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A B S T R A C T   

Graphene has attracted much attention from various researchers because of its enhanced mechanical, thermal, 
and physio-chemical properties. Graphene exhibits high thermal conductivity and stability, less erosion and 
corrosion than other available nanoparticles. Various existing literature signifies a large portion of the research 
focuses on stability, heat transfer characteristics and thermal conductivity of Graphene nanofluids. This review 
article represents a detailed analysis of the preparation techniques, characterization methods stability evalua
tion, and thermal properties enhancements of Graphene nanofluids. Comparative analysis of the effects of 
nanoparticle size, volume concentration and temperature on thermal conductivity and viscosity of Graphene 
nanofluids are reviewed based on heat transfer application. Graphene nanoparticles significantly enhances the 
thermal conductivity, viscosity, and heat transfer capacity of base fluid. It is noticed that the thermal conduc
tivity of Graphene nanofluids increases with an increase in temperature and volume concentration. Applications 
of Graphene based nano coolant in automotive radiator, electronic cooling, solar cells and fuel cells are pre
sented. This article can be the rapid reference model with investigational and theoretical analysis for highly 
critical considerations that impact the thermal performance of graphene based nanofluids in different heat 
transfer trends. This review also outlined the imminent challenges and future scope of research in Graphene.   

Introduction 

The cooling system is being considered as heart of heat engine since 
it decides the overall performance of heat engine. Therefore, research is 
underway to deploy an efficient cooling system to enhance the perfor
mance of engine. Major purpose of this system is to throw away the 
generated huge amount of heat during operation and thereby improving 
the engine efficiency [1–3]. Generally, fins in radiators are used as per 
conventional cooling approach to enhance the cooling capacity of en
gine. These fins provided improved heat transfer and better heat transfer 
coefficient. Irrespective of improved cooling capacity, the fundamental 
approach of using fins has become extinct due to an increase in the size 

of the radiator [4]. The radiator is an essential element in any engine 
system as it is the fundamental component of the cooling system. The 
efficiency of an automobile engine is measured not just on the perfor
mance of the engine but also dependent on high fuel economy and low 
emission [5]. Decreasing automobile mass through modifying the radi
ator design and radiator dimensions is certainly essential to enhance the 
performance of an engine [6]. Radiator performance can also be accel
erated by using fluids which have good thermal characteristics [7] 
Nanofluid is a composition of primary fluids and nanoparticles of metals 
and its oxides. Nanofluids act as an efficient coolant when mixed with 
base fluids for example ethylene glycol to increase the capacity of heat 
transfer in the radiator by an approximate value between 15 and 40%. 
The thermal conductivity of GO and Water–Ethylene Glycol (60:40) 
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nanofluids was studied for different solid volume fractions up to 3% with 
temperature between 20 and 50 ◦C and study concluded nanofluid 
thermal conductivity increases by rise in temperature in all considered 
solid volume fractions [8]. 

Various published literature data confirms that heat transfer system 
can be enhanced by modified nanofluids utilized by nanoparticles such 
as Al2O3, CuO, and Graphene as an active working fluid [9]. Graphene, 
as a Nanofluid, is used intensively as a cooling element [10]. Graphene 
nanoparticles have gained huge popularity because of its high thermal 
conductivity value when related to carbon nanotubes, oxide ceramics 
(Al2O3 and CuO) and copper nanoparticles and robustness in thermal 
applications such as in photovoltaic system and heat transfer applica
tions [11]. Graphene has a hexagonal structure which is similar to a 
honey-comb with largely dense carbon atoms [12,13]. This pattern is 
identical to the structure of various nanostructured materials, such as 
fullerene and carbon nanotubes [14]. Graphene Nanoparticles can be 
synthesized by various techniques such as Graphene derived from 
graphite, and Graphene derived from other sources such as epitaxial and 
CVD growth methods. These methods include Mechanical cleavage 
exfoliation, liquid -phase mechanical exfoliation, chemical cleavage 
exfoliation (graphite oxide, graphite intercalation compounds and 
graphite fluoride), Graphene produced from non-graphitic sources, 
chemical vapor deposition methods and Bottom-up synthesis methods 
[15]. Graphene Oxide (GO) and reduced GO are widely used as coolants 
because of their proven efficiency in large scale applications compared 
to Graphene. GO is an oxidized form of Graphene, which is two- 
dimension in nature [16]. The chemical structure of GO is large, and 
irregular compared to Graphene (Within 0.6 – 1.1 nm range), the range 
also depends on the preparation technique of GO. If the O-type groups 
are detached from a Graphene Oxide layer, then physical properties of 
GO will be like that of Graphene wherein GO exhibits properties of a 
semi-metal. Graphene is hydrophobic, and due to this nature, GO can be 
suspended easily into the base fluids. According to previous literature 
works [17,18], Graphene enhances thermal conductivity in nanofluids 
due to its excellent heat flow characteristics compared to conventional 
carbon-nanotubes [19,20]. 

In recent research, traditional techniques for heat transfer are 
replaced by using advanced fluids such as nanofluids [21-23]. With the 
advancements by using nanofluids as coolant, there were many sections 
of research carried out with different materials and base fluids for 
example ethylene glycol, water, and lubricant oil, coolants in radiators 

and their performance were evaluated. Nanofluids in heat transfer sys
tems enhances the efficient heat transfer coefficient and also modifies 
dimensions of the steam exchangers [24]. There is an insignificant 
measure of research done on nanofluids with various kinds of nano
particles dispersed equally in an essential liquid, and these liquids are 
called hybrid nanofluids. Many technological advancements have eval
uated the performance of different heat exchangers with nanofluids as 
the base fluid and have presented the improved result compared with 
conventional fluids [25]. 

Application of the hybrid nanofluids for effective transfer of heat in 
radiators is discussed by Bharadwaj, Mogeraya [26] and this research 
uses carboxyl Graphene and GO nanoparticles for determining the 
effectiveness of hybrid nanofluids. Obtained results display a substantial 
increase in the effectiveness of hybrid nanofluids by 10% with (3% CG & 
3% GO). Graphene nanoparticles are gaining significance because of 
distinctive electrical, thermal and mechanical attributes. The good 
thermal conductivity in Graphene nanoparticles is an important con
stituent in improving the process of heat transfer between mediums 
[27].The properties of Graphene nanoparticles on the performance of a 
diesel engine was determined by El-Seesy, Hassan [28], GNP was mixed 
with jatropha methyl ester fuel, and the performance of the diesel engine 
and its combustion characteristics was evaluated and better heat con
ductivity was demonstrated by using Graphene as nanofluid. Experi
mental analysis for investigating the thermal properties of GO nanofluid 
was presented by Nazari, Ghasempour [29]. In the study GO nanofluid 
was considered as active fluid for pulsating heat pipes. GO was mixed 
with water (0.25, 0.5, 1, and 1.5 g/lit) as base fluid. Results indicated 
that the addition of GO improved based fluid thermal conductivity and 
thermal resistance of pulsating heat pipe reduced by about 42%. The 
concept of utilizing a Graphene-based Nanofluids is influenced by the 
purpose of improving the mechanism of heat transfer by reciprocating 
between the advantages and disadvantages of any individual system 
[30]. 

Graphene nanoparticles 

Nanoparticles are defined as a set of substances of which at least one 
dimension of it is less than approximately 100 nm. A nanometer is one- 
millionth of a millimeter roughly around 100,000 times smaller than the 
diameter of a human hair [31,32]. Two types approaches are used in 
nanofabrication, they are Top-down and Bottom-up methods [15]. The 

Nomenclature 

nm Nanometer 
G Graphene 
GO Graphene Oxide 
GON Graphene Oxide Nanosheet 
CHF Critical Heat Flux 
NF NanoFluid 
SW Surface Wettability 
C Capillarity 
IGO Improved Graphene Oxide 
W Water 
DI W De-ionized Water 
HM Hummer method 
SDS Sodium Dodecyl Sulfate 
SDBS Sodium Dodecyl Benzene Sulfonate 
TC Thermal Conductivity (W m− 1 k− 1) 
PHP Pyroolidinohexiophenone 
D Diameter 
EG Ethylene Glycol 
DW Distilled Water 

GNP Graphene Nanoplatelets/particles 
HT Heat Transfer 
PVA Polyvinyl Alcohol 
CRGO Controlled Reduced Graphene Oxide 
H2O Water 
CuO Copper Oxide 
Al2O3 Aluminum Oxide 
SANSS Submerged Arc Nanoparticles Synthesis System 
CuSO4 Copper Sulphate 
HLB Hydrophilic/Lipophilic Balance 
pH Measure of hydrogen 
EC Electrical Conductivity 
SiO2 Silicon Dioxide 
D Diffusion constant 
KB Boltzmann constant 
T Temperature (◦C) 
wbf Weight of base fluid 
ρbf Density of base fluid (g/cm3) 
µ Dynamic viscosity (kg/ms) 
φ Volumetric concentration (%) 
ρnp Density of Nanoparticle (g/cm3)  
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Bottom-up synthesis method indicates that the nanostructures are syn
thesized against the substrate by piling atoms on one another, which 
provides growth to crystal planes, crystal planes are again stacked upon 
one another, resulting in the synthesis of the nanostructures [33-35]. A 
bottom-up method can be regarded as a synthesis approach where the 
building blocks are added to the substrate to form the complex nano
structures. Top-down synthesis method states to carving or cutting of 
bulk material to get a Nano-sized particle with the appropriate proper
ties [36]. The bottom-up method is further beneficial than the top-down 
method because it has a good opportunity of producing nanostructures 
with fewer defects and further consistent chemical alignment and 
improved short- and long-range organization. The scientists and the 
researchers expect that nanoparticles will deliver the tradition of 
improving performance in a wide variety of products like electronics, 
displays, paints, batteries, micro-machined silicon sensors and catalysts 
[34,35,37]. 

Graphene forms can be explained with structures as shown in Fig. 1 
a) 0D Zero dimensional structures [38] e.g. Nano pores and nano
particles. b) 1D-system limited in one dimension such as laminated 
structures. c) 2D-system limited in two dimensions such as filamentary 
structures where the length is considerably larger than the cross- 
sectional dimensions. d) 3D-system limited to three dimensions such 
as typically composed structures of consolidated equiaxed crystallites. 

Nanoparticles of the Graphene have significant benefits in compar
ison with other nanoparticles because of its high thermal conductivity, 
good stability, large surface area with less corrosion, erosion and con
sumes minimal pumping power [40-42]. 

The graph in Fig. 2 shows the published articles in various journals 
on nanofluids category in the last decade and indicates the growth of the 
Nanofluids increased with each year. Graphene has a very strong in
terest in science community in the last decade. Fig. 2 (b) shows the 
published articles on Graphene each year. Thermal Conductivity of 
Graphene is very high than the thermal conductivity of Diamond, Silver, 
Ag, Al, Ethylene Glycol, and water kind of materials. 

Characterization techniques 

Characterization refer to the features such as structure, composition 
& various physical, electrical, and magnetic properties. Below are gen
eral characterization methods. 

X-ray diffraction (XRD) 

X-ray diffraction (XRD) is one of the non-destructive types that 
adopts analytical methods to provide appropriate analysis about various 
lattice structures of crystalline substances such as crystallographic 
structures and unit cell dimensions. XRD works on the principle of 
constructive interference of x-rays. The interaction in the XRD mecha
nism provides constructive interference as per Bragg’s law (nλ = 2d 
Sinθ) [43] which correlates the wavelength of the incident radiations to 
the diffraction angle and lattice spacing. The equation of Bragg’s law 
confines the relation between the wavelength (λ) of electromagnetic 
radiation to the diffraction angle (θ) and the lattice spacing (d) in a 
crystalline sample by scanning the sample through the arrangement of 
2θ angles [44]. Siburian, Sihotang [45] performed XRD for Graphene, 
Graphene Oxide and Graphene Nanosheets. Peak value of Graphite is 
identified at 26.5 and interplanar distance (d = 3.72 nm). It shows 
crystalline structure graphite. Peak value for Graphene Oxide is identi
fied at 11.6 and at interplanar distance of (d = 7.6 nm) due to oxygen 
presence in the functional grouPeak value for Graphene nanosheets is 
observed at 26.4 and interplanar distance of (d = 3.36 nm). Due to 
chemical reduction of graphite to Graphene nanosheets, the Graphene 
nanosheets has crystal structure. The XRD pattern of graphite, Graphene 
Oxide and Graphene nanosheets are shown in below Fig. 3. Graphite 
shows a sharp and tight peak (2θ = 26.5◦ and 23.88◦) whereas the 
Graphene Oxide shows a wide diffraction peak (2θ = 11.6◦). XRD pat
terns of synthesized products were discussed by Aziz, Halim [46] which 
explain non-uniform (2θ = 17.2◦) and uniform crystal structure (2θ =
26.4◦) of Graphene Oxide and Graphene. 

Ban, Majid [47] identified the XRD pattern of Graphite and Graphene 
Oxide. Identified Graphite has peak values at 50.68◦, 54.62◦, 59.84◦, 
71.56◦. This shows crystallinity of the graphite. Distinguishable peak of 
graphite is observed at 26.56◦ and it has an interplanar distance (d =
0.334 nm). Peak value for GO is observed at 10.24◦ and has interplanar 
distance (d = 0.80 nm). This is due to presence of oxygen in the GO 
functional group [48]. Graphite oxidation process is monitored by 
Wang, Yang [49] using XRD and noticed that intensity of the (002) 
diffraction line (d-space 3.4 Å at 26.23 ◦C) has weakened slowly and 
completely disappeared. At diffraction peak 11.8◦ (d-spacing of 0.749 
nm) with oxidation process, the intensity is increased. With continuous 
chemical treatment, Graphite powders are fully oxidized after 120 h to 
graphite oxide. Diffraction line also disappeared after 48 h showing full 
oxidation has been completed. 

Fig. 1. Different forms of Nanomaterials, figure adapted from Atta, Galal [39].  

M. Sandhya et al.                                                                                                                                                                                                                               



Sustainable Energy Technologies and Assessments 44 (2021) 101058

4

Scanning electron microscopy (SEM) 

SEM is a prototype of an electron microscope which converts a 
sample into an image by scanning in a raster scan pattern using high- 
energy beam of electrons. The beam is associated with the atoms 
which constitute sample producing signals containing information 
related to the surface topography and composition of the sample. In 
space, electrons are formed via the source which is enhanced in a field 
gradient. The beam of electrons is passed through the electromagnetic 
lenses which focus on specimen. Due to this bombardment, there will be 
an emission of various electrons from the specimen and the image is 
displayed on the monitor [50]. 

Graphene Oxide fracture edge paper sample when imaged using 
SEM, showed that completely packed layers. The thickness was about 
250 nm. Dikin, Stankovich [51] observed the SEM images of GO and 
rGO and identified that GO is layered and has hexagonal shape when 
compared to rGO, as it has material sheets very close to each other. The 
nanosheet edge thickness was less than 1 nm [52]. Selvam, Raja [53] has 
performed visualization of Graphene nanoplatelets layers in his research 
using SEM method and identified GNP are in form of layered structure. 
SEM image in Fig. 4 of Graphene taken by Ahammed, Asirvatham [54] at 
7500 × magnification is less than 100 nm in thickness and is randomly 
dispersed as a flake-like structure. 

Transmission electron microscope (TEM) 

TEM constitutes of (i) few condenser lenses focusing on the electron 

beam to observe the sample, (ii) a target focal point lens to form the 
diffraction in the back central plane and the picture of the sample in the 
image plane, (iii) some intermediate lenses to enlarge the image of the 
diffraction pattern on the monitor. If the thickness of the provided 
sample is less than 200 nm then the image produced is of low contrast 
and cannot be focused. To enhance the image contrast, an objective 
diaphragm is inserted in the back focal plane to select the transmitted 
beam and the crystalline form in Bragg orientation appears dark, sam
ples which are in amorphous form appear bright [55]. TEM micrograph 
as shown in Fig. 5 give a view of sample having more than one layer and 
Graphene Oxide image (see image (a)) is not stable under high energy 
beam in contrast with the Graphene, which is stable and transparent 
under high energy electron. Graphene Oxide morphology in Fig. 5(a) 
shows irregular shape with un crumbled and non-uniform particle size 
with thick flat flakes. Un wrinkled structure indicates the non-removal 
of oxygen during oxidation process. The Fig. 5(b) indicates thin film 
morphology with wrinkled flake structure, the exfoliation process and 
sonication cause rapid removal of oxygen and functional groups from 
the layers. 

Meanwhile SEM visualization of Graphene Nano platelets is used by 
Yarmand, Gharehkhani [56] and Selvam, Balaji [57] collected the TEM 
images and found uniformity of Ag nanoparticles & wrinkly surface and 
bending at the ends of GNP sheets. Xuan and Li [58] reported that TEM 
photographs of the suspended nanoparticles showed that the particles 
are dispersed in deionized water and some clustering occurred. 

Zeta potential analysis 

In this technique, the potential of a nanofluid is calculated using 

Fig. 2. (a): Various Nanofluid articles published (2010–2020), (b) Articles published on Graphene every year.  

Fig. 3. XRD patterns of Graphite, Graphene Oxide & Graphene nanosheets, 
figure adapted from Siburian, Sihotang [45]. 

Fig. 4. SEM image of 0.15% vol conc. of Graphene by Ahammed, Asirvat
ham [54]. 
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electric potential. The electric potential is the variance among the 
stagnant fluid layer (fixed with the dispersed particle) and the medium 
of particle dispersion [6,59]. The significance of zeta potential is the 
value obtained after analysis can be associated with colloidal dispersion 
stability. It means that the colloids are assumed to be electrically sta
bilized if they possess a high value of zeta potential whereas, the colloids 
which have less zeta potential will clot [60]. Zeta potential measure
ment range is between − 200 to 200 mV considering a fluid with 15 mV 
potential difference is taken as a random value. This value is considered 
as reference value which distinguishes low-charged and high-charged 
surfaces. The colloids which range between 30 and 45 mV zeta poten
tial is more stable, and the colloids which exceed 45 mV are assumed to 
have superior stability. The GO sheets structure in Fig. 6 states stable 
dispersions in the pH scope of 4–11.5; the maximum value attained at 
pH 10.3 is − 54.3 mV. The stable dispersions for r-GO sheets are formed 
at pH range 8–11.5; the maximum value of zeta potential (ζ) is − 44.2 
mV at pH 10. The identified rise in zeta potential is above pH 10.5 due to 
compression at high ionic strength. 

UV/Vis spectrometer 

UV–vis measurements are rapid, straight forward, easy and exact, 
and can have many successful applications in research and industry. It 
was demonstrated that a solid direct relationship existed between 
polymer fixation and specimen absorbance in clear unadulterated water, 
and polymer focus could be resolved utilizing an alignment bend. 
Ultraviolet–visible spectroscopy is viewed as a significant apparatus in 
analytical chemistry and science. It is one of the most regularly utilized 

procedures in clinical chemical compound research facilities. This tool is 
utilized for the subjective analysis (qualitative) and recognizable proof 
of synthetics. The dispersion attributes of GO and EG + DW (Graphene 
Oxide, Ethylene Glycol and Distilled Water) suspension is evaluated 
employing fundamental sedimentation technique [62]. It is considered 
that the dispersion rate in nanomaterials has deterministic absorption 
bands of wavelength in the range of 200–600 nm. Nanofluid stability is 
investigated through Thermal conductivity and UV Visible technique. 
NF is very stable, Thermal conductivity value enhanced with the in
crease in temperature. The long-term stability test conducted by Selvam, 
Lal [63] using UV–vis absorption (quantitatively) identified compara
tive conc. of Graphene NP/H2O–EG nanofluids slightly reduces for a 
duration of two weeks. From below Fig. 7 of absorbance vs wavelength 
graph, the maximum peak for Graphene Oxide is at wavelength 230 nm 
with 0.354% of absorbance and the minimum peak value is at 300.5 nm 
wavelength with an absorbance of 0.242%. The maximum peak is ob
tained by Graphene Oxide when compared with Graphene (266.5 nm 
with 0.329% absorbance) according to Wazir and Kundi [64] 

Fourier transform infrared spectroscopy (FT-IR) analysis 

The FT-IR analysis is a characterization method which is utilized to 
get an infrared spectrum of absorption or emission of a solid, liquid or 
gas. High-spectral resolution data is collected by FTIR spectrometer for 
wide spectral range. The material will be scanned in all angles and 
refracted beam value of Graphene Oxide is between 600 and 4000 cm− 1. 
FTIR characterization will be performed using FTIR spectrometer. Below 

Fig. 5. TEM images of (a) Graphene Oxide and (b) Graphene by Aziz, Halim [46].  

Fig. 6. Zeta Potential for Graphene Oxide (GO) and reduced GO [61].  
Fig. 7. UV–Vis absorption spectra of Graphene Oxide and reduced Graphene in 
DI Water [64]. 
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Fig. 8 shows the FTIR analysis of Graphene Oxide and Graphene Oxide/ 
Ethylene Glycol. [65] The image provided clear information of the O–H 
functional groups and chemical bonds. Detail infrared spectra values 
comparison shows that two peaks are found at curve B at 2940 cm− 1 and 
2870 cm− 1 value [66] but it is not shown at curve A. This is because of 
the vibrational stretching of C–H in ethylene glycol. As the carboxyl 
groups on surface of Graphene Oxide are substituted [67], the peak 
points on the curve B are reduced dramatically at 1730 cm− 1 and 1624 
cm− 1. We can conclude from this analysis that ethylene glycol is 
attached to the surface of Graphene Oxide at the spectra. 

Thermogravimetric analysis (TGA) 

Thermogravimetric analysis (TGA) is technique which is used for 
material characterization. A materials thermal stability is calculated. 
The weight fraction changes are calculated in temperature form at 
constant rate. The analysis is performed by slowly increasing tempera
ture of the sample in heater and measured sample weight on analytical 
balance. Below Fig. 9 shows the TGA of GO and GO/EG by Zhang, Huang 
[65]. By comparative analysis of two curves Graphene Oxide and Gra
phene Oxide/Ethylene glycol, noticed that at three points mass loss 
processes. In the Graphene Oxide curve, weight reduction happened 
under 105 ◦C, which compares to 14.6% of the absolute mass and relates 
to the moisture evaporation contained in samples of Graphene Oxide. It 
has been noticed that temperature between 105 ◦C and 240 ◦C, 26.6% 
weight loss has occurred because of the disintegration of oxygen- 
containing bonds on the Graphene Oxide surface. At the final stage be
tween temperature 240 ◦C and 800 ◦C, the mass loss is caused due to 

sublimation of carbon skeleton, bringing about 8% loss of the absolute 
initial weight. 

The main phase of GO/EG weight reduction additionally happens 
under 105 ◦C, however the weight reduction is just 4.8% of the entire 
mass. The subsequent stage happens between 105 ◦C and 240 ◦C. In this 
stage, 15.7% of weight loss is occurred, because of decomposition of 
functional groups. The 18.4% weight reduction happens between 240 ◦C 
and 800 ◦C, because of the sublimation of the carbon skeleton. By 
analyzing both GO and GO/EG curves, we can conclude that Graphene 
Oxide/Ethylene Glycol has much better thermal stability. It is proved by 
the higher decomposition temperature of carboxyl, hydroxyl & epoxy 
groups. Hence, we can presume that Ethylene Glycol is attached suc
cessfully on the surface of Graphene Oxide. The below Table 1 provides 
the detailed analysis of different concentrations of Graphene nano
particles in fluids with important findings related to the characterization 
techniques. 

Preparation techniques of the nanofluids 

The schematic representation of preparing graphene based nano
fluids is shown in flowchart Fig. 10. Basically, there are two types of 
preparation techniques for Graphene-based nanofluids: (a) One-Step 
preparation technique (b) Two-step preparation technique 

One step method 

Nanofluid is prepared by scattering of nanoparticles in base fluids 
which involves the deposition of different types of liquids and vapor 
chemicals [86-90]. The one-step technique is usually adopted to 
improve the stability of the nanoparticles and for reducing degree of 
agglomeration in nanoparticles. Evenly distributed nanoparticles are 
developed with a purpose to enhance substantial suspension in the base 
fluids and to decrease the manufacturing cost. Some propelled strategies 
were presented to develop the nanofluid using the one-step technique 
because of the trouble of constituting a stable nanofluid using the two- 
step analysis technique [91]. Fig. 11 represents the pictorial represen
tation of one step nanofluid preparation. Several methods such as direct 
condensation, labor excision, evaporation and submerged–arc nano
particle synthesis system (SANSS) are implemented in the process of 
developing the nanofluids using a one-step analysis wherein the metals 
are subjected to vaporization [92]. The metals are cooled using an 
appropriate mechanical technique to get the proper nanofluid. The 
physical techniques such as condensation and SANSS influences the 
dimensions of particles to increase the stability of nanofluid. SANSS is 
another proficient strategy to develop nanofluids employing various 
dielectric liquids [93]. 

Using dielectric liquids with different attributes of thermal conduc
tivity, various frameworks of nanoparticles such as square-shaped, 
polygonal and circular shapes are procured, and different types of un
wanted particle accumulation are eliminated [72]. Nevertheless, 
because of the incomplete chemical reaction and incomplete stabiliza
tion, outstanding reactants continue to stay within nanofluids, which 
remains the main drawback of this technique [60]. One-step analysis 
involving physical technology cannot handle extensive synthesizing of 
nanofluids, and also the production cost is high; hence two-step chem
ical analysis is gaining attention in recent times [94]. The one-step 
chemical technique is used in the preparation of Cu-nanofluids (Cop
per nanofluids) by decreasing CUSO4, sodium hydroxide and water in 
ethylene glycol using microwave irradiation. Evenly distributed copper 
nanofluids with proper stabilization were developed using one-step 
chemical reaction and nanofluids with mineral oil consisting of silver 
nanoparticles with reduced dimensions were also obtained by this 
technique [78]. The significant drawback of this procedure due to 
remainder of reactants were leftover and extra in the nanofluid because 
of fragmented response and stabilization which reduces the concentra
tion of the nanofluid [95]. 

Fig. 8. FTIR analysis of Graphene Oxide and Graphene Oxide/Ethylene Gly
col [65]. 

Fig. 9. TGA curve of GO and GO/EG [65].  
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Table 1 
The detailed summary of Nanoparticles, particle size, base fluids, preparation methods, characteristics techniques and findings of characterization.  

NPs Base 
Fluid 

Particle size Concentration (%) Preparation 
Method 

Characterization Technique Findings Reference 

GNPs W +
EG 

4 µm 0.1–0.5 wt% Two-step SEM, UV–vis, TEM, Zeta 
potential, DLS 

The GNPs are sheet- shaped & represents a trimodal distribution with partial 
sedimentation and agglomeration. 

Cabaleiro, Colla [68] 

GNPs EG – 0.5,1,2,3,4 vol% Two-step XRD, FTIR, HRTEM, UV–vis, 
Raman spectroscopy 

The GNPs assembled mesoporous materials were confirmed as plate-like shape 
and having hydroxyl functional groups bonded at edge with crystalline 
structure. 

Lee and Rhee [69] 

GO EG, 
DW 

t = 20 nm 0.001–0.006 wt% Two-step XRD, FESEM, TEM, FTIR, 
UV–vis, Zeta potential, Raman 
spectroscopy 

The XRD pattern of Graphite Oxide(GtO) shows a strong peak at2 h = 11.68 as 
well as FTIR spectrum of GtO confirms the successful oxidation of the graphite. 
The Raman spectra reveals G band of GtO shifts toward a higher wavenumber 
with respect to that of graphite. 

Hadadian, Goharshadi  
[70] 

G EG – 0.1, 0.125, 0.15 wt% Two-step XRD, TEM CVD followed by XRD can be concluded that the obtained Graphene is pure. The 
Graphene shows the disordered structure like folded paper. Increased of 
hydroxide groups reveals a Graphene has best oxidation state. 

Ghozatloo, Shariaty- 
Niasar [71] 

GNS EG t = 0.7–1.3 nm 0.01–0.05 wt% Two-step TEM, AFM, FTIR HRTEM image of the Graphene illustrated the interplanar distance was 0.43 nm. 
GNS with thin few-layer by AFM analysis confirm the thickness 0.7–1.3 nm. FT- 
IR and TG analysis explained the Graphene formed by reducing Graphene Oxide. 

Yu, Xie [72] 

GO, f- 
HEG 

EG, 
DI-W 

100 nm 0.02–0.08, 0.005, 0.009% Two-step FTIR, XRD, FESEM, UV–vis, 
Raman spectroscopy, TEM 

The increase in the relative intensity of the disordered mode can be attributed to 
the increased number of structural defects and to the sp3 hybridization of carbon 
for chemically induced disruption of the hexagonal car-bon order after acid 
treatment. 

Baby and Ramaprabhu  
[73] 

GO EG, 
DI-W 

less than100 nm 0.005,0.007,0.009, 0.02, 0.03, 
0.05% 

Two-step UV–vis, FTIR, Raman 
spectroscopy, TEM, FESEM 

UV comparison to TEG nanofluid, f-TEG nanofluid was homogeneous and was 
stable for long time. Raman spectra observation is that higher disorder in 
graphite leads to a broader G band, as well as to a broad D band of higher 
relative intensity. 

Baby and Ramaprabhu  
[74] 

GNS EG, 
DI-W 

– 0.008,0.055,0.083,0.11,0.138 Two-step EDX, TEM, FTIR Carboxylic acid and phenolic hydroxyl groups on the GO sheets are shown in 
SEM-EDX. The TEM image shows thin transparent sheet which is folded at the 
edges and the phononic properties are collected from Raman spectra. 

Jyothirmayee Aravind 
and Ramaprabhu [75] 

GNP W – 0.25–1.00% Two-step EDS, SEM, DSC Sulfonic acid-functionalized Graphene exhibits a nanoplatelet-shape of 
wrinkled surfaces folding at the edges. The EDS spectrum shows C, O, S and Si 
presence due to impurities. 

Agromayor, Cabaleiro  
[42] 

GO, 
GNS 

W t = 5 nm 0.05–0.2 vol% Two-step DLS, TEM, UV–vis The sheets are interconnected and entangled in TEM image and a trimodal 
distribution of Graphene sheet in DLS with 5 nm to 1500 nm long. Absorption 
spectrum measurements are taken from UV–vis 

Sen Gupta, Manoj Siva  
[76] 

HEG EG, 
DI-W 

20 nm 0.01–0.07% Two-step FTIR, FESEM, TEM, XRD The crystallinity formation of the Graphene samples studied using X-ray 
diffraction (XRD), the curves of f-HEG show hydroxyl and carboxyl groups. The 
size of particle from the TEM image matches with Scherrer equation calculation 
using XRD. 

Baby and Sundara [77] 

GNS DI W 500 nm 0.01–0.05 wt% Two-step TEM, Raman spectroscopy, 
SEM, FTIR 

Wrinkles and folding’s at the edge of Graphene sheets are identified and SEM 
image indicates the multi-layer, and few are in form of small agglomerates, 
Raman spectra shows the presence of carboxyl functional groups. 

Ghozatloo, Shariaty- 
Niasar [78] 

GO DI W 1–3 µm 0.05,0.1,0.15,0.2,0.25 wt% Two-step XRD, UV–vis, SEM XRD analysis shows one high-intensity broad peak about 2θ = 12.5 
corresponding to (002) diffraction line (d-space 3.4 Å) plane of graphite the 
sizes of nanosheets varies in range of 1–3 μm. GO tend to congregate together to 
form multilayer agglomerates. 

Hajjar, morad Rashidi  
[79] 

GNP DW 2 nm, d = 45 µm 0.025, 0.05, 0.07, 0.1 wt% Two-step XRD, UV–vis, Zeta potential, 
TEM, XPS 

The specific surface area of GNPs shows a very effective influence on the 
stability of the nanofluid. The inclination is that the zeta potential values 
demonstrate an enhancement for higher specific surface areas of GNPs. 

Mehrali, Sadeghinezhad 
[80] 

GO DI W 45 µm 0.01, 0.02, 0.04, 0.06 wt% Two-step Zeta potential, TEM, XRD, XPS, 
UV–vis 

The zeta potential of all NDG nanofluids was negative and greater than-30 mV, 
which is in line with the excellent stability found by UV–Vis studies. The 
ultrasonication bath has a much less energy than the ultrasonication probe. 

Mehrali, Sadeghinezhad 
[81] 

GNP DI W less than3.74, 
d=less than3 
µm 

0.025,0.05,0.1 wt% Two-step FTIR, TEM Acid treated GNP show carboxylic groups in FTIR and the surface deterioration 
is shown because of acid treatment in TEM analysis, and sonication caused 
wrinkling on the surface 

Amiri, Sadri [82] 

rGO DI W 2 nm 0.05 wt% Two-step Zubir, Badarudin [83] 

(continued on next page) 
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Two step method 

An extensively utilized strategy to incorporate nanofluids is the two- 
step technique that incorporates nanotubes, droplets, nanoparticles, 
nanofibers, and nanosheets [6]. As shown in Fig. 12 in a two-step 
analysis, at first, the dry powder is obtained using chemical analysis 
such as sol–gel and vapor state and mechanical techniques like grinding 
and milling [86]. The finely grounded powder is then assorted with a 
base fluid for example ethylene glycol or SAE oil using ultrasonic vi
brators, ball milling, amalgamation, and high-quality mixing. Frequent 
stirring decreases the aggregation of nanofluids which is a distinct 
concern in the synthetization of nanofluids. The methodology involved 
in a two-step analysis is a cost-effective way to develop nanofluids at an 
effective rate [93,96]. The nanofluids preparation in this method uses 
oxide nanoparticles to improve the stability of the nanoparticles. 
Because nanoparticles developed using oxide nanoparticles have high 
stability compared to metallic nanoparticles as the particles in dry 
powder get attracted easily to one another as of Van-der Waals force 
between the particles [78]. Significant methodology using surfactants is 
adopted in a two-step analysis to improve the stability in nanofluids. 
Though this technique is cost-effective, it faces significant concerns in 
transportation, drying, and storage. Clogging in nanoparticles reduces 
the thermal conductivity in nanofluids [80,97]. Many researchers are 
now using this modern technique of using Nanofluids as working fluids 
in the radiators instead of conventional base fluids [98]. This immensely 
helps in the increase and enhancement of the thermo-physical properties 
of the radiator. High Efficiency is obtained using this modern technique. 

Hajjar, morad Rashidi [79] used the modified Hummers method and 
synthesized GO from graphite powder. The hydrophilic surface brought 
similarity between water and GO sheets. The GO sheets were properly 
suspended in the base liquid by only utilizing Ultrasonication. No dis
persants are utilized. Wang, Han [99] stated that by using ionic fluid and 
without any added substances, a highly stable Graphene-based nano
fluid can be prepared. Nanofluids with ionic fluids, as base liquid, are 
named ion nanofluids. Nanoparticle scattering in the base liquid was 
recognized using the optical photographs of liquid droImages displayed 
Graphene sheets even distribution in the fluid. Lee, Kim [100] GO sheets 
are suspended in water and synthesized Graphene Oxide water nano
fluids. GO sheets are prepared using the CVD method. The obtained 
values of zeta potential and pH of GO nanofluid were − 31.5 mV and 
3.58, separately. It has been concluded that these values exhibit good 
stability by using two step method. Li, Zheng [101] introduced a 
methodology for setting up the solvent free Graphene nanofluid. 
Modified hummers method is used for preparing Graphene Oxide, the 
precipitate was prepared using ammonia solution in the sight of ionic 
surface modifier and sonication. Next step, they precipitate is washed to 
remove excess ionic surface modifier and dried it. Graphene chlorine salt 
with potassium sulfonate salt is mixed in methanol, and the then mixture 
has undergone dialysis treatment, further it is dissolved and centrifuged. 
Finally, the remaining particles were removed, and the supernatant fluid 
was gathered and dried for accomplishing the solvent free Graphene 
nanofluid. 

Mehrali, Sadeghinezhad [81] formed nitrogen-doped Graphene from 
the Graphene Oxide using aqua thermal treatment with the help of 
ammonia. Using the two-step technique, the authors mixed the nitrogen- 
doped Graphene nanosheets in a base fluid. Using the NDG nanosheets 
in base fluid, the authors observed the electrical conductivity of the 
nanofluid increased. Ma, Yang [102] used functionalized Graphene 
sheets and prepared stable nanofluids. Functionalized Graphene sheets 
were readied through a two-step method with 3-glycid oxy propyl tri
methoxy silane as the functionalization modifier. Graphene sheets are 
added to base fluid and prepared nanofluids. Yu, Xie [103] introduced a 
synthetic technique for nanofluid preparation with Graphene Oxide 
nanosheets. Graphene Oxide exfoliation in anhydrous ethanol resulted 
in nanofluid. Obtained nanoparticles was a free brown colored powder 
and scattered in Ethylene Glycol without surfactants. Martin-Gallego, Ta
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Verdejo [104] synthesized Graphene Oxide at 1000 ◦C at inactive air 
condition. Carbon material with high surface area comprising of Gra
phene layers with remaining carbonyl, hydroxyl and epoxy gatherings 
are produced. Kole and Dey [105] utilized dried Graphene Oxide with 
hydrogen air at 200 ◦C to prepare hydrogen. Functionalization of HEG 
was finished by rewarding as integrated HEG with corrosive and 
Ultrasonication. 

Stability evaluation and enhancement of graphene-based 
nanofluids 

The nanoparticles agglomeration prompts the settlement and 

obstruction of micro channels and reduces nanofluids thermal conduc
tivity. In this way, the stability assessment is an important problem 
which impacts the properties of nanofluids implied for applications 
[95,106]. Indeed, even with advanced and innovative techniques to get 
ready nanofluids, many challenges still exist in preparing ideal nano
fluid beyond focusing on improvement of agglomerates that sources the 
arrangement and stopping up small scale heat moving objects. The 
accumulation of nanoparticles in the liquids for the most part happens 
because of the solid Van der Waals power along with high surface ter
ritories between the Nano sized powder, and sedimentation [107,108]. 

Various stability evaluation methods, stability enhancement 
methods and stability mechanism are discussed in below section: 

Nanofluids stability evaluation methods 

Sedimentation method 
The agglomeration process causes frequent clogging in nanoparticles 

due to which the thermal conductivity in nanofluids is decreased [109]. 
Hence, it is a significant concern to maintain the stability, it is essential 
in order to review and examine the factors affecting dispersion stability. 
The sedimentation technique is one of the efficient and straightforward 
methods to enhance nanofluid stability. The weight of the sediment of 
nanoparticles subjected to external pressure indicates the stability of the 
nanofluids [110]. Graphene-based nanofluids remain to be stable when 
the dimension of supernatant particles or their concentration is constant. 
A sedimentation balance technique is utilized to identify the nano
particles stability in graphite, where sedimentation tray is immersed in 
the original graphite suspension [111]. 

Centrifugation method 
Number of nanoparticles subjected to sedimentation was calculated 

for a predetermined time as it does not support observation for a longer 
duration. Hence, the centrifugation technique is implemented to deter
mine the nanofluid stability using Graphene nanoparticles [20]. Singh 
and Raykar [87] applied centrifugation technique to assess the stability 
of Ag nanofluid obtained by AgNO3 and using PVP stabilizer. Nanofluids 
are highly stable for 30 days and undergone 10 h centrifugation without 
sedimentation at 3000 rpm. This very high stability of silver nanofluids 

Fig. 10. Schematic representation of preparation methods, stability and thermal properties of nanofluids.  

Fig. 11. Pictorial representation of One Step method.  
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was observed because of the defensive job of PVUsing the steric effect, 
PVP successfully decelerated the agglomeration of particles. 

Zeta potential analysis 
It is an electric potential in the interfacial twofold layer at the area of 

the slipping plane versus a point in the mass liquid away from the 
interface, and it shows the possible contrast between the scattering 
medium and the fixed layer of liquid joined to the scattered molecule. 
Zeta potential value can be used to identify the stability of colloidal 
scatterings. In this way, colloids with high zeta potential either positive/ 
negative are stabilized electrically, while colloids with low zeta poten
tial value tends to coagulate or flocculate. Zhu, Li [112] observed the 
stability of nanofluids at various pH value and SDBS concentrations. 

From the above Table 2, related to various scholar’s research, the 
zeta potential is a consistent method for accurate colloidal dispersions 
stability. Stability of the particles dispersed in the fluids is defined by the 

aggregation rate during collision. In general, the zeta potential values 
with 30 mV and above range concludes the stability, however for a clear 
aspect from the above table it is concluded that Graphene fluids with a 
zeta potential value of less than 35 mV is termed as moderate stability 
and above 45 mV of sustainable range is considered as good, and 
excellent stability range is above 50 mV. pH is also a significant 
parameter related with particle surface electrostatic charge and the 
farthest (IEP) [124] isoelectric point of pH where the particle carries 
zero electric charge. The value of pH can be changed by adding HCL/ 
NAOH solution into prepared fluid. The value of zeta potential increases 
as the pH value from the IEP changes and from all the literature the 
highest zeta potential value (>45 mV) is obtained at a 9–11 value of pH. 
The below Fig. 13 shows the zeta potential analysis way of representing 
stability. 

Fig. 12. Pictorial representation of Two-Step method.  

Table 2 
Detailed summary of Nanofluid, base fluid, Zeta Potential value, pH value and remarks of various authors.  

Nanofluid Base 
fluid 

Zeta-potential 
value 

pH 
value 

Observation Remarks Reference 

GNP W + EG − 30 to − 40 
mV 

~ 8.5 Stable after adding 
surfactant SDBS 

Zeta value less than 30mv without surfactant Sani, Vallejo [113] 

GO DI-W − 48.6 mV 10 Stable Optimum range of pH is stated as between 7 and 11 Kashyap, Mishra [114] 
GO DW − 45.4 mV 10 Good stability Strong repulsive forces resulted in high negative zeta value. Hadadian, Goharshadi [70] 
GO W − 43.5 mV 8,10 Confirmed stability Stability of colloidal dispersions are dependent on zeta 

potential high negative or positive value 
Askari, Koolivand [115] 

CRGO DI-W − 50.9 mV 12 Good dispersion stability With increase in temperature and volume concentration the 
stability increased 

Zhang, Wang [116] 

GO W – 8 Good stability Stability remained same with increase in sonication time Yang, Ji [117] 
GO EG + W − 40 to − 43 

mV 
5 Stable Because of repulsive charges, zeta value decreased as pH 

increased. 
Cabaleiro, Colla [68] 

rGO W − 39.1 mV 7.5–8.5 Good stability Ph decreased with increase in hours after preparation Kamatchi, 
Venkatachalapathy [118] 

GO DW − 35 mV 7 Good dispersion with 
stability 

As the value of pH increased to 8.24, value of zeta reached to 
− 24mv 

Park, Lee [119] 

GO W − 41 mV 9 Good stability Functional groups attributed the stability in nanofluid with 
Graphene 

Ranjbarzadeh, Isfahani  
[120] 

GO W − 31.5 mV 3.58 Moderate stability Stability can be increased by adding the surfactants with small 
amounts. 

Lee, Kim [100] 

GO DI-W − 40.1 mV 9–12 stable Graphene itself showed the higher zeta value SDS surfactant 
given the max zeta value of − 38.3 mV. 

Cakmak [121] 

G W − 45 mV – Good stability CMC surfactant has been used to improve the uniform stability 
of nanoparticles 

Kazemi, Sefid [122] 

GO W − 41 mV, − 50 
mV 

>4 stable Increased concentrations of Graphene resulted in higher zeta 
potential value. 

Esfahani, Languri [123]  
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UV–vis spectral analysis 
In this method the stability of nanofluids is evaluated using UV–vis 

spectrometer. The results obtained in this method provides quantitative 
output with respect to various concentrations of nanofluids. Hwang, Lee 
[59] utilized this method to identify the relative stability of MWCNT at 
various concentrations and pH. Surfactant addition to the nanofluids 
improved the nanofluid stability. If the characteristic absorption wave
length value is in between 200 and 1100 nm, the UV–vis spectral 
analysis method is very simple and dependable to identify the stability of 
nanofluid. 

Enhancing the stability of graphene nanofluids 

Using surfactants 
The surfactants, otherwise known as dispersants, are adopted to in

crease nanofluids stability. Accumulation of these dispersants in 2-phase 
model is an effective technique to increase the nanofluid stability. In a 2- 
phase model, a dispersant identifies the interfacing state of the two- 
phases and forms continuity between fluids and nanoparticles [60]. 
The selection of an appropriate surfactant is a significant concern. It 
depends on the kind of base fluid used: in case of a polar solvent, water 
solvable dispersants are used; or else, oil solvable surfactants are 
selected. For non-ionic dispersants, solubility is evaluated using a hy
drophilic/lipophilic balance (HLB) value. The surfactants are oil-soluble 
if the HLB number is less whereas they are water-soluble if they possess a 
higher HLB number [86]. Few of the important different types of sur
factants used with Graphene nanofluids are presented in below Fig. 14. 

Surfactants also plays an important role in effecting the 

thermophysical properties of nanofluids. Mehrali, Sadeghinezhad [81] 
Used Triton X- 100 as surfactant. It is used because of its benzene ring 
structure molecules in it can disperse the NDG easily by forming a shell 
around the surface. Triton X-100 has very less optimum amount value. 
The author concluded that nanofluids were stable for 6 months when 
used Triton X-100 as surfactant with 1hr ultrasonication. Haque, Kwon 
[125] used SDBS as surfactant for dispersing MWCNT as it is effective 
and SDS is helpful as surfactant for Graphene. Due to the chemical 
structure, different surfactants are used for both materials and stability 
has been observed. It has been concluded that Graphene – SDS with 20 
min probe, nanofluid is stable for 4 days and efficient. 

Wusiman, Jeong [126] experimentally found that SDBS is effective 
dispersant for MWCNTs for particular weight ratio. It lead in preparing a 
stable nanofluid when SDBS is dispersed in water. Sarsam, Amiri [127] 
experimentally investigated stability of GNP nanofluids samples at 0.1 
wt% using four surfactants Gum Arabic, SDBS, SDS and CTAB. Identified 
that excessive foam is formed in nanofluids for all surfactants except 
Gum Arabic. Thermal conductivity value of GNP nanofluid increased 
and maximum stability value is achieved at 60 min probe time when 
SDBS surfactant (1–1) is dispersed in water-GNP. 

Surface modification techniques: surfactant free method 
Functionalized nanoparticles such as silica oxide (SiO2), zinc oxide 

and Graphene nanoparticles represent a surfactant-free technique. These 
particles do not form any deposition coating on the heated exterior 
surface after the pool boiling process [72]. Though adopting dispersants 
is found to be a pronouncing technique to improve the nanoparticle 
dispersibility with primary fluids, it raises many concerns such as 

Fig. 13. Stable and unstable representation of Zeta potential.  

Fig. 14. Different types of surfactants used for Graphene based nanofluids.  
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problem in the process of heat transfer, foam formation in the heating 
process, introducing thermal resistivity between base fluid and nano
particles and reduced reciprocity of surfactant molecules with an outer 
layer of nanoparticles [128]. These problems are addressed by selecting 
functionalized nanoparticles which improves the long- term stability 
and durability of nanofluids using a surfactant-free method. 

Stability mechanism and equation 

The rate of aggregation of nanoparticles dispersion in base fluid is 
defined as stability mechanism [129]. Usually defined by number of 
collisions and cohesions during the collision. Nanoparticles begin to 
adhere together to form structure at bigger scope and size that may 
cause sedimentation and agglomeration [130]. Each nanoparticle sta
bility is identified by the sum of Van der Waals attractive forces and the 
electrical twofold layer repulsive forces happening between the nano
particles when each of them approach together due to the Brownian 
movement. The sedimentation of prepared nanofluids after 15 days and 
45 days is shown in Fig. 16 and observed that there is no sedimentation 
observed for 15 days and after 45 days agglomeration of particles was 
found indicating that the Graphene based nanofluids have good 
dispersion [116]. 

Thermo-physical properties 

Volume fraction of the fluid 

The Nanofluids can be prepared by calculating the quantity of 
nanoparticles for required volume concentrations using the following 
Eq. (1) [33]. 

ϕ =

⎡

⎢
⎣

w
ρp

w
ρp
+

wbf
ρbf

⎤

⎥
⎦× 100 (1)  

where, the volume concentration of nanofluids is ϕ (%), w is the mass 
and ρ stands for density. The subscripts p refers for nanoparticles and bf 
base fluid. 

Density 

The density plays a key influence which can affect the properties of 
heat transfer. Nevertheless, very few studies are available on the effect 

of density. As the density of nanoparticles is higher compared to liquids’, 
it directed in being certain that increase in nanofluid density with in
crease of vol. concentration of nanoparticles. 

The effective density is the parameter of concentration of nanofluid 
[116,131] 

ρnf = ϕρs +(1 − ϕ)ρf (2) 

Above equation embraces for various weight fractions with negli
gible differences. Some inquiries describe on the impact of temperature 
and vol. concentration on the density in water based nanoparticles and 
decided a prototype that can work for each other [132].  

ρeff = 1001.064 + 2738.6191ϕp − 0.2095 T; for 0 ≤ ϕp ≤ 0.4, 5 ≤ (◦C) ≤ 40, 

ρeff signifies the nanofluid effective density, ϕp signifies vol. con
centration where as T signifies temperature value. 

Agromayor, Cabaleiro [42] calculated density values at different 
temperature ranges between 15 and 40 ◦C and plotted graph. It is 
concluded from the Fig. 15 that, with increase in Graphene nano
particles concentration, density of nanofluid increased, the density of 
GNP nanofluids is calculated by Eq. (2). 

The author Ijam, Saidur [62] has investigated effect of concentration 

Fig. 15. Density of GNP nanofluid at various temperature Agromayor, Cabaleiro [42].  

Fig. 16. Thermal conductivity of the CRGO/water nanofluids with (a) fresh 
prepared, (b) 15 days, and (c) 45 days [116]. 
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on density value of GONs-DW/EG nanofluid at various weight fractions 
and plotted graph. with the addition of GONs, the density of base fluid 
decreased. The results are compared with theoretical model developed 
by Pak and Cho [133] and confirmed that model is not able to predict 
density of nanofluid. The author also calculated effect of temperature on 
GONs-DW/EG density value at various temperature between 25 and 
45 ◦C. It is concluded that with increase in temperature, the density of 
base fluid decreases and graph is plotted. Density is reduced by 
1.134–1% between 25,30,35,40, and 45 ◦C at 0.00 wt%, 0.01 wt%, 0.05 
wt%, 0.07 wt% and 0.10 wt%. 

Thermal conductivity 

Thermal conductivity of any material is described as the volume of a 
substance to transfer energy in the form of heat [134]. An analysis of 
convection heat transferring concept, Base fluid thermal conductivity 
plays an important role. Evolution of nanoparticles in various base 
substances such as mineral oil, lubrication oil, glycerol, ethylene glycol 
and methanol improve the thermal properties of nanofluids. Two critical 
factors influence thermal conductivity in nanofluids: Liquid layering and 
Brownian motion. In Brownian motion technique, nanoparticles collide 
with each other in base fluid, which enables direct transfer of heat be
tween two particles which enhances the thermal conductivity of base 
fluids [111]. 

The Brownian motion is determined by the particle diffusion con
stant D, defined by Stokes-Einstein formula as shown in Eq. (3). The 
Brownian motion is characterized by the particle diffusion constant D 

D =

[
KbT
3πμd

]

(3)  

where, KB is Boltzmann constant, T is temperature, µ is viscosity 
In various existing literature, it is represented as thermal conduc

tivity is mainly reliant on temperature. Rise in temperature of nanofluids 
leads to decreased viscosity of base fluid and increase in Brownian 
motion among the nanoparticles which again increases the thermal 
conductivity (2.0 vol% and 5.0 vol%) for the temperature range from 
10 ◦C to 60 ◦C.The dimension of nanoparticle and its thermal conduc
tivity influences the concentration depending on the base fluid property. 
The properties of solid–liquid leaves a prominent impact on thermal 
conductivity (from 12.1% to 32.1% at 50 ◦C) of the base fluids [135]. 

Graphene manifests superior thermal conductivity compared to 
different carbon nanotubes. A non-equilibrium technique known as 
dynamic molecular technology was employed to study thermal proper
ties of Graphene nanoribbons composed of a variety of edge shapes. The 
results obtained from this technique exhibited robust dependency on the 
length of the Graphene nanoparticles. With increasing concentration, 
Graphene and Graphene Oxide tends to exhibit improvement of thermal 
conductivity when compared with other fluids such as high-viscous 
fluids, ethylene glycol, water and oils [136]. They exhibit properties 
similar that of metallic nanofluids and metal-oxide nanofluids [25]. The 
increasing concentration in nanofluids due to Graphene nanoparticles 
leads to the aggregation of particles and assists in percolation, which 
helps in thermal conductivity improvement [137,138]. The base fluids 
thermal conductivity was prominently improved due to the dispersion of 
Graphene nanoparticles (Up to 86% for 5% dispersion of Graphene [72]. 
The heat transfer property of Graphene shows that the Graphene layer is 
an excellent filler to enhance the thermal conductivity of epoxy com
posites with 17.5% enhancement for Graphene [17]. Hamze, Berrada 
[139] stated, FLG concentration of 0.05, 0.10, 0.25, and 0.50 wt%, 
thermal conductivity of nanofluid increases by 4.2, 5.5, 12.2, and 
23.9%, respectively, as compared to the corresponding base fluids when 
using Triton X-100 as a surfactant. The thermal conductivity enhance
ments are 1.3, 3.0, 9.9, and 18.3% for P-123, Pluronic. Finally, using 
Gum Arabic, thermal conductivity values increased by 2.1%, 4.0%, 
10.5%, and 21.5%. From the Fig. 16 it is observed that the thermal 

conductivity for Graphene nanofluid at 25 ◦C for 0,15 and 45 days. The 
thermal conductivity (0.638 W/m-k) is maximum at 0.6 mg/ml volume 
fraction of the nanofluid. For 0.4 mg/ml dispersion, 0.625 w/m-k was 
observed and for 0.2 mg/ml, 0.616 w/m-k was observed. After 15 days 
the thermal conductivity is reduced due to sedimentation of the nano
particles for all three concentrations and continued to reduce for 45 
days. Approximately 1 to 1.25% of thermal conductivity is reduced from 
0 to 15 to 45 days. Apart from this the different factors affecting the 
thermal conductivity is shown in Fig. 17 and different equations by 
authors are represented in Table 3. 

Specific heat 

The specific heat of the nanofluid is a function of concentration and 
specific heat of base fluid [33]. 

Cp,nf =
ϕ
(
ρCp

)

s + (1 − ϕ)
(
ρCp

)

f

ρnf
(8) 

According to Ijam, Saidur [62] study explains that the specific heat 
increased about 3.59–5.28% for Graphene Oxide Nanosheets (GONs), 
DW and Ethylene Glycol nanofluid at 0.05% weight conc. and value 
reduced about 9.05 – 8.215% by 0.10% weight conc. for temperature 
scope of 20 to 60 ◦C. Shahrul, Mahbubul [144] through the comparative 
review on specific heat identified volume concentrations, temperature 
and various sorts, nanoparticle size including base liquids exhibit sub
stantial impact on nanofluid specific heat. With Volume concentration 
increase, Specific heat value for the nanofluids decreases. Liu, Wang 
[145] in their study using Sapphire method (DSC,Q20,TA Instruments) 
for Graphene-dispersed nanofluids, it has been identified that the spe
cific heat and density display a minimal reduction of about 3% and 2.8% 
respectively as compared with 1-hexyl-3-methylimidazolium tetra
fluoroborate (HMIM)BF4. Pak and Cho [133] investigated nanofluid 
specific heat and identified with increment of particles in water, the 
specific heat is decreased. As the temperature increased between 20 ◦C 
and 50 ◦C, the specific heat of samples increased [146]. Obtained spe
cific heat value shows the specific heat of nanofluid is 2.25% higher than 
value at base fluid for temperature of 50 ◦C, 0.06 wt%. Hybrid nano
fluids specific heat capacity increased with increase of Activated Carbon 
Graphene Composite (ACG). 

Viscosity 

Yang, Ji [117] experimentally measured the dynamic viscosity and 
thermal conductivity of the Graphene Oxide and Water/Ethylene Glycol 
nanofluid. Results showed with improved thermal conductivity along 
with 35% decrease of dynamic viscosity for 0.01 to 0.1% vol. conc. and 
25 ◦C to 45 ◦C, mass fraction and temperature respectively. Sarsam, 
Amiri [127] conducted experiments with the water and Graphene ob
tained nanofluid in different concentrations. Results show with increase 
in the concentrations, it has enhanced viscosity. Viscosity is influential 
property in heat and flow applications of nanofluids. Park and Kim 
[147] probed the viscosity and observed the increment for Graphene & 
DW nanofluid with higher value (>1.2 times at 15 μm compared with 5 
μm size) at volume fraction of 0.001–0.01%. The functionalized Gra
phene (f-HEG) viscosity was studied by Kole and Dey [105] using EG 
70%/W 30% nanofluid at concentration 0.041 to 0.395% was recorded 
with 100% increment when compared to base fluid showing non- 
Newtonian behavior. The rise in the temperature decreases the viscos
ity and particles Brownian motion increases which results in thermal 
conductivity enhancement [148]. Hadadian, Goharshadi [70] studied 
the viscosity of Graphene Oxide and Ethylene Glycol nanofluid. Results 
obtained 81.29 cp, at temperature 20 ◦C and 0.005 mass fraction of GO 
nanosheets (below shear rate ~ 25 s− 1). Viscosity of nanofluids dimin
ished non-linearly at expanding shear rate, showing solid shear dimin
ishing conduct at low shear rates. Nanofluids viscosity diminished 
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fundamentally with expanding temperature, while it expanded with 
increasing mass division. 

Viscosity of nanofluid is dependent on various factors. Size of 
nanoparticle, volume concentration, shape of nanoparticle, shearing 
rate and time, agglomeration of nanoparticle, base fluid properties and 
layer of nanoparticle as well as shown in Fig. 18 Various investigational 
studies demonstrated that the accumulation of nanoparticles to con
ventional fluids which are good at heat transfer leads to an increase in 
the viscosity of liquid. With additional increment of nanoparticle con
centration also provided with an increase of viscosity non-linearly. As 
temperature value increases, the nanofluid viscosity values decreases. 
The viscosity of nanofluids diminishes when expansion in temperature 
which is typically portrayed by [149] an exponential bend. This alluring 
to set up with nanoparticle size ≤ 100 nm, in light of the fact that a 
greater size in the micro regime prevents useful application because of 

scraped area, the higher rate of settlement, the pressure drop in 
streamline and stopping up of hardware. Study indicated that nano
particle size also an additional significant influence which impacts the 
nanofluids viscosity. Naturally, with the molecule size decreases, vis
cosity of suspension gradually increases [150-152]. Below Table 4 shows 
the different equations of viscosity mentioned by various authors. 

According to Ijam, Saidur [62] the nanofluids demonstrated a shear 
diminishing conduct at lower shear rate; in any case, it carried on in 
Newtonian way with higher shear rate. The viscosity of GONs-DW/EG 
nanofluid is enhanced 35% at 0.10 wt%, contrasted with base liquid 
20 ◦C temperature. It further increased by 48% between 20 and 60 ◦C 
temperature values at similar stacking of GONs. Esfahani, Languri [123] 
study explains that base fluid have high impact on rheological properties 
of nanofluids at moderately lesser fixation, however for nanofluids 
which are generally in high focus, collaboration amongst base liquid and 

Fig. 17. Factors effecting the Thermal conductivity.  

Table 3 
Thermal conductivity formulas mentioned by different authors.  

Reference Formula Important findings Remarks Eq. 
no 

Maxwell  
[140] keff =

knp + 2kbf + 2(kP − kb)ϕ
knp + 2kbf −

(
knp − kbf

)
ϕ

Kbf  
Thermal conductivity of the spherical particle, the 
base fluid, and the volume fraction of the solid 
particles. 

Equation is used for solid or liquid 
state mixtures with large particle size 
and low solid concentrations 

(4) 

Hamilton and 
Crosser  
[141] 

keff =
knP + (n − 1)kbf − (n − 1)

(
kbf − knp

)
ϕ

knp + (n − 1)kbf +
(
kbf − knp

)
ϕ

kbf Where, n 

=
3
ψ ψ =

(6Vp)

2
3π

Ap

1
3 

= particle sphericity  

This represents the boundary between the 
spherical particle and the base fluid, here n is the 
empirical shape factor given by n = 3/ψ, and ψ is 
the particle sphericity, known as the ratio of the 
surface area of a sphere with volume equal to that 
of the particle, to the surface area of the particle. 

This equation is used for liquid or solid 
mixtures with non-spherical shape 
with ratio of conductivity of solid to 
liquid>100. 

(5) 

Xue [142] 
9(1 −

∅
λ

) 
keff − kbf

2keff + kbf 
+

ϕ
λ
(

keff − kc,x

keff + B2,x
(
kc,x − keff

)+

4
keff − kc,y

2keff +
(
1 − B2,x

)(
kc,y − keff

)) = 0  

This model represents the interface among the 
base fluid and solid particles. 

This model of effective K, is on the 
theory of average polarization 

(6) 

λ =
abc

(a + t)(b + t)(c + t)
Yu and Choi  

[143] Keff =
knp + 2kbf + 2(knp − kbf )(1 − β)3∅
knp + 2kbf − (knp − kbf )(1 + β)3∅

kbf  
This represents the nanoparticle size and 
thickness,β = h/r nano-layer thickness ratio (less 
than 10 nm) to the original particle radius. 

this is an improved model for maxwell 
equation based on effective medium 
theory of solid nanoparticles 

(7)  
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nanoparticles assumes a significant role on rheological properties of 
nanofluids. The Viscosity for Graphene Oxide nanofluids at 0.01 and 0.5 
wt%, temperature 25 ◦C, and shear pace 100 1/s increased about 38% 
and 130%. The increase in Viscosity with increment in concentration 
was additionally seen at higher temperature, however with little 

decrease on scale. Viscosity measurements affirm that both the base 
liquid and prepared nanofluids are non-Newtonian in nature all through 
the deliberate temperature go. Viscosity increases by 100% that of base 
liquid at normal room temperature of nanofluid consisting 0.395 vol% f- 
HEG. Enhancement in viscosity is huge but its value is, nonetheless, 
extremely ostensible (12.1 cp), almost same as Ethylene Glycol at room 
temperature [153]. 

pH of the nanofluid 

Yang, Ji [117] inspected the impact of Graphene Oxide/Water 
Nanofluid and exhibited nanofluid has maximum stability ideal at pH =
8. The prepared Nano-liquid sample utilized in estimating thermal 
conductivity had complete stability for about 6 months. According to 
[116] the zeta potential for a conc. of 0.2 mg/ml can reach to 50.9 mV at 
pH = 12.0, and the prepared nanofluids has great scattering stability for 
higher nanofluids temperature & added volume conc. The pH value of 
nanofluids is calculated by [80] has obtained 8 value, and having 
complete stability identified zeta potential is about 31.8, 40.9, and 45.7 
mV for GNPs at 300, 500, and 750 m2/g. 

The concentration of ionized groups on GO and r-GO sheets at 
different values of pH were determined using a Ph titration by the 
author. In the Fig. 19, red curve indicates that equilibrium is attained at 
each step of pH solution, delta indicates the difference in volume then as 
a function of pH same was performed for reduced Graphene Oxide. 

Factors affecting thermal conductivity and viscosity 

Analysis of thermal conductivity of Graphene-based nanofluid with 
different volume concentrations and temperature was shown in Fig. 20. 
Thermal conductivity is plotted against temperature. The corresponding 
thermal conductivity values and temperature values are: 0.6185 W/m-k 
at 50 ◦C with Graphene/Water Bharadwaj, Mogeraya [26], 0.627 W/m- 
k at 25 ◦C with Graphene Oxide/Water Nazari, Ghasempour [29], 0.710 
W/m-k at 20 ◦C with Graphene/Water Zhao, Xu [159], 0.85 W/m-k at 
60 ◦C with GONs/Water Yu, Xie [72], 0.53 W/m-k at 65 ◦C with GNP/ 
Water-EG Arzani, Amiri [160]. 

We can conclude that the thermal conductivity of Graphene nano
fluids enhances with an increase in temperature. Maximum value of 
0.85 W/m-k is obtained at 60 ◦C at 0.85% vol concentration. 

The variation of absolute viscosity for various temperatures at 
different volume concentrations and particle sizes is presented in 

Fig. 18. Factors effecting the Viscosity of nanofluid.  

Table 4 
Viscosity equations by different authors.  

References Model equation for Viscosity Equation 

Einstein [154] μnf = μbf(1 + 2.5φ) (9) 
Wang, Xu [155] μnf = μbf(1 + 7.3φ + 123φ2) (10) 

Bahaya, Johnson [156] Relativevelocity = 1 + (η)f = K(η)2f2
+

Of3 + ⋯  

(11) 

Esfahani, Nunna [157] 
μnf − μbf

μbf
= Cμφ = > Cμ =

(
μnf
μbf

)

− 1

φ  

(12) 

Ahammed, Asirvatham  
[158] 

μnf = μf(1 − φ)2
.5  (13)  

Fig. 19. pH of (a) Graphene Oxide (GO) and reduced GO [61].  
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Fig. 21. The viscosity, volume concentration and particle size were 
plotted against temperature, the corresponding values of viscosity, 
volume concentration, particle size and temperature considered for 
graphical representations are: 0.1565, 0.01%, 8 nm, 25 ◦C Park and Kim 
[147], 0.001805, 1%, 2 nm, 50 ◦C Bharadwaj, Mogeraya [26], 
0.001042, 0.02%, 1.3 nm, 25 ◦C Akhavan-Zanjani, Saffar-Avval [161], 
0.750, 0.1%, 2 nm, 30 ◦C Mehrali, Sadeghinezhad [162], 0.04712, 
0.05%, 5 nm, 50 ◦C. The viscosity of the Graphene nanofluids increases 
with an increase in volume concentration and at lower temperatures, 
variation in dynamic viscosity is more than at higher temperatures. 
Below Tables 5 and 6 provides a detailed summary of various research 
studies involving Graphene-based nanofluids which shows Nanofluids 
exhibit high stability, high heat transfer coefficient, and enhanced 
thermal conductivity values when compared to base fluids, and 
Comparative analysis of the effect of volume concentration on thermal 
conductivity, viscosity of Graphene nanofluids. 

The author Ponangi, Sumanth [27] studied experimentally and 

identified the results which derives than base fluids, nanofluids will 
enhance the performance of an automobile radiator. It showed an 
extreme value of 56.45% and 41.47% thermal conductivity at 40 ◦C and 
50 ◦C. Bahaya, Johnson [156] experimentally investigated thermal 
conductivity for GNP nanofluid and compared with water and identified 
that 1.43× at a volume fraction rate of 0.014. This presents the highest 
enhancement of thermal conductivity. Addition of GNP with mixture of 
water as well increases solution viscosities with an enhancement ratio of 
33.1 for GNP nanofluids for volume fraction of 0.014. Ahammed, 
Asirvatham [158] experimentally measured Graphene water nanofluid 
viscosity and surface tension using SDSM as a surfactant and identified 
that viscosity of Graphene-water nanofluid increases with increase in 
vol. concentration with an average enhancement of 47.12% at 0.15% G 
for 50 ◦C. With temperature and vol. concentration increment, Surface 
tension in contrast has decreased by 18.7%. Summary of Graphene- 
based nanofluids of previous research for heat transfer application are 
provided in the Table 7. 

Application of graphene based nanofluids as a coolant 

The fulfilment of a heat engine is reliant on its cooling system and it 
is essential to develop an efficient cooling system to improve the per
formance. Radiator performance can be accelerated by using an active 
fluid which has good thermal characteristics such as Nanofluids [165]. 
Graphene-based nanofluids have excellent heat transfer and flow prop
erties which enhances the thermal conductivity in nanofluids and act as 
an efficient coolant in a radiator [166]. Along with thermal conductiv
ity, Graphene also improves the specific heat coefficient of nanofluids, 
viscosity, and density of nanofluids. Different applications of Graphene 
as a coolant and in electronic applications are reviewed by Yu and Xie 
[91]., and the effects of Graphene-based nanofluids as the electronic 
coolant is studied by Sharma and Gupta [110]. The heat transfer 
mechanism is fast and effective by adopting Graphene nanoparticles. 
Different parameters of Graphene nanoparticles such as the use of sur
factants, smooth or rough surface conditions and thermal properties 
enhance the energy efficiency of the radiator by providing efficient heat 
transfer [167]. Graphene is also used in many applications such as defect 
sensors, biomedical, cosmetics, imaging, and capacitors [168-170]. The 

Fig. 20. Variation of Graphene-based nanofluid thermal conductivity, with the temperature at a different volume concentration.  

Fig. 21. Variation of absolute viscosity with the temperature at different vol
ume concentrations and particle sizes. 
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Fig. 22 representing the application of graphene. 

Application of graphene in renewable energy technologies 

Graphene is an atomic substance placed in a honeycomb lattice. It is 
a special material with many good features, including high mobility of 
the carrier. This unique material can be used in the application of 
renewable energy including fuel and solar cells, lithium-ion batteries, 

Table 5 
Summary of important findings and results of Graphene based nanofluids.  

Nanoparticles Base fluid Application Findings Stability Results Ref. 

Graphene 
Nanoribbon 

Pure W Heat Transfer 
Performance of an 
Automobile Radiator 

Effectiveness, & overall HT 
coefficients 
- new generation vehicles could 
have more aerodynamic 
Design. 

Stable Highest enhancement obtained as 31.6% 
for GNR-water. Mean enhancement values 
of overall HT coefficients are 18.8% & 
24.8%. 

Kilinc, Buyruk 
[163] 

Graphene Oxide 
(GO) 

W: EG NF can be used in 
Industrial applications as 
HT fluid in cold regions. 

The results show TC of NF ↑with 
the amount of GO Nanosheets 

Confirmed 
stability of NF 

TC enhanced by 47% at 46.7 ◦C for water 
(40%)-ethylene glycol (60%) based GO 
(5%) NF. 

Izadkhah, 
Erfan-Niya  
[128] 

Graphene Oxide 
(GO) 

Pure W Vehicle Radiator (cross- 
flow heat exchanger) 

The dimensions and weights of 
the vehicle cooling systems can 
be reduced 

Stable The mean enhancement values of U for all 
temperatures were 5.41% and 26.08% for 
GO/water NF and 15.62% and 20.64% for 
GNR/water NF 

Kılınç, Buyruk 
[164] 

Graphene 
Nanoribbon 
(GNR) 

Graphene Oxide (60:40) 
DI W/EG 

– Improved results show stable NF Stable A max improvement in TC was about 
6.67% to 10.47% 

Ijam, Saidur  
[62] 

Graphene Oxide EG: W 
(50:50) 

Radiator Improved results say NF will 
enhance the performance of an 
Automobile Radiator compared 
to BF 

Stable Results shows maximum of 56.45% & 
41.47% improvement for effectiveness 

Ponangi, 
Sumanth [27] 

Graphene Nano 
Platelets 

W: EG 
(70:30) 

Vehicle Radiator cooling 
system 

GnP/H2O-EG NF could be better 
heat transfer fluid for Radiator 
cooling. 

Stable Overall HT coefficient increased by 104% 
with 0.5 vol% of GnP. 

Selvam, Raja  
[53]  

Table 6 
Comparative analysis of the effect of volume concentration on thermal con
ductivity, viscosity of Graphene nanofluids.  

Volume 
Concentration 

Particle 
Size 

Observations References 

0.01% of Graphene 
(M− 5) and 
(M− 15) 

8 nm The thermal conductivity 
value for M− 5 Graphene 
nanofluid increased at 
rate of 5.47% compared 
to M− 15 Graphene. The 
rate of increase in 
viscosity of M− 15 
Graphene nanofluid was 
15.65% higher than M− 5 
Graphene nanofluid. 

Park and Kim  
[147] 

0.02% of 
Graphene-water 
nanofluid 

1.3 nm Thermal conductivity was 
enhanced remarkably 
after adding Graphene 
nanoparticles by 10% and 
Heat transfer coefficient 
was enhanced by 6.04% 

Akhavan-Zanjani, 
Saffar-Avval [161] 

0.1% of Graphene 
Nano platelet 
(GNP) nanofluids 

2 nm GNP nanofluid 
significantly enhances 
characteristics of heat 
transfer. The HTC was 
enhanced by 200% after 
adding GNP compared to 
distilled water. 

Mehrali, 
Sadeghinezhad  
[162] 

0.15% of Graphene 
and water 
nanofluid 

5 nm Viscosity value increased 
with increase of vol.conc. 
Viscosity was increased 
by 47.12% for 0.15% of 
the vol conc of Graphene 
at 50 ◦C. 

Ahammed, 
Asirvatham [158] 

1% of carboxyl 
Graphene and 
Graphene Oxide 

2 nm The effectiveness of the 
radiator in terms of 
thermal conductivity was 
improved by 10.5%, the 
heat transfer coefficient 
was enhanced at 193%. 

Bharadwaj, 
Mogeraya [26] 

0.05% and 0.2% of 
Graphene 
nanofluids 

30 μm Thermal conductivity was 
increased by 27%, 0.2% 
vol. conc. of Graphene 
nanofluid. A linear 
increase in electrical 
conductivity was 
observed with increase in 
particle volume 
concentration. 

Gandhi, 
Velayutham [132]  

Table 7 
Heat transfer analysis on Graphene based nanofluids.  

Material Analysis Observations References 

Graphene 
nanofluid 

Stability analysis 
and thermal 
conductivity 

Graphene enhances 
thermal conductivity 
by increasing 
nanoparticle 
concentration 

Sadeghinezhad, 
Mehrali [6] 

Carboxyl 
Graphene 
and 
Graphene 
Oxide 

System Analysis of 
the radiator 

Radiator efficiency 
was improved using 
Graphene based 
nanofluid compared 
to conventional 
coolants 

Sumanth, Babu 
Rao [11] 

Graphene 
Oxide 

Analysis of thermal 
performance of 
pulsating heat pipe 
(PHP) 

Thermal resistance 
of PHP was reduced 
up to 42% using 
Graphene Oxide 

Nazari, 
Ghasempour  
[29] 

Graphene 
nanofluid 

Thermal 
conductivity and 
viscosity of 
nanofluids 

Using 0.05 wt% 
Graphene instead of 
water can achieve 
15.1% and 10.7% 
decrease in startup 
time 

Zhao, Xu [159] 

Graphene 
nanosheets 
and 
Graphene 
Oxide 

Analysis of thermal 
conductivity of 
nanofluids using 
ethylene glycol as 
base fluid 

Graphene and 
Graphene Oxide 
enhance thermal 
conductivity of base 
fluid upto 86% for 
5% Graphene 
dispersion in base 
fluid 

Yu, Xie [72] 

Graphene 
nanoplates 

Analysis of 
Rheological 
properties, specific 
heat capacity and 
thermal 
conductivity 

Heat transfer 
Coefficient was 
improved using 
Graphene 
nanoplates than base 
fluid 

Arzani, Amiri  
[160]  
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supercapacitors etc. The details are provided in the following 
subsections. 

Super-capacitor 

Super-capacitors are electric power storage systems in portable 
electronic devices where incredibly fast charging is an important feature 
[171]. It offers high storage capacity, fast loading, and charging (within 
a few seconds) process, long life (generally > 100,000 cycles), need little 
maintaining, and lower self-discharging. In contrast to traditional ca
pacitors, they have a greater power density [172]. Numerous studies 
claim that graphene is a much better capacitor material compared with 

current both carbon-based and polymer-based materials. Relatively 
significant efforts have been made in super-capacitor research using 
pure graphene, and different metal-doped pure graphene, and carbon 
nanotube [173]. The findings of the graphene-based super-capacitor 
electrodes are shown in Fig. 23 [174-187]. However, it has been re
ported that the graphene-based (GA/TiO2) electrode material offers 
strong specific capacitance (50–150 F/g) in 0.1 M NaCl solution under a 
variety of scanning rates ranges from 5 mV s− 1 to 1000 mV s− 1* [188]. 
After achieving a balance at 200 s, GA/TiO2 based electrode showed a 
powerful desalination performance over 10 cycles, which was consid
erably better than those obtained by pure GA and neat activated carbon. 
The mass-produced GNSs with a small mesoporous distribution of 4 nm 

Fig. 22. Various applications of Graphene based Nanofluids.  

Fig. 23. Summary of the research findings (2015–2019) on the performance of graphene-based supercapacitor electrode [174-187].  
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from natural graphite through oxidization and quick heating has been 
researched by Du, Guo [189]. Their findings suggest that for 500 
charging-discharging cycles, the GNS would retain the strong specific 
capacitance (150 F/g) at the specific current of 0.1 A/g [189]. Graphene 
has been tested as a possible super-capacitor electrode material by the 
researcher [190] and an outstanding cyclical capacity of ~ 90% 
resulting after 1200 cycles have been obtained. 

Solar cells 

The use of graphene in solar-based devices has special significance in 
the production of clean and renewable energies [191]. Chang, Liu [192] 
has produced a novel photo-electrochemical cell (PEC) based on 
graphene-based nanocomposites for converting the PV energy, and 
where its composites include a basic platform to transform solar power, 
photoconductivity, and photodetector. They have shown that the 
photocurrent generation and the PV conversion performance of PECs are 
considerably enhancing (over 10-fold) by using graphene in a POT film. 
Furthermore, graphene/POT’s transmission resistance declined sub
stantially by just 10% of pure POT, which indicates that graphene 
composite will serve as a successful solar power transmission platform in 
the long term. PECs were shown to rely largely upon graphene content 
and morphology, with the maximum efficiencies achieved in the nano
composite with 5 wt% graphene content [192]. In addition to its wide 
surface as well as high electron mobility, the high capacity of graphene 
as an acceptor has also been significantly increased; all of these are 
important in enhancing the solar cell efficiency. However, the research 
on 2D graphic controlled DSSC output has shown high cell output such 
as JSc (11.6–15.90 m), OCV (0.72–0.78 V) and efficiency (3.2–8.2%) 
percent while MOx/rGO is used with graphene oxide composition and 
photosensitive metal oxides. Fig. 24 shows a summary of the research 
findings (2015–2019) on the performance of graphene-based solar cell 
[193-198]. 

Battery/Lithium-ion storage 

Lithium batteries are an additional class of energy storage technol
ogies that employ graphene because of its recorded higher physical 
characteristics. Like super-capacitors, global demand is rising for 
advanced Li-ion batteries that have improved energy capacity and long 

cycle life promising in terms of their use in electric vehicles [199]. Li-ion 
batteries may hold and produce power over a long period, in which 
electrode components play an important role in the operation, but every 
part of the battery is necessary for its efficiency. The anode material 
currently used in lithium-based batteries is typically graphene-based 
due to its high Coulombic performance [200]. Nevertheless, the 
comparatively low theoretical strength of the batteries (372 mAh/g) and 
the large diffusion ranges of the Li-ions should be overcome to increase 
the battery efficiency [200]. Graphene has since proven to be a good 
substitute for papers with graphene-based electrodes that have greater 
technical capabilities compared to other electrode materials [201]. 
Fig. 25 summary of the research findings (2015–2019) on the perfor
mance of graphene-based LIBs battery electrode [165,167,202-208]. 

Researcher [202] provided the most robust graphene-based anode 
materials for LIBs, with a 400-cycle discharge capacity and a current 
density of 500 mAh/g; the discharge capacity is 2–3 times higher than 
pure graphene aerogel. Sun, Mei [209] reported even greater stability 
using the LIBs anode with a 90% retention capability following 10,000 
cycle operations, with using the Nb2O5 loaded hole graphene system. 
Although the basic discharge capacity was not very high (~150 mAh 
g− 1) in comparison with the N-GA of the Meng group (500 mAh/g) 
[202]. The HGF anode is used explicitly without any of the aid of binder 
and conductive added material, which demonstrated the advanced free- 
standing 3D bulk graph frames of the binder as the direct electrode for 
LIBs or green energy storage systems [209]. The significant difference in 
specific capability of the 2D Nb2O5/G (~60 mAh/g) control specimen 
against 3D Nb2O5/HGF-2.0 (145 mAh/g) was shown in this hypothesis 
in the same electrochemical study with the loading Nb2O5 (6 mgcm− 1). 

Fuel cells 

Battery and electrical fuel cell study is a major topic in sustainable 
energy production. The generation of electricity through electro
chemical oxidation of alcohol sources of renewable energy from splitting 
water may help to reduce petroleum-based fuel requirements [201], 
Besides, graphene-based materials are very common as an electro
catalyst, alongside the strong catalytic activity of fuel cell catalysts and 
simple modification characteristics of graphene with these materials. 
Researcher [210] have claimed that nitrogen-doped graphene behaves 
as a metal-free electrode that increases electro-catalytic efficiency; 

Fig. 24. Summary of the research findings (2015–2019) on the performance of graphene-based solar cell [193-198].  
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possesses long-term durability of operation, and crossover resilience 
than Pt for the reduction of oxygen. However, graphene has also been 
correlated with the improved electro-catalytic function of the fuel cell. 
In particular, Xin, Liu [211] have reportedly shown that use of plat
inum/GNS (Pt/GNS) catalyst has shown excellent catalytic activity, in 
comparison to the Pt-supported carbon-black (C) activity for both 
methanol oxidation and ORR. Researcher [212] has shown that with the 
use of graphene supported Pt-Ruthenium (Ru) nanocomposite, better 
catalytic activity can be achieved for the oxidation of methanol as 
compared to the alternative Pt-Ru/Vulcan based material. Dong, Gari 
[213] have shown that Pt and Pt-Ru synthesized nanoparticles on GNSs 
have high electron-catalytic activity in the form of methanol and ethanol 
in contrast with graphite alternatives, resulting in a substantially 
reduced potential over-power and enhanced reversibility. 

Challenges and future prospective  

• There is big potential for advance research study on Graphene based 
nanoparticles in hybrid nanofluids.  

• Need improved study on Stability of hybrid nanofluids when using 
Graphene based nanoparticles. Though there are various studies, still 
could not find a way to overcome agglomeration and sedimentation 
of nanoparticles. Size and shape of nanoparticles has become ne
cessity for enhancing heat transfer performance which need to be 
overcome 

• Graphene Quantum Dots (GQD) utilization in Nano medical appli
cations has major scope. 

• Recent studies show that Graphene flakes with cross linked poly
silicon are playing crucial role in development of development of 
sensors and there is a need for detailed study on its application.  

• Advance studies need to be performed for developing new synthesis 
methods which would permit easy production of Graphene with 
ideal structure. 

Conclusion 

The review article focuses on prominent attributes of Graphene 
nanofluids and their latest technological advancements in industrial 
applications. Various existing literature signifies that a large portion of 
the research focuses on stability, thermal conductivity, and heat transfer 
characteristics of Graphene nanofluids. The Graphene nanofluid prep
aration and stability are also discussed. The two step and the ultra- 
sonication are the commonly used methods to dissolve Graphene- 
based nanoparticles in the base fluid to enhance heat transfer 

properties of the fluid. From this conducted review, the ideal Graphene- 
based nanoparticle size is identified to be less than 50 nm and the best 
heat transfer base fluid to be mixed is water or water mixed with 
ethylene glycol. The minimum and maximum volume concentrations 
considered were between 0.001% and 2%. The concept of utilizing a 
Graphene-based nanofluids is influenced by the purpose of improving 
the heat dissipation of system. This study covers fundamentals of Gra
phene properties, preparation technique of Graphene nanofluids, sta
bility analysis, and stability enhancement techniques, thermal 
properties of nanofluids and effect of Graphene nanofluids on thermal 
conductivity. Also, the effect of temperature on thermal conductivity 
and viscosity of the base fluid was discussed. It was observed from the 
existing literature that the thermal conductivity of base fluids was 
prominently improved by 86% with 5% dispersion of Graphene nano
particles. Some prominent conclusions were made based on the literary 
works; the enhancement of thermal conductivity of nanofluids is 
dependent on temperature and thermal conductivity increases with in
crease in temperature, functionalized Graphene nanoparticles increase 
stability and durability of the nanofluids, suspension of Graphene 
nanoparticles in the base fluid increases the thermal conductivity of the 
base fluid. It was observed from the comparative analysis that addition 
of Graphene nanofluids significantly enhances viscosity and heat 
transfer capacity of base fluids. Viscosity was increased by 47.12% for 
0.15% volume of Graphene nanoparticles and heat transfer coefficient 
enhanced by 193% for 1% of Graphene Oxide. 
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