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Abstract: The biggest challenge in the present-day healthcare scenario is the rapid emergence and
spread of antimicrobial resistance due to the rampant use of antibiotics in daily therapeutics. Such
drug resistance is associated with the enhancement of microbial virulence and the acquisition of the
ability to evade the host’s immune response under the shelter of a biofilm. Quorum sensing (QS) is
the mechanism by which the microbial colonies in a biofilm modulate and intercept communication
without direct interaction. Hence, the eradication of biofilms through hindering this communication
will lead to the successful management of drug resistance and may be a novel target for antimicrobial
chemotherapy. Chitosan shows microbicidal activities by acting electrostatically with its positively
charged amino groups, which interact with anionic moieties on microbial species, causing enhanced
membrane permeability and eventual cell death. Therefore, nanoparticles (NPs) prepared with
chitosan possess a positive surface charge and mucoadhesive properties that can adhere to microbial
mucus membranes and release their drug load in a constant release manner. As the success in
therapeutics depends on the targeted delivery of drugs, chitosan nanomaterial, which displays
low toxicity, can be safely used for eradicating a biofilm through attenuating the quorum sensing
(QS). Since the anti-biofilm potential of chitosan and its nano-derivatives are reported for various
microorganisms, these can be used as attractive tools for combating chronic infections and for
the preparation of functionalized nanomaterials for different medical devices, such as orthodontic
appliances. This mini-review focuses on the mechanism of the downregulation of quorum sensing
using functionalized chitosan nanomaterials and the future prospects of its applications.
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1. Introduction

The last decade has seen a marked increase in the development of multi-drug-resistant
pathogenic organisms that have brought about significant threats for the health sector. Nu-
merous alternative approaches are being taken to check the pathogenesis of these antibiotic-
resistant microbes and strategies are being adopted to minimize their virulence [1,2]. The
chronic-infection-causing recalcitrant microbes usually reside in the protective shield of
their biofilm, which is actually a syntrophic association of microbes. Hence, exploration of
the natural ways for biofilm eradication and innovations for biotechnological approaches
to enhance their antibiofilm activity becomes a new and booming stream of research.

Both microbes alone and the biofilm formed by them attach themselves to specific
surfaces. The biofilm-associated cells are especially capable of forming an extracellular
polymeric substance matrix (EPS), which can maintain decreased growth rates and allow
for up- and down regulation of some specific genes [3,4]. The EPS matrix possesses a
definite construction pattern and creates an optimal condition that allows the microbes
to exchange genetic contents between the cells [5]. Moreover, the biofilm-forming cells
undergo cell-to-cell communication via the process of quorum sensing (QS), by which they
control the expression of genetic components in response to continuous changes in the
density of the cell population [6]. QS is accomplished by various types of extracellular
communication materials called autoinducers (AIs) [7], which are the chemical signaling
molecules that are synthesized and released by these cells [8].

Since QS plays a key role in bacterial infection and bacterial survival, eradication of the
biofilm through the denaturation of the AI molecules will ensure the prevention of biofilm-
associated infection. Several novel antibiofilm agents were developed for interfering with
the QS cascade and thereby inhibiting the formation of biofilms [9,10].

However, such interruption in cellular communication can be done via the mechanism
of quorum quenching (QQ), which involves the process of disrupting the QS cascade [7].
The molecular mechanism of QQ includes the cleavage of QS signals, competitive inhibi-
tion, and acting against the major targets of QS, thereby bringing about hindrance in the
maturation of biofilm.

Present-day nanomaterials are largely used as alternate therapeutics due to their large
surface-area-to-volume ratio and extensive reactivity, resulting in the development of the
new field of “nanomedicines” [11–13]. The enhancement in the development of antimi-
crobial resistance has resulted in researchers thinking about ways to provide alternate
therapeutics [14]. A fascinating thing about nanomaterials is that their efficacies are largely
dependent on the shape and size of the nanostructural contents of the nanomaterials and
these properties can usually be distinguished well from the bulk traditional material, which
possesses the appearance of a continuous material [15]. This is why these nanomateri-
als create huge interest regarding their applications in different types of research and
development fields related to biotechnology, biology, chemistry, biophysics, and many
others [16].

In order to surpass the existing drawbacks of nanomaterials, there has recently been
development of innovative functionalized nanomaterials with potential applications in
various healthcare domains. For covering the nanoparticle core surface with a capping
agent [17], the surface of nanomaterials can be functionalized using either a covalent
modification strategy via a standard organic synthesis procedure or using a noncovalent
modification complexation, adsorption process, or grafting strategy [18].

Several researchers are trying to use functionalized nanoparticles to resist biofilm
formation, where gold particles (GNPs) functionalized with enzyme proteinase K were
found to be effective against Pseudomonas fluorescens biofilms [19]; silica nanoparticles func-
tionalized with either peppermint oil (P-Cap) alone or in combination with cinnamalde-
hyde (CP-Cap) were found to halt the complex biofilm formation of Pseudomonas aerug-
inosa, E. coli DH5, S. aureus, and Enterobacter cloacae [20]; and amine-, carboxylate-, and
isocyanate-functionalized superparamagnetic-iron oxide nanoparticles (IONs) against S. au-
reus biofilms are noteworthy [21]. Gold-nanoparticle-functionalized liposomes containing
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tobramycin could decrease biofilm biomass by approximately 1.5 times as compared to
untreated liposomes containing tobramycin only [22]. A catheter surface that was function-
alized with MgF(2) nanoparticles (NPs) effectively removed the biofilm from it [23]. Gold
nanoparticles (GNPs) and gold nanocomposites functionalized with antimicrobial peptide
Pediocin AcH and Listeria adhesion protein (LAP) (GNP–Pediocin–LAP) were successfully
used to remove biofilms of Listeria sp. [24].

Metals and metal oxide nanoparticles (NPs) were associated with inorganic and
organic supports to improve their antibacterial activity and stability. These nanomaterials
can be triggered by various mechanisms (such as changes in pH, light, magnetic fields, and
the presence of bacterial enzymes); additionally, they can improve antibacterial efficacy
and reduce side effects and microbial resistance [25].

Apart from functionalized metal nanoparticles, functionalized chitosan nanoparticles
were also found to enhance photodynamic therapy and thereby have a 100% bactericidal
activity against Enterococcus faecalis [26]. Actually, chitosan is often preferred for use as the
component of nanomaterials due to its biocompatibility, verified low toxicity verified, bio-
and muco-adhesivity, biodegradability, etc. [27–30].

This review discusses the functionalization of chitosan nanoparticle and elucidation of
its efficacy in interrupting/blocking the quorum sensing (QS) signal to halt biofilm formation.

2. Quorum Sensing in Biofilm-Associated Microbes

QS, being the key event behind biofilm formation, is the main target for blocking to
achieve an antibiofilm effect. Apart from biofilm formation, QS regulates multiple processes
that involve sporulation, bioluminescence, the production of various types of virulence
factors, antibiotic biosynthesis, and the formation of biofilms [31,32]. The mechanism of QS
in Gram-negative bacteria (Table 1) takes place via LuxI/LuxR type systems, which play
an important role in the production of AIs, the signalling molecules [33].

Table 1. Quorum-sensing (QS) systems of selected Gram-negative bacteria.

SL No. Bacterial
Organism Name Quorum-Sensing Molecules Genes Receptors References

1. Chromobacterium
violaceum

C12-HSL N.A. N.A. [34]

N.A. N.A. SdiA [35]

AI-2 LuxS LsrB [16,36]

2.
Pseudomonas

aeruginosa

C4-HSL RhlI RhlR [37]

3-oxo-C12-HSL LasI LasR [38,39]

3-oxo-C12-HSL NA QscR [3,40]

PQS, HHQ PqsABCD,
PqsH PqsR [41]

3. Staphylococcus
aureus

3-hydroxy-C4-HSL LuxM LuxN [3,40]

AI-2 LuxS LuxP [42]

CAI-1 CqsA CqsS [43]

4. Acinetobacter
baumannii 3-hydroxy-C12-HSL AbaI AbaR [44]

5. Escherichia coli

3-oxo-C8-HSL N.A. SdiA [27,35]

AI-2 LuxS LsrB [37,45,46]

AI-3/Epinephrine/Norepinephrine N.A. QseC [47]

6.
Klebsiella

pneumoniae

C8-HSL N.A. N.A. [15,36]

C12-HSL N.A. N.A. [27]

AI-2 LuxS LsrB [48,49]



Polymers 2021, 13, 2533 4 of 17

3. Chitosan Nanoparticles

A biofilm matrix acting as a scaffold provides a protective covering for sessile bacteria,
making them drug resistant [50]. Hence, a more effective drug delivery system needs to
be applied that can target both the biofilm matrix and the embedded sessile bacterial cells.
Chitosan and its derivatives, with their acclaimed biofilm inhibiting property, may be used
but in a more precise manner to halt the quorum sensing.

Nanoparticles, with atomic dimensions of 10Å to 100Å [51] were shown to be quite
effective for drug delivery. Despite a few drawbacks, including poor absorption and
dissolution rate with reduced bioavailability, using nanoparticles is a much safer method,
as these microscopic particles act as nanocarriers, encasing high drug payloads and provide
more targeted action with a controlled release.

Chitin, a natural polymer of β-(1,4)-N-acetyl-D-glucosamine, turns into chitosan, a
polysaccharide composed of N-acetylglucosamine and D-glucosamine units [52], upon
deacetylation in the presence of an alkali. Due to its cationic nature, biodegradabil-
ity, compatibility, and nontoxicity, chitosan is used extensively by nano-biomedical re-
searchers [53–55] for the delivery and controlled release of biomolecules, such as proteins,
peptides, enzymes, genes, vaccines, and small drug molecules [56] via various delivery
routes, including oral, buccal, vaginal, and pulmonary. Chitosan NPs are also used as
vaccine adjuvants due to the mucoadhesive properties of chit, which can stimulate the cells
of the immune system [57]. Some of the important properties of chitosan that have led to
its wide range of applications in various fields (such as NPs) include mucoadhesion (as
shown by trimethyl chitosan and carboxymethyl chitosan) [58]; controlled drug release,
which enhances its effectiveness for drug delivery [59]; permeation enhancement, as shown
by trimethyl chitosan [60]; antibacterial activity; no cytotoxicity; biocompatibility; and
biodegradability. These properties are incredibly advantageous for the advancement of
biocompatible and biodegradable medication conveyance frameworks [61,62].

Since its first emergence in the mid-1990s, the chitosan nanoparticle (ChNP) has been
used for drug delivery [63]. The property that is responsible for the success of ChNPs in
drug delivery is its ability to bind with negatively charged anions to form beads. However,
beads larger than approximately 2mm generally hinder this process [64]. The discovery
of the ChNPs involves various ‘bottom-up’ or ‘top-down’ approaches, or a synergistic
combination of both techniques. However, among the regular ‘bottom-up’ methods, the
most popular ones are ionotropic gelation and the polyelectrolyte complex method [65]
due to their straightforwardness and non-requirement of high shear power and natural
solvents [66], unlike the ‘top-down’ methods of milling, ultrasonication, and high-pressure
homogenization [62,67].Irrespective of the methodology adopted for their preparation, the
ChNPs are regularly used for drug delivery to combat several diseases with appreciable
efficacy (Table 2). Although the precise mode of antimicrobial action is not determined
completely, it was proposed that the molecular structure of chitosan is imperative for its
antimicrobial activities. The antibacterial potential of chitosan is strongly influenced by
several factors, such as its type, degree of polymerization, and physicochemical properties.

3.1. Preparation of Chitosan Nanoparticles (ChNPs)

ChNPs were first prepared in the mid-1990s by scientist Ohya and his colleagues, who
used the method of emulsifying and cross-linkage for the site-specific intravenous delivery
of the anti-cancer drug (5-fluorouracil) [63]. The property that is responsible for the success
of ChNPs in drug delivery is its ability to bind with negatively charged anions to form
beads. However, beads larger than approximately 2 mm generally hinder this process [64].
The discovery of the ChNPs involves various ‘bottom-up’ or ‘top-down’ approaches, or a
synergistic combination of both techniques. Currently, five methods are widely used for the
synthesis of ChNPs. The ‘bottom-up’ methods include ionotropic gelation, microemulsion
method, emulsification solvent diffusion/evaporation method, reverse micellar method
and polyelectrolyte complex method [65]. Among these aforesaid methods, the most
popular ones are ionotropic gelation and polyelectrolyte complex method. These techniques
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are straightforward and do not require high shear power or utilize natural solvents [66].
On the other hand, the ‘top-down’ methods are milling, ultrasonication, and high-pressure
homogenization [62,67]. Figure 1 is a schematic representation of the various methods that
are employed for the synthesis of ChNPs.

Figure 1. Schematic representation of the various methods employed for ChNP synthesis.

3.1.1. Ionotropic Gelation

This method makes use of the crosslinking of the electrostatic bond between the amine
groups of the chitosan to a polyanionic crosslinker, such as tripolyphosphate (TPP). The
ionotropic gelation method for chitosan nanoparticle synthesis was first investigated by
Calvo et al. in 1997 [68]. Ch can be dissolved in the presence or absence of a stabilizing
agent (such as poloxamer) in acetic acid. This aqueous acidic solution of chitosan is
then added dropwise to a TPP solution, with continuous and steady mechanical stirring
at room temperature. Given that TPP is anionic, it will spontaneously crosslink with
chitosan, forming chitosan–TPP NPs. This resulting product can successfully trap drug
molecules and is able to carry them to a target. Hence, these nanocarriers were later
developed into suitable drug delivery mechanisms. The dimensions and the charge on
the surface can be changed by altering the chitosan-stabilizer ratio [69]. Alterations in the
chitosan concentration and the polymer-to-polyanion ratio and an increase in the particle
condensation and dimensions are also observed [70]. It was also reported that stability was
increased when the NPs were added to a saline solution. This is because when monovalent
sodium chloride salt is added to the solvent, there is an electrostatic repulsion between
it and the amino group (positively charged) on the chitosanic backbone. This process
decreases the particle size of the nanoparticles in the solution and increases the flexibility
of the polymer chains, which helps to increase their stability [71].

In 2018, Furtado et al. reported the synthesis of chitosan and sodium fluoride (Ch-NaF)
nanoparticles using this method [72]. This method is generally considered safe since it
removes the dangers and toxicity that are associated with the use of organic solvents; it
is also considered simple and easy with the use of an aqueous medium [62]. However,
the nanoparticles synthesized using this method of ionotropic gelation generally have low
mechanical strength [73].
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3.1.2. Microemulsion Method

This method was first reported by De et al. in 1999 [74] and involves the use of four
components: polymer, surfactant, and a crosslinker. According to this method, a surfactant
was dissolved in an organic solvent (n-hexane and toluene) and chitosan in an acetic acid
solution. Glutaraldehyde (commonly used crosslinker for this method) was added to the
surfactant/hexane and toluene mixture at room temperature, with continuous and steady
mechanical stirring applied overnight, which completes the crosslinking process between
the amino group of chitosan and glutaraldehyde, which acts as a crosslinker [75]. Subse-
quently, nanoparticles are formed. The main mechanism behind this crosslinking process is
the Schiff reaction and comprises the mixture of the two solutions in the solvents, followed
by the removal of excess surfactant as a precipitate with calcium chloride (CaCl2); then,
the precipitate was removed using centrifugation to yield the desired polymer crosslinker
nanoparticles [76].

However, the major drawback of this method lies in the use of the antigenic crosslinker
agent glutaraldehyde [69]. Additionally, the integration of the peptide molecules to the syn-
thesized nanoparticles may be hindered by the crosslinking and, thus, is not possible [68].

3.1.3. Emulsification Solvent Diffusion Method

This improved method employed PGLA was first reported in 2002 [77] and is based
on a method developed by Niwa et al. in 1993 [78]. A biological phase is injected into a
chitosan solution with a poloxamer to enhance the stability of the solution; then mechanical
stirring is applied, followed by a high-pressure homogenization technique to yield an
emulsified mixture, which is diluted with water in the subsequent steps. The water used
for dilution diffuses into the organic layer, which helps in the formation of the nanoparticles.
The use of high shear forces during the synthesis of the nanoparticles and the involvement
of organic solvents are the major limitations of this method [69].

3.1.4. Polyelectrolyte Complexation (PEC) Method

Unlike any other method listed above, this method of chitosan nanoparticle synthesis
involves the bond between the positively charged amino groups of chitosan and the anionic
carboxylic group of dextran or alginate groups of dextran sulfate, which finally results
in the neutralization of the charges. The self-assembly of the polyelectrolyte complexes
occurs due to the charge neutralization via the addition of acidic chitosan solution into the
anionic dextran solution with continuous mechanical stirring at room temperature [79,80].
Nanoparticles that carry insulin molecules to their target site were reported by the sci-
entists to be manufactured by the process of alginate ionotropic pre-gelation and then
subsequently by polyelectrolytic complexation with chitosan for diabetic patients [81].
Chitosan nanoparticles incorporated with gum are manufactured using the PEC method
for bone regeneration therapy [82].

3.1.5. Reverse Micellar Method

The most significant feature of this process is, unlike the other methods, the absence
of both a crosslinker and poisonous natural solvents. Furthermore, ultrafine nanoparticles
inside a restricted size reach can be acquired with this technique. This process can be
described as the application of chitosan into the natural solvent containing the surfactant
while the mixture is continuously agitated via mechanical stirring overnight to form the
reverse micelles [83]. This method for the synthesis of ChNPs was first reported by a group
of scientists in 2008 [84].

According to the recent trends and literature, among all the methods employed for
the production of nanoparticles using chitosan, the most preferred and popular method
is ionotropic gelation, which involves the ionic interaction between the cationic chitosan
amine group and the anionic polymeric materials. This charge-based association of ad-
versely charged drug payloads isa more manageable ionic gelation technique, bringing
about a high drug encapsulation efficiency and optimal drug release such that the en-
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trapment efficiency fluctuates between 0.3 to 0.98 and that of the drug release fluctuates
between 0.4 and 0.8 [85]. The second-most common technique is polyelectrolyte complexa-
tion, which includes the crosslinking of chitosan with the molecules of the drug and results
in a slowed drug discharge rate. Based on the literature evidence, the methods that are
used to a lesser extent include solvent evaporation, coprecipitation, and emulsion droplet
methods due to their poor entrapment efficiency and poor cargo release profile [62].

Table 2. ChNPs: preparation methods for various diseases, drugs, efficiencies, and advantages.

Method of
Preparation Diseases Drug in ChNPs Efficiency Advantages Reference

Ionotropic
gelation

Bladder cancer

Chitosan–hyaluronic acid
dialdehyde NPs (for

CD44-targeted siRNA
delivery)

LE ≥ 0.95 Cytotoxicity is reduced [86]

Migraine Sumatriptan succinate EE = 0.60 Targeted specific drug
delivery [87]

S. pneumoniae
infections Cpl-1-loaded ChNPs EE = 0.60

Enhanced bioavailability of
the drug and in vivo half-life;
chitosan biocompatibility for

drug delivery

[65]

Immuno-therapy CpG
oligodeoxynucleotide

EE =
0.90–0.97

Better immune-stimulation,
cell uptake, and binding

abilities
[88]

Antimicrobial
activity against

MRSA

N′-((5-nitrofuran-2-yl)
methylene)-2-

benzohydrazide
[(CH-5-NFB-NP)]

EE = 0.45

Antibacterial property
increased; effective against
multi-drug-resistant strains;

easy production method

[89]

Acne Clindamycin EE = 0.42 Better drug distribution;
specific target delivery [90]

Administration of
antioxidant

peptides

Goby fish protein
hydrolysate EE = 0.61

Better thermal stability and
antioxidant properties;

controlled diffusion
mechanism

[91]

Hyperlipidemia Sodium alginate
entrapping rosuvastatin - Controlled drug release [92]

Phylloquinone
induced prolonged
blood circulation

time

VK1 EE = 0.79

Constant release of vitamin
K1; circulation time of

RBC-hitchhiking chitosan NPs
greater than regular NPs

[93]

Polycystic kidney Metformin LE = 0.33

Enhanced bioavailability;
lesser side effects in other
parts of the body; better
pharmaceutical efficacy

[94]

Polyelectrolyte
complexation

(PEC)

Cancer Amygdalin entrapped by
alginate EE = 0.90 Stable release of the drug; low

toxicity to cells [95]

Gene therapy siRNA - Safer technique with
increased stability [96]

Double
emulsion

crosslinking
method

Cancer treatment 5-Fluorouracil EE ≈ 0.60

Increased inhibition of cancer;
controlled drug release;
increased efficiency of

entrapment

[97]

Capillary
hemangioma Propranolol hydrochloride EE ≥ 0.50 Minimal side effects;

sustained drug release [98]
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Table 2. Cont.

Method of
Preparation Diseases Drug in ChNPs Efficiency Advantages Reference

Microemulsion
method Diabetes Insulin EE = 0.80%

Enhanced availability of the
drug at the site (due to its

interaction with the mucosal
membrane of the intestine)

and prolonged release of the
drug; better compliance of

oral delivery in patients

[99]

Crosslinking

Antimicrobial
effects

Naringenin (NRG),
quercetin (QE), and

curcumin (CUR)
conjugated with

L-histidine and ZnO

LE varies
from 0.89 to

0.92

Noticeable antimicrobial
action against Trichophyton
rubrum and Staphylococcus
aureus strains because of the

cumulative impact

[100]

Breast cancer Methotrexate LE = 0.13
Sustainable drug release;
improved drug loading

efficacy
[101]

Droplet
emulsion
method

Glaucoma

Trimethylchitosan (TMC)
and tetrandrine lipid NPs

(TET-LNPs)-loaded
carboxy-methylchitosan

(CMC) or
hydroxypropylchitosan

(HPC)

LE ≥ 0.9 Increased bioavailability and
retention time [102]

Co-
precipitation

Arthritis
(rheumatoid) Meloxicam EE = 0.82 Lesser dosage frequency and

toxicity [103]

- Antioxidant Resveratrol EE ≥ 0.90
Continuous release of the

drug and enhanced storage
and stability of the drug

[48]

Nano-
precipitation

Parkinson’s
Disease

Ropinirole hydrochloride
coated with PGLA LE = 0.05

Can cross the blood–brain
barrier; hepatic metabolism;

delivers the drug to the
specific site of action

[49]

3.2. Development of Functionalized ChNPs

Chitosan possesses suitable functional groups that help with providing some specific
properties to the polysaccharides. The structural and functional properties of chitosan
become enhanced due to the presence of an amino group being present at the C-2 position.
This group helps with providing the cationic nature, thus providing chitosan with vari-
ous properties that include antimicrobial, wound healing, and mucoadhesive properties.
The pKa value makes chitosan insoluble in water but soluble in various types of acidic
solutions [104,105]. The mechanism of functionalization results in the development of
N-modified, O-modified, and N,O-modified chitosan, thereby providing chitosan with a
wide range of biological activities. The functionalization of chitosan via the use of quar-
ternized N-alkyl or N-benzylchitosan or phosphorylation of the chitosan helps with the
enhancement of the antimicrobial activity. O-modified chitosan is free to undergo the
mechanism of N-modified derivatives when using H2SO4 or MeSO3H via the process of
protonation of the amine group through the removal of hydroxyl group; this process is used
for the purpose of protecting various types of hydroxyl groups [106]. Studies showed that
cinnamaldehyde crosslinks with chitosan not only enhances its stability but also increases
the antimicrobial efficacy of ChNPs [107,108]. It was also observed that ChNPs synthesized
using the leaf extract of Caltharanthus roseus showed a size-dependent drug entrapment
efficiency [109].
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4. Inhibition of Biofilm Formation Using Functionalized Chitosan Nanoparticles

However, in order to target biofilm-associated chronic infections, medical devices,
and food industries [110], the ChNPs must have the ability to block quorum sensing. It
was revealed from various experimental observations that the positively charged ChNPs
are usually loaded in Oxa or oxacillin and ChNP–DNase–Oxa or Deoxyribonuclease
I [111]. The anti-biofilm activity is generally studied against the biofilm network formed
by nosocomial bacterial species, such as Staphylococcus aureus and Pseudomonas aeruginosa.
Biofilm structuring on silicone surfaces was checked and researched with the help of SEM or
scanning electron microscopy [112]. Confocal laser scanning microscopy (CLSM) was used
for looking upon alive or dead microorganisms inside the biofilm matrix, which revealed
that ChNP–DNase–Oxa had a higher level of anti-biofilm activity than the Oxa-mixed
nanoparticles, which is present without the ChNP–Oxa or the DNase and the summation
of Oxa and DNase, which involves free Oxa [41,113]. Both the formation of new biofilms
and the eradication of mature biofilms in vitro could be achieved with the help of the
ChNP–DNase–Oxa. Actually, through the denaturation of eDNA, ChNP–DNase–Oxa can
damage the biofilm matrix, decrease the width of the biofilm, and the number of viable cells
on silicone. Back-to-back treating with the help of ChNP–DNase–Oxa over two days was
seen to give a shocking and successful result of almost a 99% decrease in the biofilm [114].
Moreover, ChNP–DNase–Oxa was found to be effective against the biofilm of any type of
normal and clinical strains of Staphylococcus aureus [113].

This shows the high potential and effectivity of nanoparticles for treating the infections
associated with biofilms [115]. Attenuation of the signals of bacterial quorum sensing can
inhibit infection and can also stop the generation of bacterial virulence. Many research
works have been conducted and almost all of them showed that the natural compounds
possess more effectiveness over artificially synthesized chemicals regarding their treatment
of biofilms and establishing them as anti-quorum-sensing agents.

Especially, flavonoid compounds are highly efficient anti-microbial and antibiofilm
compounds. However, due to the very low or no dissolution of the flavonoid molecules
and the rare bioavailability, minimal application of flavonoids is found [116]. Experimen-
tal observations revealed that phytochemicals, when mixed with chitosan nanoparticles,
significantly decreased the QS activity through the inactivation of AI molecules [117].
Kaempferol, a flavonoid, is known to possess high-anti-quorum-sensing activity [118]. The
application of the kaempferol and chitosan nanoparticles was analyzed on the basis of
their properties of hydrogen bonding, hydrodynamic diameter, antioxidant activity, and
amorphous transformation. After this, the inhibition of the quorum-sensing molecules by
the nanoparticles in a time-dependent pattern is usually studied [119]. This measurement
is done in a violacein pigment with the help of a biosensor strain Chromobacterium vio-
laceum CV026, which is again operated by an AI known as acylated homoserine lactone
(AHL) [120]. Kaempferol-loaded sodium tripolyphosphate (TPP)on ChNPshave typical
particle sizes and zeta potentials of 190 to 200 nm and +30 to +35 mV, respectively, and
can be stored up to 30 days and still successfully inhibit the quorum-sensing molecules,
namely, the violacein pigment, in Chromobacterium violaceum CV026 [121]. After the success
of this method, attempts are being made to use it as a novel antimicrobial chemotherapy.
In this process, the kaempferol-encapsulated chitosan nanoparticles play the role of a sta-
ble and effective quorum-sensing-dependent antimicrobial, antibacterial, and antibiofilm
agent [122].

Quercetin (QUE), another flavonoid phytocompound that is found in many commonly
used medicinal plants [123] holds strong potential for establishing itself as a QS-inhibiting
agent against Staphylococcus aureus, Pseudomonas aeruginosa, etc. [124]. However, the effec-
tive laboratory application of quercetin alone has stopped because of its lesser solubility
in physiological fluids [125]. Therefore, many research works convey a solubility increase
strategy for quercetin, which is done in the form of an amorphous and stable complex of
nanoparticles of quercetin and chitosan [126]. The preparation of this complex is done
using an electrostatic method and it is performed to form a complex involving ionized
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quercetin components and oppositely charged ChNPs [127]. In optimal conditions, a
quercetin and chitosan nanoparticle complex with a size of roughly 150 to 170 nm shows a
payload of about 25 to 30% having 60 to 70% efficiency with a long storage ability. Due
to the absence of any adverse side effects, the complex of quercetin and ChNPs can be
used for various therapeutic purposes. Such a complex is found to be more effective in the
inhibition of quorum sensing than quercetin alone. Although this complex could bring
about the increased suppression of quorum-sensing-regulating genes, resulting in the
haltingof swimming motility and formation of Pseudomonas aeruginosa biofilms, it could not
suppress the formation of its virulence factor [46]. The prior inhibition of the production
of the biofilm’s swimming motility using the quercetin and ChNPs complex revealed an
almost five-fold increase in kinetic solubility [128].

A new type of ChNPsthat are dually crosslinked with genipin and sodium tripolyphos-
phate (TPP) display quorum quenching activity [129].

Trans-cinnamaldehyde (CA) is an intensively studied compound that was shown
to inhibit QS activity by decreasing the DNA-binding ability of LuxR while inhibiting
acyl-homoserine lactone production. In this work, chitosan-based nanocapsules laden with
a high concentration of CA were applied to a transformed E. coli Top 10 strain fluorescence-
based reporter [14,130].

5. Mechanism of QS Inhibition Using Functionalized Chitosan Nanoparticles

A nanocapsule is a shell made from a nontoxic polymer that encapsulates an inner
liquid core at the nanoscale. These have many uses, including promising medical appli-
cations for drug delivery, food enhancement, nutraceuticals, and self-healing materials.
The benefits of encapsulation methods are the protection of the drug and/or allied sub-
stances from the adverse environment, controlled release, and precision targeting. Hence,
chitosan in the form of nanoparticles can exert its antibiofilm activity in a more targeted
way. TPP-crosslinked nanoparticles (ionically crosslinked; IC-NPs) show considerable
anti-quorum-sensing activity despite their inherent colloidal instability in microbiologi-
cal media.

It was found that nanocapsules can interact with bacteria via electrostatic interaction,
thus effectively delivering the quorum-quenching compound CA to the bacteria. The
electrostatic adsorption of the chitosan-coated nanocapsules to the bacterial cell envelope is
the mechanism that underpins the observed enhancement of the QS inhibition activity [131].

The polycationic groups in organic nanoparticles that are used for antimicrobial ac-
tivity cause cell damage, perhaps via an ion exchange interaction between bacteria and
charged polymer surfaces, resulting in the disruption of cellular membranes [132]. Poly-
cationic nanoparticles can enter into cells via endocytosis, followed by the formation of
nanoscale membrane holes, which leads to a final membrane translocation. [133]. The
mechanism of interaction of nanoparticles on the cell surface was also reported in terms of
the adsorption and penetration (or disruption) of cell membranes, triggering NP-mediated
toxicity. This may include steps such as nanoparticle adhesion at the membrane/water
interface, passive membrane translocation, membrane restructuring and leakage, and adhe-
sive lipid extraction [134]. Nanoparticle translocation into a cell is observed to occur via the
outer wrapping, followed by free translocation and inner attachment and embedment [135].
The adsorption of NPs leads to cell wall depolarization, inducing cellular toxicity and
degradation, which allows ions to enter the cytosol. Sometimes, NPs cause irregular pits
on the cell wall surface, enabling ions to enter the cell [136]. The polysaccharides of EPS
interact with SO4 groups of functionalized polystyrene NPs via hydrophobic complexation,
which disrupts bacterial biofilm formation [137].

Quaternary ammonium chitosan NPs can produce long cationic polymer chains that
penetrate the cell membrane and can induce ion exchange, which disrupts biofilms [138].

The positive surface of QAS ciprofloxacin-loaded nanochitosan-coated Ti implants dis-
integrates the negatively charged bacteria, followed by the release of ciprofloxacin, which
inhibits enzymes, including DNA gyrase, and topoisomerase causes bacterial disruption.
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Free radicals interact with endogenous molecular oxygen to produce ROS, superoxide
hydroxyl radicals, and hydrogen peroxide, which damages the bacteria membrane integrity
and causes irreparable bacteria lysis [139]. Quaternized-chitosan-loaded Ag NPs release
Ag ions that disintegrate the bacteria and inhibit biofilm development [140] (Figure 2).

Figure 2. Mechanism of inhibition of biofilm by ChNPs.

6. Conclusions

After surface functionalization with various bioactive compounds, chitosan nanopar-
ticles become well equipped for quorum quenching. The success of biofilm eradication
lies with the precise obstruction of the transmission of signal molecules for cell-to-cell
communication. More research is warranted to find out potent bioactive compounds
that can be used for the functionalization of chitosan nanoparticles for various successful
therapeutic applications.
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