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Abstract: This study aims to optimize the composition (body formulation) and firing temperature of
sustainable ceramic clay-based ceramics incorporated with electric arc furnace (EAF) steel slag waste
using general full factorial design (GFFD). The optimization is necessary to minimize drawbacks of
high iron oxide’s fluxing agent (originated from electric arc furnace, EAF steel slag waste), which led
to severe surface defects and high closed porosity issue of the ceramics. Statistical analysis of GFFD
including model adequacy checking, analysis of variance (ANOVA), interaction plots, regression
model, contour plot and response optimizer were conducted in the study. The responses (final
properties of ceramics) investigated were firing shrinkage, water absorption, apparent porosity,
bulk density and modulus of rupture (MOR). Meanwhile, the factors employed in experimental
parameters were weight percentage (wt.%) of EAF slag added and firing temperature. Upon statistical
analysis, GFFD has deduced that wt.% amount of EAF slag added and firing temperatures are proven
to significantly influence the final properties of the clay-based ceramic incorporated with EAF slag.
The results of conducted statistical analysis were also highly significant and proven valid for the
ceramics. Optimized properties (maximum MOR, minimum water absorption and apparent porosity)
of the ceramic were attained at 50 wt.% of EAF slag added and firing temperature of 1180 ◦C.

Keywords: general full factorial design (GFFD); electric arc furnace (EAF) steel slag waste; sustainable
clay-based ceramics

1. Introduction

In recent years, the development of sustainable clay-based ceramics is becoming
notable and attracting worldwide researchers to explore on it. A clay-based ceramic is
regarded as ‘sustainable’ if it is made from waste materials (including by-products), environ-
mentally friendly (non-hazardous and recyclable), energy-efficient and cost-effective [1–7].
Various worldwide researchers have proposed on the potential recycling of waste materials,
such as blast furnace slag from the iron making process [8–14], waste glass [15–27], fly
ash [28–35], sewage sludge [36–49] and electric arc furnace (EAF) steel slag from carbon
steel making plant [4,50–52] as one of the raw materials for clay-based ceramic products
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such as brick, ceramic floor and wall tile as well as roofing tile. The idea of utilizing the
waste materials for the ceramic body is progressively proposed due to they have proximate
chemical composition to the natural resources (clay, flux and filler) used for conventional
clay-based ceramics.

Badiee et al. (2008) [50], Sarkar et al. (2010) [51], Teo et al. (2014) [52] and Teo et al.
(2019) [4] are among the pioneer researchers to initiate the idea of recycling EAF steel
slag (by-product of carbon steel making) into sustainable clay-based ceramics. Although
the research works were successful, they have mutually agreed that the high iron oxide
content of EAF slag (25–42.4 wt.%) would cause vigorous fluxing action in the clay-based
ceramic body. The iron oxide causes excessive formation of glassy phase, and the glassy
phase would rapidly seal pores and trap gases, leading to surface defects such as bloating
and blistering upon cooling of the ceramics [53]. Besides, the trapped gases would also
remain as closed porosity in the ceramic body upon cooling. Therefore, combination of
these drawbacks, surface defects and closed porosity would in turn deteriorate properties
(water absorption and modulus of rupture) of the ceramics and these make the utilization
of EAF slag is rather more challenging as compared to other waste materials. Owing
to these, a thorough fine- tuning of formulation and firing temperature are required to
minimize the drawbacks of high iron oxide in the slag. Although the EAF slag is suitable
as a fluxing agent, the formulation of clay-based ceramics is still very crucial to avoid the
drawbacks highlighted such as surface defects and closed porosity issues which could
deteriorate properties (water absorption and MOR) of the tile. Considering this concern,
proper formulation and firing temperature assisted by general full factorial design, which
is one of a statistical experimental design approaches, could minimize the aforementioned
drawbacks of clay-based ceramic incorporated with EAF slag.

Statistical experimental design is one of powerful data mining tools and could be
considered as a black box of simulation with potential application in various research
area [54]. It refers to the process of planning the experiment so that appropriate data
will be collected and analyzed by statistical methods, resulting in a valid and objective
conclusion. It is generally based on mathematical equations or models and outcomes of
factors studied. Several types of commonly used experimental designs are Full Factorial
Design, Fractional Factorial Design, General Full Factorial Design, Design of Mixture,
Response Surface Methodology (RSM) and Taguchi Design. The selection of appropriate
experimental design depends on objectives of the research and feasibility of experimental
data, including factors or variables studied and outputs or responses targeted [55]. Each
of the experimental design is accompanied with typical statistical methods such as model
adequacy checking, analysis of variance (ANOVA), main effect and interaction plots,
regression analysis, contour and surface plots and design optimizer [56,57]. To the best of
the authors’ knowledge, the main objective of most previous DOE technique employed in
the clay-based ceramics was merely to optimize composition of the green ceramics [58–62].
The composition optimized by them are shown in Table 1.

Table 1. Optimized composition (design of mixture experiment) of clay-based ceramics.

Researchers Optimized Composition

[58] Clay–Feldspar–Quartz
[59] Clay–Feldspar–Quartz
[60] Clay–Kaolin Waste–Granite Waste
[61] Ball Clay–Kaolin Waste–Alumina
[62] Clay–Feldspar–Quartz

Since the design of a mixture experiment is merely limited to optimization of compo-
sition (body formulation) for the clay-based ceramics, general full factorial design has the
advantages of an ability to screen more than one independent factors [63]. For example,
the weight percentage of the raw material (composition/body formulation) and the firing
temperature (processing parameter) are the independent factors employed in this research
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work. The general full factorial design has a certain level of flexibility in choosing the
number of levels for each of assigned factor [64,65]. Thus, it is very useful when equality
of levels may consist constraint towards obtaining more accurate predicted regression
models [66]. Apart from that, through the general full factorial design, it is capable in
determining which factors have significant effects in a response, as well as how the effect
of one factor varies according to the level of other factors [67]. In this project, general full
factorial design is very useful to study the effects of EAF slag and firing temperature on
the properties of the clay-based green ceramics. Since the number of levels for the EAF
slag and firing temperature are flexible, the flexibility of combined factors is also able to
assist in the sintering mechanism study of the ceramics. Therefore, this study aims to fine-
tune the formulation and firing temperature using a general full factorial design to further
minimize the aforementioned drawbacks of clay-based green ceramics incorporated with
EAF slag.

2. Materials and Methods
2.1. General Full Factorial Design (GFFD)

General Full Factorial Design (GFFD) is one of the statistical experimental design
techniques. Its main purpose is to investigate the main effects and interaction of factors
(parameters studied) run at different number of levels. In this project, the design was
meant to investigate the effects of weight percentage of EAF slag (4 levels: 30 wt.%,
40 wt.%, 50 wt.% and 60 wt.%) and firing temperature (3 levels: 1100 ◦C, 1150 ◦C and
1180 ◦C) toon the final properties of the ceramic incorporated with the EAF slag waste,
using statistical software package MINITAB 17, as shown in Table 2.

Table 2. Factors and their respective number of levels investigated in general full factorial design.

Factors Notation Unit
Levels (in Coded)

1 2 3 4

wt.% of EAF slag A wt.% 30 40 50 60
Firing Temperature B ◦C 1100 1150 1180 -

In the experimental design, there were several statistical analyses to be executed, such
as ANOVA, normal probability plot, residual versus fits plot, interaction plot, contour plot
and response optimizer. Table 2 shows the factors and their respective number of levels
investigated in the general full factorial design. In terms of responses (final properties of
the ceramic incorporated with EAF slag waste), the criteria evaluated were firing shrinkage
(linear and volume), water absorption, apparent porosity, bulk density and modulus of
rupture (MOR).

2.2. Run Experiment

Initially, EAF slag aggregate was collected from local steel manufacturers in Malaysia
and was crushed into powder using a hardened steel ring mill for 15 min. The EAF slag
powder was then sieved through 270 meshes, 53 µm (ASTM E11—16) test sieve to ensure
only EAF slag with particle size equal to or less than 53 µm was used in the ceramic
fabrication. Subsequently, the EAF slag powder was wet-mixed with ball clay for 1 h, with
the presence of 0.05 wt.% sodium silicate deflocculant. The weight percentage (wt.%) of the
EAF slag was varied according to the ‘run order’ in the design matrix, as shown in Table 3.
After mixing, the slurry was further milled by ball milling with a hardened stainless-steel
ball-to-slurry ratio of 10:1 for 5 h at 40 rpm. Then, the milled slurry was dried in an electric
oven at 110 ◦C for 24 h. The dried mixture was then re-grinded using pestle and mortar
for 1 h. After that, the powder mixture was moistened under a water spray. The amount
of moisture introduced was approximately 5–6 wt.% per sample. Granulated mixture of
each composition was compacted by hydraulic press with pressure of 40 MPa, producing
a rectangular green body with dimensions 100 mm × 40 mm × 6 mm. The compacted
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body was dried in an electric oven at 110 ◦C for 24 h before firing at 1100 ◦C, 1150 ◦C and
1180 ◦C for 1 h, respectively. The firing’s sequence was according to the ‘run order’ in the
design matrix (Table 3) as well. Finally, the naturally cooled ceramics were characterized
accordingly in terms of firing shrinkage, water absorption, apparent porosity, bulk density,
and modulus of rupture (MOR).

The firing shrinkage (linear and volume shrinkage) was determined by referring to
ASTM C326-09 standard. The linear and volume shrinkages were calculated according to
Equations (1) to (2), respectively.

Linear Shrinkage, Ls (%) = [(Lp − Lf)/Lp] × 100 (1)

Volume Shrinkage. Vs. (%) = {1 − [1 − (Ls/100)]3} × 100 (2)

where, Lp and Lf represent plastic length (before firing) and fired length (after firing) of the
ceramic, respectively.

Meanwhile, the water absorption, apparent porosity and bulk density were deter-
mined by Archimedes principle as per the MS ISO 10545-3:2001 standard. First, mass of
fired ceramic was determined and labelled as M1. The fired ceramic was then immersed
in distilled water and placed in a vacuum chamber. It was evacuated to a pressure of
approximately 100 kPa and maintained for 30 min, allowing water to impregnate into
the ceramic. After impregnation, the suspended mass, M3 of the ceramic in water was
determined. After weighing, the ceramic was wiped lightly with a cotton cloth to remove
all excess water from its surface. Then, its saturated mass was determined and denoted as
M2. The water absorption, apparent porosity and bulk density were calculated according
to Equations (3)–(5), respectively.

Water absorption (%) = [(M2 − M1)/M1] × 100 (3)

Apparent porosity (%) = [(M2 − M1)/(M2 − M3)] × 100 (4)

Bulk Density (g/cm3) = M1/(M2 − M3) (5)

where, M1, M2 and M3 represent mass of dried ceramic, saturated mass after immersion in
water, and saturated mass during suspended in water, respectively.

MOR was determined by an Instron Testing Machine using a three-point bending
system. The configuration of the testing and calculations were performed according to MS
ISO 10545-4:2003 Standard. The MOR was calculated as in Equation (6).

MOR (MPa) = (3FL)/(2bd2) (6)

where, F = load applied to rupture the specimen (N), L = span length between two sup-
ported rods (fixed at 100 mm), b = width of specimen (fixed at approximately 35 mm),
d = thickness of specimen (fixed at approximately 4 mm).

Subsequently, all the quantitative results (linear shrinkage, volume shrinkage, water
absorption, apparent porosity, bulk density and MOR) were tabulated in the design matrix
(Table 3) before proceeding with the required statistical analyses.
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Table 3. Experimental design matrix for general full factorial design (including values for all responses).

Run Order
Factors Responses

A *
(wt.% of EAF Slag)

B **
(Firing Temperature)

Linear
Shrinkage (%)

Volume
Shrinkage (%)

Water
Absorption (%)

Apparent
Porosity (%)

Bulk Density
(g/cm3) MOR (MPa)

1st 1 2 4.43 12.70 8.47 17.99 2.13 39.76

2nd 4 3 7.51 20.87 5.05 11.75 2.33 75.06

3rd 4 1 2.34 6.87 19.45 36.44 1.87 29.66

4th 2 1 3.92 11.31 16.39 31.85 1.94 27.91

5th 1 2 4.04 11.64 8.83 18.79 2.13 39.52

6th 1 1 2.59 7.56 17.63 33.46 1.90 23.85

7th 3 3 12.82 33.73 0.17 0.50 2.96 91.74

8th 4 2 3.51 10.17 13.14 26.72 2.03 49.51

9th 3 2 10.15 27.45 4.96 12.56 2.53 57.75

10th 4 3 6.92 19.34 5.06 12.13 2.40 75.18

11st 2 3 10.00 27.08 0.96 2.45 2.55 64.04

12nd 2 3 9.76 26.51 1.01 2.59 2.57 65.53

13rd 4 1 2.25 6.61 20.95 38.78 1.85 29.90

14th 1 3 9.11 24.90 1.63 3.93 2.41 52.88

15th 3 1 4.80 13.72 15.51 31.29 2.02 28.03

16th 3 3 13.05 34.26 0.16 0.46 2.95 93.09

17th 1 3 9.02 24.69 1.52 4.01 2.64 53.66

18th 2 1 3.98 11.48 16.29 31.88 1.96 27.08

19th 1 1 3.01 8.77 17.15 32.96 1.92 23.48

20th 4 2 3.69 10.66 12.94 26.48 2.05 49.41

21st 3 2 10.41 28.08 4.92 12.59 2.56 57.92

22nd 2 2 5.61 15.89 6.82 16.90 2.48 44.15

23rd 2 2 5.75 16.27 6.68 16.51 2.47 44.75

24th 3 1 4.97 14.17 15.55 31.11 2.01 29.01

* For factor ‘A’ (wt.% of EAF slag), ‘1’, ‘2’, ‘3’ and ‘4’ represent 30 wt.%, 40 wt.%, 50 wt.% and 60 wt.%, respectively. ** For factor ‘B’ (firing temperature), ‘1’, ‘2’ and ‘3’ represent 1100 ◦C, 1150 ◦C and 1180 ◦C,
respectively.
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3. Results and Discussion
3.1. Variables and Responses

General full factorial design (GFFD) with two independent variables or operating
factors was used to statistically analyze effects of different operating factors and their inter-
actions on predicted responses or properties (linear shrinkage, volume shrinkage, water
absorption, apparent porosity, bulk density and MOR) of clay-based ceramics incorporated
with the EAF slag. The independent variables were weight percentage (wt.%) of EAF slag
and firing temperature, denoted as ‘A’ and ‘B’, respectively. As explained in Section 2.1,
the weight percentage of EAF slag (factor A) had four levels, and each level was denoted
in coded values of ‘1’, ‘2’, ‘3’ and ‘4’. Meanwhile, for the firing temperature (factor B),
it consisted of three levels, and the level was denoted as ‘1’, ‘2’ and ‘3’. The prediction
of output responses or the quantitative properties of the ceramic tile were performed by
fitting the experimental data to a regression model, as illustrated in Equation (7) below:

Y = β0 +
k

∑
i=1

βiAi +
k

∑
j=1

βjBj +
k

∑
i=1

k

∑
k=1

βijAiBj (7)

where, Y is a predicted response; Ai and Bi are independent coded variables; i and j are
respective level for each variable, β0 is a constant; βi and βj are regression coefficient for
linear effects; βij is regression coefficient for interaction effect.

3.2. Experimental Design Matrix

Table 3 shows experimental design matrix and experimental responses obtained from
the total 24 experimental runs in random order with 2 replications. As mentioned earlier,
coding was used to denote the level or range of each evaluated factor on a common scale
of ‘1’, ‘2’, ‘3’ and ‘4’ for factor A and ‘1’, ‘2’, and ‘3’ for factor B. Subsequently, statistical
analysis including model adequacy checking, analysis of variance (ANOVA), interaction
plots, regression analysis, contour plot and responses optimizer were performed for each
response, as shown in Sections 3.3–3.8, respectively.

3.3. Model Adequacy Checking

Model adequacy checking was performed to verify several assumptions of residuals
prior to further statistical analysis [55,68]. Generally, in statistical subjects, residuals can
be defined as the difference of the actual and predicted response value [69]. In this case,
the actual response values were obtained from the experimental run (as shown previously
in Table 3) while the predicted response values were obtained from Equations (8)–(13)
upon regression analysis, as shown in Table 5 of Section 3.6. The adequacy checking
governs three assumptions of the residuals, (i) the normality assumption of the residuals,
(ii) constant variance of the residuals, and (iii) independent assumption of the residuals.
The adequacy of these assumptions would imply that the generated regression model
(Equation (8) to Equation (13)) is mostly accurate for expressing the actual experimental
data [70]. The three assumptions could be validated via several statistical residual plots,
such as normal probability plot of residuals, histogram of frequency versus residuals, plot
of residuals versus fitted or predicted values and plot of residuals in time sequence or
observation order.

Figure 1 shows the residual plots for linear shrinkage, volume shrinkage, water
absorption, apparent porosity, bulk density and modulus of rupture (MOR) of the clay-
based ceramics incorporated with EAF slag. By analyzing all the normal probability
plots, it was observed that most of the residual points are scattered along the straight
line, except for bulk density. This indicated that the linear shrinkage, volume shrinkage,
water absorption, apparent porosity and MOR data are normally distributed, and the first
criteria of model adequacy checking were fulfilled [71]. The histogram plot also showed
an almost symmetrical histogram bar, except for bulk density. Thus, this observation
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further supports the normal distribution of the linear shrinkage, volume shrinkage, water
absorption, apparent porosity and MOR data [72].
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Secondly, the residual versus fitted value plots illustrated that the data points for
linear shrinkage, volume shrinkage, water absorption, apparent porosity and MOR are
distributed randomly without significant structure, confirming the constant variance cri-
teria of the residuals [70]. Conversely, the bulk density showed an obvious structure of
the residuals’ distribution. In addition, residual versus observation order plots indicated
that the residual points are completely random despite observation order, except for bulk
density. This implies that the residuals were independent with each other and obeying the
third assumption of the residuals mentioned earlier [70]. As mentioned earlier, the bulk
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density data displayed a non-normal trend compared to other responses. By observing
again the normal probability plot of the bulk density (Figure 1), there were two outlier or
unusual points present in the plot, leading to the non-normality of the data distribution.
The outliers belong to a combination of 30 wt.% of EAF slag (Factor A, Level 1) and firing
temperature of 1180 ◦C (Factor B, Level 3). In order to further investigate this issue, the
Anderson–Darling normality test was performed on the bulk density data. The normal-
ity test was conducted before removing the outliers and after removing the outliers, as
shown in Figure 2. Generally, null hypothesis (H0) of the normality test states that the data
population is in a normal distribution [73]. In this case, our target was to accept the null
hypothesis, and hence, the p-value has to be greater than 0.05. According to Figure 2, the
p-value for the normality test prior to removal of outliers was less than 0.005, leading to
rejection of the H0, and the data followed a non-normal distribution. However, after the
outliers were removed, the p-value was increased to 0.326, contributing to the normality
of the data distribution. Therefore, this confirmed the presence of the two mentioned
outlier points.
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In summary, since all assumptions of the residuals were mostly obeyed, the regression
model generated in Section 3.6 (Equation (8) to Equation (13) of Table 5) could well ex-
press the experimental data for the linear shrinkage, volume shrinkage, water absorption,
apparent porosity, bulk density and MOR.

3.4. Analysis of Variance (ANOVA)

In most of statistical experimental design, analysis of variance (ANOVA) method was
conducted to evaluate significant effect of operating factors to properties or responses
of a particular developed product or application [74–76]. In this case, through ANOVA,
the significant effects of weight percentage of EAF slag (A) and firing temperature (B) on
the responses, such as linear shrinkage, volume shrinkage, water absorption, apparent
porosity, bulk density and MOR could be determined, by observing probability value, or
also commonly known as ‘p-value’ upon the analysis. In general, the null hypothesis (H0)
of ANOVA states that one or more than one operating factors do not cause a significant
difference in means of any responses; H0: µ1 = µ2 = . . . = µa [55,77]. Most researchers have
mutually agreed that the p-value has to be equal or smaller than 0.05 so that the operating
factors are statistically significant in affecting the investigated response, leading to rejection
of the null hypothesis for the ANOVA [71,72,74–76,78–80].

Table 4 shows the ANOVA for linear shrinkage, volume shrinkage, water absorption,
apparent porosity, bulk density and MOR, respectively. The abbreviations of ‘DF’, ‘Adj.
SS’, ‘Adj. MS’, ‘F-value’ and ‘p-value’ represent ‘degrees of freedom’, ‘adjusted sum
of squares’, ‘adjusted mean squares’, ‘Fisher-value’ and ‘probability-value’, respectively.
From the analysis, it was found that the p-value for ‘A’ and ‘B’ linear factors and also
‘A*B’ interaction factor is zero (0.000) for all responses or properties of the ceramic tile
incorporated with the EAF slag. The smaller the p-value than did 0.05, the factor could be
regarded to have a higher significant effect on the response [72]. Upon the analysis, it could
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be inferred that both wt.% of EAF slag (A) and firing temperature (B) operating factors
significantly influence the linear shrinkage, volume shrinkage, water absorption, apparent
porosity, bulk density and MOR of the clay-based ceramics incorporated with EAF slag.

Table 4. ANOVA for linear shrinkage, volume shrinkage, water absorption, apparent porosity, bulk density and MOR.

(a) Linear Shrinkage
Source DF Adj. SS Adj. MS F-value p-value

Model 11 257.84 23.42 588.24 0.000
Linear 5 244.78 48.96 1229.81 0.000

A 3 84.00 28.00 703.39 0.000
B 2 160.78 80.39 2019.44 0.000

2-Way Interactions 6 12.80 2.12 53.59 0.000
A*B 6 12.80 2.13 53.59 0.000

Error 12 0.48 0.04
Total 23 258.06

(b) Volume Shrinkage
Source DF Adj. SS Adj. MS F-value p-value

Model 11 1713.68 155.79 561.50 0.000
Linear 5 1636.20 327.24 1179.43 0.000

A 3 551.19 183.73 662.20 0.000
B 2 1085.01 542.50 1955.29 0.000

2-Way Interactions 6 77.49 12.91 46.55 0.000
A*B 6 77.49 12.91 46.55 0.000

Error 12 3.33 0.28
Total 23 1717.01

(c) Water Absorption
Source DF Adj. SS Adj. MS F-value p-value

Model 11 1085.52 98.68 877.96 0.000
Linear 5 1077.13 215.43 1916.60 0.000

A 3 116.87 38.96 346.60 0.000
B 2 960.26 480.13 4271.61 0.000

2-Way Interactions 6 8.39 1.40 12.43 0.000
A*B 6 8.39 1.40 12.43 0.000

Error 12 1.35 0.11
Total 23 1086.86

(d) Apparent Porosity
Source DF Adj. SS Adj. MS F-value p-value

Model 11 3715.07 337.73 1195.25 0.000
Linear 5 3683.60 736.72 2607.28 0.000

A 3 377.27 125.76 445.06 0.000
B 2 3306.32 1653.16 5850.60 0.000

2-Way Interactions 6 31.48 5.25 18.57 0.000
A*B 6 31.48 5.25 18.57 0.000

Error 12 3.39 0.28
Total 23 3718.46
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Table 4. Cont.

(e) Bulk Density
Source DF Adj. SS Adj. MS F-value p-value

Model 11 2.5639 0.2331 91.71 0.000
Linear 5 2.3755 0.4751 186.92 0.000

A 3 0.5884 0.1961 77.17 0.000
B 2 1.7870 0.8935 351.55 0.000

2-Way Interactions 6 0.1885 0.0314 12.36 0.000
A*B 6 0.1885 0.0314 12.36 0.000

Error 12 0.0305 0.0025
Total 23 2.5944

(f) MOR
Source DF Adj. SS Adj. MS F-value p-value

Model 11 9828.12 893.47 3078.39 0.000
Linear 5 9164.04 1832.81 6314.86 0.000

A 3 1396.03 465.34 1603.32 0.000
B 2 7768.01 3884.01 13,382.16 0.000

2-Way Interactions 6 664.08 110.68 381.34 0.000
A*B 6 664.08 110.68 381.34 0.000

Error 12 3.48 0.29
Total 23 9831.60

3.5. Interaction Plots

As mentioned previously in Section 3.1, in this general factorial design, the main
factors evaluated were weight percentage (wt.%) of EAF slag and firing temperature.
Interaction plot illustrates the combination effects of both main factors (with different
levels) to the particular response (linear shrinkage, volume shrinkage, water absorption,
apparent porosity, bulk density or MOR), as shown in Figure 3.

3.5.1. Firing Shrinkage (Linear and Volume Shrinkages)

Figure 3a,b shows the interaction plots for linear shrinkage and volume shrinkage,
respectively. From the plots, it was observed that by increasing the weight percentage of
EAF slag from 30 wt.% (coded as ‘1’) to 50 wt.% (coded as ‘3’), both the linear and volume
shrinkages of the ceramics showed an increasing trend. However, further increasing the
EAF slag to 60 wt.% (coded as ‘4’) reduced the linear and volume shrinkage of the ceramics.
In terms of firing temperature, an increment of firing temperature from 1100 ◦C (coded as
‘1’) to 1180 ◦C (coded as ‘3’) led to an increasing trend of the linear and volume shrinkages.

On the other hand, the interaction plot also shows that the lines of the plot were
not parallel with each other. Thus, this suggests that there is a strong interaction among
the factors (weight percentage of EAF slag and firing temperature) studied in this exper-
iment [81]. Upon interaction analysis, it was revealed that for all the weight percentage
of EAF slag added, the linear and volume shrinkages of the ceramics increased with the
firing temperature. The clay-based ceramics incorporated with 50 wt.% of EAF slag had
the highest shrinkage among other compositions despite the different firing temperatures.
In overall, the ceramics incorporated with 50 wt.% of EAF slag and fired at 1180 ◦C had the
highest shrinkage among all.
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3.5.2. Water Absorption, Apparent Porosity and Bulk Density

Figure 3c–e depict the interaction plots for water absorption, apparent porosity and
bulk density, respectively. By observing the trend of the plots, it is revealed that the incre-
ment of EAF slag added from 30 wt.% (coded as ‘1’) to 50 wt.% (coded as ‘3’) contributes
to reduction of water absorption and apparent porosity, accompanied by an increasing
trend of bulk density in the clay-based ceramics incorporated with EAF slag. Furthermore,
the water absorption and apparent porosity of the ceramics reduced with an increment
of firing temperature used. This was also accompanied by an increase of bulk density
of the ceramics. On the other hand, it could also be observed that interaction lines of
the plots were not parallel with each other. As mentioned earlier, this deduced that both
weight percentage of EAF slag and firing temperature had strong interaction, and they were
simultaneously affecting the water absorption, apparent porosity and bulk density of the
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ceramics. Upon interaction analysis, it could be observed that regardless of composition,
the water absorption and apparent porosity of the tile was lowest, and bulk density was
highest at the highest firing temperature of 1180 ◦C. Meanwhile, the clay-based ceramics
added with 50 wt.% of EAF slag had lower water absorption, apparent porosity and higher
bulk density than other compositions at all the firing temperatures. In overall, the clay-
based ceramics added with 50 wt.% of EAF slag and fired at 1180 ◦C had the lowest water
absorption, apparent porosity and highest bulk density.

3.5.3. Modulus of Rupture (MOR)

Figure 3f shows the interaction plots for MOR of the clay-based ceramics incorporated
with EAF slag. From the plots, it could be seen that as the EAF slag added was increased
from 30 wt.% (coded as ‘1’) to 50 wt.% (coded as ‘3’), the MOR increased. However, further
increment of the EAF slag added to 60 wt.% (coded as ‘4’) deteriorate the MOR. In terms of
firing temperature, MOR increased with the firing temperature. Besides, it could also be
observed that both factors (weight percentage of EAF slag and firing temperature) had an
interaction effect on the MOR as the lines were not parallel with each other. Regardless of
the weight percentage of EAF slag, the MOR increased with the firing temperature. The
clay-based ceramics added with 50 wt.% of EAF slag had the highest MOR, while those
added with 30 wt.% of EAF slag had the lowest MOR for all firing temperatures. In overall,
the clay-based ceramics added with 50 wt.% of EAF slag and fired at 1180 ◦C had the
highest MOR, while the ceramics added with 30 wt.% of EAF slag and fired at 1100 ◦C had
the lowest MOR.

3.6. Regression Analysis

Apart from interaction plots, there is another alternative to express the effect of oper-
ating factors on particular responses in a quantitative approach. This could be achieved via
regression model analysis [55,82], as shown in Table 5. The regression analysis includes
correlation of coefficient (R2), coefficient of each factor, values of constant, p-value and
subsequently, regression equation. The correlation of coefficient (R2) and regression equa-
tion are tabulated in Table 5. Meanwhile, the complete details of coefficient of each factor,
values of constant and p-value are shown in Appendix A. The p-value would indicate the
significance of this constant and regression coefficient in the developed regression model.

3.6.1. Firing Shrinkages (Linear and Volume Shrinkages)

The regression analysis for linear and volume shrinkages is presented in Table 5 and
Appendix A. For the linear shrinkage, the value of constant was found to be 6.4017 with
its p-value of zero (0.000), indicating its significant in the regression model (Equation (8)).
Meanwhile, the p-value for coefficients of factor A (weight percentage of EAF slag) was
less than 0.05, except for level 2 (40 wt.% EAF slag) with its p-value of 0.175. For factor
B (firing temperature), the p-value was less than 0.05 for all levels. For interaction terms
(A*B), most combinations had p-value less than 0.05, except for A2*B3 (combination of
40 wt.% EAF slag with firing temperature of 1180 ◦C) and A3*B3 (combination of 50 wt.%
EAF slag with firing temperature of 1180 ◦C).

Meanwhile, for volume shrinkage, the value of constant was 17.697. It was significant
in the regression model (Equation (9)) as its p-value was 0.000. For factor A (weight
percentage of EAF slag), the p-values were less than 0.05, except for level 2 (40 wt.%) with
its slightly higher p-value of 0.057. For factor B, all the p-value were 0.000. In addition,
for the interaction terms (A*B), most interactions had p-value less than 0.05, except for
A2*B3 (combination of 40 wt.% EAF slag with firing temperature of 1180 ◦C) and A3*B3
(combination of 50 wt.% EAF slag with firing temperature of 1180 ◦C).
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Table 5. Regression model analysis of linear shrinkage, volume shrinkage, water absorption, apparent porosity, bulk density
and MOR.

Responses
Regression Model Analysis

R2 R2 (adj.) R2 (pred.) Regression Equation

Linear
Shrinkage 99.81% 99.65% 99.26%

6.4017 − 1.0350 [A_1] + 0.1017 [A_2] + 2.9650 [A_3] − 2.0317
[A_4] − 2.9192 [B_1] − 0.4529 [B_2] + 3.3721 [B_3] + 0.3525
[A_1*B_1] − 0.6788 [A_1*B_2] + 0.3263 [A_1*B_3] + 0.3658
[A_2*B_1] − 0.3704 [A_2*B_2] + 0.0046 [A_2*B_3] − 1.5625
[A_3*B_1] + 1.3662 [A_3*B_2] + 0.1963 [A_3*B_3] + 0.8442
[A_4*B_1] − 0.3171 [A_4*B_2] − 0.5271 [A_4*B_3]
Equation (8))

Volume
Shrinkage 99.81% 99.63% 99.22%

17.6970 − 2.6540 [A_1] + 0.3930 [A_2] + 7.5380 [A_3] −
5.2770 [A_4] − 7.6360 [B_1] − 1.090 [B_2] + 8.7250 [B_3] +
0.7580 [A_1*B_1] − 1.7840 [A_1*B_2] + 1.0260 [A_1*B_3] +
0.9410 [A_2*B_1] − 0.9200 [A_2*B_2] − 0.0200 [A_2*B_3] −
3.6540 [A_3*B_1] + 3.6200 [A_3*B_2] + 0.035 [A_3*B_3] +
1.9560 [A_4*B_1] − 0.9150 [A_4*B_2] − 1.040 [A_4*B_3]
(Equation (9))

Water
Absorption 99.88% 99.76% 99.50%

9.2183 − 0.0130 [A_1] − 1.1930 [A_2] − 2.3400 [A_3] + 3.5470
[A_4] + 8.1467 [B_1] − 0.8733 [B_2] − 7.2733 [B_3] + 0.0380
[A_1*B_1] + 0.3180 [A_1*B_2] − 0.3570 [A_1*B_3] + 0.1680
[A_2*B_1] − 0.4020 [A_2*B_2] + 0.2330 [A_2*B_3] + 0.5050
[A_3*B_1] − 1.0650 [A_3*B_2] + 0.5600 [A_3*B_3] − 0.7120
[A_4*B_1] + 1.1480 [A_4*B_2] − 0.4370 [A_4*B_3]
(Equation (10))

Apparent
Porosity 99.91% 99.83% 99.64%

18.9220 − 0.3990 [A_1] − 1.8920 [A_2] − 4.1700 [A_3] +
6.4610 [A_4] + 14.5490 [B_1] − 0.3550 [B_2] − 14.1950 [B_3] +
0.1380 [A_1*B_1] + 0.2210 [A_1*B_2] − 0.3590 [A_1*B_3] +
0.2860 [A_2*B_1] + 0.0300 [A_2*B_2] − 0.3150 [A_2*B_3] +
1.8990 [A_3*B_1] − 1.8220 [A_3*B_2] − 0.0770 [A_3*B_3] −
2.3220 [A_4*B_1] + 1.5710 [A_4*B_2] + 0.7510 [A_4*B_3]
(Equation (11))

Bulk Density 98.82% 97.75% 95.30%

2.2775 − 0.0892 [A_1] + 0.0508 [A_2] + 0.2275 [A_3] − 0.1892
[A_4] − 0.3438 [B_1] + 0.0200 [B_2] + 0.3238 [B_3] + 0.0654
[A_1*B_1] − 0.0783 [A_1*B_2] + 0.0129 [A_1*B_3] − 0.0346
[A_2*B_1] + 0.1267 [A_2*B_2] − 0.0921 [A_2*B_3] − 0.1463
[A_3*B_1] + 0.0200 [A_3*B_2] + 0.1263 [A_3*B_3] + 0.1154
[A_4*B_1] − 0.0683 [A_4*B_2] − 0.0471 [A_4*B_3]
(Equation (12))

MOR 99.96% 99.93% 99.86%

48.870 − 10.011 [A_1] − 3.2930 [A_2] + 10.7200 [A_3] −
0.1892 [A_4] − 21.5050 [B_1] -1.0230 [B_2] + 22.5280 [B_3] +
6.3110 [A_1*B_1] + 1.8050 [A_1*B_2] − 8.1160 [A_1*B_3] +
3.4230 [A_2*B_1] − 0.1030 [A_2*B_2] − 3.3200 [A_2*B_3] −
9.5650 [A_3*B_1] − 0.7320 [A_3*B_2] + 10.2970 [A_3*B_3] −
0.1690 [A_4*B_1] − 0.9700 [A_4*B_2] + 1.1390 [A_4*B_3]
(Equation (13))

Kindly refer to Appendix A for ‘coefficient of each factor’, ‘values of constant’ and ‘p-value’ data.

Although certain coefficient of factors and their interaction terms (for both linear
and volume shrinkage) had p-value greater than 0.05, this is not a single criterion to
reject the generated regression model. Alternatively, the significant level of the regression
equation is also dependent on R2 (correlation of coefficient) value of the developed model.
In the regression analysis, R2 would provide correlation between experimental response
(obtained from experimental run) and predicted response (obtained from regression model).
Therefore, the closer the R2 value to 100%, the higher the precision level of the developed
regression model [83]. In other words, the regression model could effectively represent
the experimental data. From Table 5, the R2 value for the linear and volume shrinkages
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regression equation was 99.81%, and it was closed to 100%. This indicates that up to 99.81%
of variation in the linear and volume shrinkages experimental data could be well explained
by the Equations (8) and (9) regression model [66].

Apart from R2 value, adjusted R2 or commonly denoted as R2 (adj.) is another criterion
to evaluate the degree of accuracy of the regression model [79]. R2 (adj.) is a correction
of R2 by considering sample size and number of terms in the regression equation [83].
From the analysis, the linear and volume shrinkages shrinkage regression model had R2

(adj.) value of 99.65% and 99.63% respectively. Thus, it could be deduced that the accuracy
of both models is 99.65% and 99.63% respectively. Both models could well represent the
actual experimental data of linear and volume shrinkage. Besides that, predicted R2 or
commonly known as R2 (pred.) of the linear and volume shrinkage was 99.26% and 99.22%.
This indicated that 99.26% of the linear shrinkage data and 99.22% of the volume shrinkage
data could be predicted by the respective regression models (Equations (8) and (9)). Palkar
and Shilapuram (2015) [54] have proposed that the difference between R2 (adj.) and R2

(pred.) has to be less than 20, so that the developed regression model is highly reliable.
From the analysis, it was found that the difference of R2 (adj.) and R2 (pred.) for the linear
shrinkage is 0.39, while it was 0.41 for volume shrinkage. In overall, from the p-value,
R2, R2 (adj.) and R2 (pred.) criterions, it could be deduced that the developed regression
models (Equations (8) and (9)) for the linear and volume shrinkages were highly significant.

3.6.2. Water Absorption, Apparent Porosity and Bulk Density

Table 5 and Appendix A also depict the regression analysis for water absorption,
apparent porosity and bulk density. Values of constant for the water absorption, apparent
porosity and bulk density were 9.2183, 18.9220 and 2.2775 respectively. p-Values for the
constants were 0.000, indicating that the constants were significant in the regression models
(Equations (10)–(12)). For water absorption, the p-value for the coefficient of factor A
(weight percentage of EAF slag) was less than 0.05, except for level 1 (30 wt.%), which
had a p-value of 0.912. p-Values for coefficient of factor B (firing temperature) were 0.000.
In terms of coefficient for interaction factors (A*B), there were several interactions that
experienced slightly higher p-value than 0.05. The interactions were A1*B1, A1*B2, A1*B3,
A2*B1 and A2*B3 with p-values of 0.823, 0.082, 0.055, 0.335 and 0.189 respectively.

For apparent porosity, the coefficient of factor A (weight percentage of EAF slag) had
p-values less than 0.05, except for level 1 (30 wt.% of EAF slag), while the p-values for
coefficient of factor B (firing temperature) were entirely less than 0.05. For the interaction
term (A*B), there were certain coefficients which had a p-value higher than 0.05. The
terms were A1*B1, A1*B2, A1*B3, A2*B1, A2*B2, A2*B3 and A3*B3 with their p-values of
0.614, 0.421, 0.202, 0.303, 0.913, 0.258 and 0.777 respectively. On the other hand, for bulk
density, the p-values for the coefficient of factor A (weight percentage of EAF slag) were
lower than 0.05. Meanwhile, coefficient of factor B (firing temperature) had the p-value
smaller than 0.05 too, except for level 2 (1150 ◦C). In terms of interaction factor, a few of
the coefficients for the interactions experienced p-values greater than 0.05. The interaction
terms were A1*B3, A2*B1, A3*B2 and A4*B3 with their respective p-values of 0.618, 0.195,
0.443 and 0.086.

Similarly, although certain coefficients of water absorption, apparent porosity and
bulk density had p-value greater than 0.05, this is not a single justification to reject the
regression models developed. Other statistical parameters such as R2, R2 (adj.) and R2

(pred.) would also have to be considered. From the regression analysis, it was observed
that the regression model of water absorption, apparent porosity and bulk density had a
high R2 value of 99.88%, 99.9% and 98.82% respectively. This indicated that up to 99.88% of
the water absorption experimental data, 99.91% of the apparent porosity experimental data,
and 98.82% of the bulk density experimental data could be represented by the respective
regression models (Equations (10)–(12)). In terms of accuracy of the developed regression
models, water absorption’s regression had R2 (adj.) value of 99.76%, while the apparent
porosity and bulk density with R2 (adj.) of 99.83% and 97.75%, respectively. With these
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large values of R2 (adj.), it can be said that the regression models had high accuracy, and
they could well represent the actual experimental data. In addition, the regression models
for water absorption, apparent porosity and bulk density also possessed a large value of R2

(pred.) with 99.50%, 99.64% and 95.30% respectively. This deduced that high probability
of the water absorption, apparent porosity and bulk density data to be predicted by the
regression models. In addition, the difference between R2 (adj.) and R2 (pred.) for water
absorption, apparent porosity and bulk density were 0.26, 0.19 and 0.45, respectively, which
were far lower than 20. Thus, the regression models are highly reliable in expressing
the experimental data. In overall, considering the p-value, R2, R2 (adj.) and R2 (pred.)
criterions, it could be said that the generated regression models (Equations (10)–(12)) were
highly significant.

3.6.3. Modulus of Rupture (MOR)

Regression analysis of MOR for ceramic tile incorporated with EAF slag is also pre-
sented in Table 5 and Appendix A. Upon the regression analysis, it was found that p-value
for the constant in the regression equation (Equation (13)) was 48.870 with p-value of
0.000. For interaction terms (A*B), only two coefficients of the interactions had p-value
greater than 0.05. The terms were A2*B2 and A4*B1 with their p-values of 0.708 and 0.543
respectively. As mentioned previously, apart from evaluating the p-value for coefficient
of the regression equation, R2, R2 (adj.) and R2 (pred.) were also important statistical
criterions to be considered in order to justify the particular regression model. For the MOR,
its regression model possessed R2, R2 (adj.) and R2 (pred.) of 99.96%, 99.93% and 99.86%
respectively. This conveyed that the model could well represent the actual experimental
data with high accuracy and also able to firmly predict the MOR’s experimental data. The
small difference (0.09) between the R2 (adj.) and R2 (pred.) further support the reliability
of the model in expressing the MOR experimental data. In overall, considering all the
statistical criterions, it could be inferred that the MOR’s regression model (Equation (13))
was highly significant.

3.6.4. Correlation between Firing Shrinkage, Water Absorption, Apparent Porosity, Bulk
Density and MOR

According to the correlations in Figure 3, it could be observed that changes of weight
percentage of EAF slag and firing temperature did significantly influence the linear and
volume shrinkage of the ceramics. Increment of firing temperature from 1100 to 1180 ◦C
increased both linear and volume shrinkage of the ceramics. Meanwhile, the shrinkage
increased with added EAF slag from 30 to 50 wt.%. It was also observed that the shrinkage
reduced with further addition of EAF slag (60 wt.%). The variations in linear and volume
shrinkage of the ceramics were closely related with bulk density, apparent porosity, water
absorption and MOR of the ceramics.

Based on the correlation analysis in Figure 3, as linear and volume shrinkage increased,
the bulk density increased, accompanied by reduction of apparent porosity and water
absorption. During firing process, iron oxide (FeO) content of EAF slag reacted with silicates
and alumina-silicates present in ceramic powder mixture and the formed compounds began
to melt into glassy phase, or also known as a viscous liquid [4,52]. As firing temperature
was increased up to 1180 ◦C, and EAF slag added was increased up to 50 wt.%, a greater
amount of glassy phase was formed, and penetrating the pores. Subsequently, the glassy
phase closed-up the pores and isolating neighboring pores. The liquid surface tension and
capillary effects of the glassy phase would then bring pores closer together. Therefore, this
would reduce the apparent porosity, and densified (increment of bulk density) the ceramic
body [84–86]. Due to these phenomena, the ceramic would then possess higher shrinkage
and lower water absorption properties.

Besides, the MOR was also correlated with apparent porosity to explain the synergistic
effect of the porosity to the MOR of the ceramics, as shown in the previous Figure 3. It
could be observed that the reduction of apparent porosity reduced the MOR of the ceramics.
This could be explained in terms of fracture mechanic mechanism. According to principle
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of materials fracture mechanic, pores present would act as stress concentration points, and
they are likely to initiate crack in ceramic bodies. Therefore, ceramics with higher apparent
porosity would possess weaker points and subsequently reducing the MOR’s mechanical
strength [87–89].

3.7. Contour Plot and Its Application

Contour plot is a graphical representation of the regression model [72], showing
prediction of responses (linear shrinkage, volume shrinkage, water absorption, apparent
porosity, bulk density and MOR) according to desired factors (weight percentage of EAF
slag and firing temperature). The contour plots for linear shrinkage, volume shrinkage,
water absorption, apparent porosity, bulk density and MOR are shown in Figure 4. It could
be observed that all the contour plots consisted of contour or curve lines. This further
support the presence of interaction between the weight percentage of EAF slag (factor A)
and firing temperature (factor B).

Since different batches of EAF slag had slight variation in their chemical composition,
especially total iron (Fe), calcium oxide (CaO), silicon dioxide (SiO2) and aluminum oxide
(Al2O3), and these might cause inconsistency of the final properties of the clay-based
ceramics [84], contour plot would be useful in evaluating the significant effects of the
chemical composition’s variation to the final properties of clay-based ceramics incorporated
with EAF slag. Clay-based ceramics added with 50 wt.% of EAF slag and fired at 1180 ◦C,
were re-fabricated using a new batch of EAF slag. These parameters were chosen because
the ceramics had the best properties (the lowest water absorption, apparent porosity and
highest MOR) among others.

From the contour plots, it was predicted that clay-based ceramics added with 50 wt.%
of EAF slag (coded as ‘3’) and fired at 1180 ◦C (coded as ‘3’) has the highest linear shrinkage
(greater than 12%) and volume shrinkage (greater than 30%), the lowest water absorption
(less than 5%) and apparent porosity (less than 5%), the highest bulk density (more than
2.8 g/cm3) and MOR (greater than 90 MPa), as tabulated in Table 6. Subsequently, the
properties of the re-fabricated are also tabulated in Table 6 and compared with the predicted
data from the contour plot.

Table 6. Comparison between contour plot and re-fabricated clay-based ceramics incorporated with 50 wt.% EAF slag
(coded as ‘3’) and fired at 1180 ◦C (coded as ‘3’).

Contour Plot (Predicted) Experiment (Re-Fabricated Ceramics)

Chemical Composition of
EAF Slag Used:

• Total Fe (wt.%) 33.24 31.36
• CaO (wt.%) 26.41 29.75
• SiO2 (wt.%) 20.37 20.21
• Al2O3 (wt.%) 9.14 8.65

Final Properties of Ceramics:
• Linear Shrinkage (%) >12 12.42
• Volume Shrinkage (%) >30 32.83
• Water Absorption (%) <5 0.15
• Apparent Porosity (%) <5 0.43
• Bulk Density (%) >2.8 2.92
• MOR (MPa) >90 92.27
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From the Table 6, it was observed that the properties (linear shrinkage, volume
shrinkage, water absorption, apparent porosity, bulk density and MOR) of the re-fabricated
ceramics follow the trend of the predicted data (contour plot). Thus, it could be deduced
that the different batches of EAF slag is unlikely to significantly alter and deteriorate the
final properties of the clay-based ceramics incorporated with EAF slag.

3.8. Response Optimizer

From the regression model developed, the optimal condition of controlled variables
or factors could be determined in order to produce desired properties of ceramic tile
incorporated with EAF slag, using responses optimizer in MINITAB 17. In this case, three
responses (MOR, water absorption and apparent porosity) were targeted. The targets were
to achieve maximum MOR, minimum water absorption and apparent porosity. Figure 5
shows the optimization plot for the desired responses.
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Figure 5. Optimal conditions of controlled factors (wt.% of EAF slag and firing temperature) on
selected responses of ceramic tile incorporated with EAF slag.

Upon the analysis, it was predicted that the maximum MOR, minimum water ab-
sorption and apparent porosity were 92.415 MPa, 0.480% and 0.165% respectively. These
desired responses were achieved at 50 wt.% of EAF slag (coded as ‘3’) and firing tempera-
ture of 1180 ◦C (coded as ‘3’) with composite desirability (D) greater than 0.90 and closer to
1.00. Composite desirability (D) is another statistical parameter to validate accuracy of the
optimization plot [81]. According to Chang et al. (2015) [90–93], the closer the composite
desirability (D) to 1.00, the optimization of factors and responses obtained from the statis-
tical analysis is highly reliable and accurate. Hence, the optimal conditions proposed in
the optimization plot (Figure 4) were mostly reliable, and they fully obeyed the regression
models developed.

4. Conclusions

At the end of this research work, the general full factorial design (GFFD) statistical
experimental design’s approach successfully optimized EAF slag added and firing temper-
ature for the development of sustainable clay-based ceramic incorporated with EAF slag.
Several conclusions could be addressed based on the GFFD’s statistical analysis:

• Weight percentage of EAF slag added and firing temperatures were statistically proven
to significantly influence final properties (firing shrinkage, water absorption, apparent
porosity, bulk density and MOR) of the clay-based ceramic incorporated with EAF slag.

• The results of statistical analysis including model adequacy checking, analysis of
variance (ANOVA), interaction plots, regression model, and contour plots were highly
significant and proven for the clay-based ceramic incorporated with EAF slag.

• The optimized properties (maximum MOR, minimum water absorption and apparent
porosity) of the clay-based ceramic incorporated with EAF slag were attained at
50 wt.% of EAF slag added and firing temperature of 1180 ◦C.
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Appendix A

(i) Estimated regression coefficient, correlation of coefficient (R2) and regression equation
for linear shrinkage

Term Coefficient SE Coefficient p-Value

Constant 6.4017 0.0407 0.000
A

1 −1.0350 0.0705 0.000
2 0.1017 0.0705 0.175
3 2.9650 0.0705 0.000
4 −2.0317 0.0705 0.000

B
1 −2.9192 0.0576 0.000
2 −0.4529 0.0576 0.000
3 3.3721 0.0576 0.000

A*B
1*1 0.3525 0.0998 0.004
1*2 −0.6788 0.0998 0.000
1*3 0.3263 0.0998 0.007
2*1 0.3658 0.0998 0.003
2*2 −0.3704 0.0998 0.003
2*3 0.0046 0.0998 0.964
3*1 −1.5625 0.0998 0.000
3*2 1.3662 0.0998 0.000
3*3 0.1963 0.0998 0.073
4*1 0.8442 0.0998 0.000
4*2 −0.2171 0.0998 0.008

4*3 −0.5271 0.0998 0.000

R2 = 99.81% R2 (adj.) = 99.65% R2 (pred.) = 99.26%

Regression Equation: 6.4017 − 1.0350 [A_1] + 0.1017 [A_2] + 2.9650 [A_3] − 2.0317 [A_4] − 2.9192
[B_1] − 0.4529 [B_2] + 3.3721 [B_3] + 0.3525 [A_1*B_1] − 0.6788 [A_1*B_2] + 0.3263 [A_1*B_3] +
0.3658 [A_2*B_1] − 0.3704 [A_2*B_2] + 0.0046 [A_2*B_3] − 1.5625 [A_3*B_1] + 1.3662 [A_3*B_2] +
0.1963 [A_3*B_3] + 0.8442 [A_4*B_1] − 0.3171 [A_4*B_2] − 0.5271 [A_4*B_3]
(Equation (8))
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(ii) Estimated regression coefficient, correlation of coefficient (R2) and regression equation
for volume shrinkage

Term Coefficient SE Coefficient p-Value

Constant 17.6970 0.1080 0.000
A

1 −2.6540 0.1860 0.000
2 0.3930 0.1860 0.057
3 7.5380 0.1860 0.000
4 −5.2770 0.1860 0.000

B
1 −7.6360 0.1520 0.000
2 −1.0900 0.1520 0.000
3 8.7250 0.1520 0.000

A*B
1*1 0.7580 0.2630 0.014
1*2 −1.7840 0.2630 0.000
1*3 1.0260 0.2630 0.002
2*1 0.9410 0.2630 0.004
2*2 −0.9200 0.2630 0.004
2*3 −0.0200 0.2630 0.939
3*1 −3.6540 0.2630 0.000
3*2 3.6200 0.2630 0.000
3*3 0.0350 0.2630 0.898
4*1 1.9560 0.2630 0.000
4*2 −0.9150 0.2630 0.005

4*3 −1.0400 0.2630 0.002

R2 = 99.81% R2 (adj.) = 99.63% R2 (pred.) = 99.22%

Regression Equation: 17.6970 − 2.6540 [A_1] + 0.3930 [A_2] + 7.5380 [A_3] − 5.2770 [A_4] −
7.6360 [B_1] − 1.090 [B_2] + 8.7250 [B_3] + 0.7580 [A_1*B_1] − 1.7840 [A_1*B_2] + 1.0260
[A_1*B_3] + 0.9410 [A_2*B_1] − 0.9200 [A_2*B_2] − 0.0200 [A_2*B_3] − 3.6540 [A_3*B_1] + 3.6200
[A_3*B_2] + 0.035 [A_3*B_3] + 1.9560 [A_4*B_1] − 0.9150 [A_4*B_2] − 1.040 [A_4*B_3]
(Equation (9))

(iii) Estimated regression coefficient, correlation of coefficient (R2) and regression equation
for water absorption

Term Coefficient SE Coefficient p-Value

Constant 9.2183 0.0684 0.000
A

1 −0.0130 0.1190 0.912
2 −1.1930 0.1190 0.000
3 −2.3400 0.1190 0.000
4 3.5470 0.1190 0.000

B
1 8.1467 0.0968 0.000
2 −0.8733 0.0968 0.000
3 −7.2733 0.0968 0.000

A*B
1*1 0.0380 0.1680 0.823
1*2 0.3180 0.1680 0.082
1*3 −0.3570 0.1680 0.055
2*1 0.1680 0.1680 0.335
2*2 −0.4020 0.1680 0.034



Crystals 2021, 11, 442 21 of 26

Term Coefficient SE Coefficient p-Value

2*3 0.2330 0.1680 0.189
3*1 0.5050 0.1680 0.011
3*2 −1.065 0.1680 0.000
3*3 0.5600 0.1680 0.006
4*1 −0.7120 0.1680 0.001
4*2 1.1480 0.1680 0.000

4*3 −0.4370 0.1680 0.023

R2 = 99.88% R2 (adj.) = 99.76% R2 (pred.) = 99.50%

Regression Equation: 9.2183 − 0.0130 [A_1] − 1.1930 [A_2] − 2.3400 [A_3] + 3.5470 [A_4] + 8.1467
[B_1] − 0.8733 [B_2] − 7.2733 [B_3] + 0.0380 [A_1*B_1] + 0.3180 [A_1*B_2] − 0.3570 [A_1*B_3] +
0.1680 [A_2*B_1] − 0.4020 [A_2*B_2] + 0.2330 [A_2*B_3] + 0.5050 [A_3*B_1] − 1.0650 [A_3*B_2] +
0.5600 [A_3*B_3] − 0.7120 [A_4*B_1] + 1.1480 [A_4*B_2] − 0.4370 [A_4*B_3]
(Equation (10))

(iv) Estimated regression coefficient, correlation of coefficient (R2) and regression equation
for apparent porosity

Term Coefficient SE Coefficient p-Value

Constant 18.9220 0.1090 0.000
A

1 −0.3990 0.1880 0.055
2 −1.8920 0.1880 0.000
3 −4.1700 0.1880 0.000
4 6.4610 0.1880 0.000

B
1 14.5490 0.1530 0.000
2 −0.3550 0.1530 0.039
3 −14.1950 0.1530 0.000

A*B
1*1 0.1380 0.2660 0.614
1*2 0.2210 0.2660 0.421
1*3 −0.3590 0.2660 0.202
2*1 0.2860 0.2660 0.303
2*2 0.0300 0.2660 0.913
2*3 −0.3150 0.2660 0.258
3*1 1.8990 0.2660 0.000
3*2 −1.8220 0.2660 0.000
3*3 −0.0770 0.2660 0.777
4*1 −2.3220 0.2660 0.000
4*2 1.5710 0.2660 0.000

4*3 0.7510 0.2660 0.015

R2 = 99.91% R2 (adj.) = 99.83% R2 (pred.) = 99.64%

Regression Equation: 18.9220 − 0.3990 [A_1] − 1.8920 [A_2] − 4.1700 [A_3] + 6.4610 [A_4] +
14.5490 [B_1] − 0.3550 [B_2] − 14.1950 [B_3] + 0.1380 [A_1*B_1] + 0.2210 [A_1*B_2] − 0.3590
[A_1*B_3] + 0.2860 [A_2*B_1] + 0.0300 [A_2*B_2] − 0.3150 [A_2*B_3] + 1.8990 [A_3*B_1] − 1.8220
[A_3*B_2] − 0.0770 [A_3*B_3] − 2.3220 [A_4*B_1] + 1.5710 [A_4*B_2] + 0.7510 [A_4*B_3]
(Equation (11))
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(v) Estimated regression coefficient, correlation of coefficient (R2) and regression equation
for bulk density

Term Coefficient SE Coefficient p-Value

Constant 2.2775 0.0103 0.000
A

1 −0.0892 0.0178 0.000
2 0.0508 0.0178 0.015
3 0.2275 0.0178 0.000
4 −0.1892 0.0178 0.000

B
1 −0.3438 0.0146 0.000
2 0.0200 0.0146 0.194
3 0.3238 0.0146 0.000

A*B
1*1 0.0654 0.0252 0.023
1*2 −0.0783 0.0252 0.009
1*3 0.0129 0.0252 0.618
2*1 −0.0346 0.0252 0.195
2*2 0.1267 0.0252 0.000
2*3 −0.0921 0.0252 0.003
3*1 −0.1463 0.0252 0.000
3*2 0.0200 0.0252 0.443
3*3 0.1263 0.0252 0.000
4*1 0.1154 0.0252 0.001
4*2 −0.0683 0.0252 0.019

4*3 −0.0471 0.0252 0.086

R2 = 98.82% R2 (adj.) = 97.75% R2 (pred.) = 95.30%

Regression Equation: 2.2775 − 0.0892 [A_1] + 0.0508 [A_2] + 0.2275 [A_3] − 0.1892 [A_4] − 0.3438
[B_1] + 0.0200 [B_2] + 0.3238 [B_3] + 0.0654 [A_1*B_1] − 0.0783 [A_1*B_2] + 0.0129 [A_1*B_3] −
0.0346 [A_2*B_1] + 0.1267 [A_2*B_2] − 0.0921 [A_2*B_3] − 0.1463 [A_3*B_1] + 0.0200 [A_3*B_2] +
0.1263 [A_3*B_3] + 0.1154 [A_4*B_1] − 0.0683 [A_4*B_2] − 0.0471 [A_4*B_3]
(Equation (12))

(vi) Estimated regression coefficient, correlation of coefficient (R2) and regression equation
for MOR

Term Coefficient SE Coefficient p-Value

Constant 48.8700 0.1100 0.000
A

1 −10.0110 0.1900 0.000
2 −3.2930 0.1900 0.000
3 10.7200 0.1900 0.000
4 2.5840 0.1900 0.000

B
1 −21.5050 0.1560 0.000
2 −1.0230 0.1560 0.000
3 22.5280 0.1560 0.000

A*B
1*1 6.3110 0.2690 0.000
1*2 1.8050 0.2690 0.000
1*3 −8.1160 0.2690 0.000
2*1 3.4230 0.2690 0.000
2*2 −0.1030 0.2690 0.708
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Term Coefficient SE Coefficient p-Value

2*3 −3.3200 0.2690 0.000
3*1 −9.5650 0.2690 0.000
3*2 −0.7320 0.2690 0.019
3*3 10.2970 0.2690 0.000
4*1 −0.1690 0.2690 0.543
4*2 −0.9700 0.2690 0.004

4*3 1.1390 0.2690 0.001

R2 = 99.96% R2 (adj.) = 99.93% R2 (pred.) = 99.86%

Regression Equation: 48.870 − 10.011 [A_1] − 3.2930 [A_2] + 10.7200 [A_3] − 0.1892 [A_4] −
21.5050 [B_1] − 1.0230 [B_2] + 22.5280 [B_3] + 6.3110 [A_1*B_1] + 1.8050 [A_1*B_2] − 8.1160
[A_1*B_3] + 3.4230 [A_2*B_1] − 0.1030 [A_2*B_2] − 3.3200 [A_2*B_3] − 9.5650 [A_3*B_1] −
0.7320 [A_3*B_2] + 10.2970 [A_3*B_3] − 0.1690 [A_4*B_1] − 0.9700 [A_4*B_2] + 1.1390 [A_4*B_3]
(Equation (13))
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