activity and mechanical properties. A growing number of

dental materials incorporated with GBNs has been investi-

gated extensively for their potential in restorative, endodon-

tic, orthodontic, periodontal, and implant treatments.

However, further research on the biocompatibility and

bifunctionality are warranted to support the currently limited

clinical evidence on GBNs application in dentistry.
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