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ARTICLE INFO ABSTRACT

Keywords: Rapid urban expansion has had a significant impact on green space structure. A wide variety of modelling
Land Change Modeller approaches have been tested to simulate urban expansion; however, the effectiveness of simulations of the
Markov Chain

spatial structure of urban expansion remains unexplored. This study aims to model and predict urban expansion
in three cities (Kuala Lumpur, Metro Manila and Jakarta), all experiencing rapid urban expansion, and to
identify which are the main drivers, including spatial planning, in the resulting spatial patterns. Land Change
Modeller (LCM)-Markov Chain models were used, parameterised on changes observed between 1988/1989 and
1999 and verified with the urban form observed for 2014. These models were then used to simulate urban
expansion for the year 2030. The spatial structure of the simulated 2030 land use was then compared with the
2030 master plan for each city using spatial metrics. LCM-Markov Chain models proved to be a suitable method
for simulating the development of future land use. There were also important differences in the projected spatial
structure for 2030 when compared to the planned development in each city; substantive differences in the size,
density, distance, shape and spatial pattern. Evidence suggests that these spatial patterns are influenced by the

Landscape metrics
Spatial structure and pattern
Simulated model

Master planning and policies

forms of rapid urban expansion experienced in these cities and respective master planning policies of the mu-
nicipalities of the cities. The use of integrated simulation modelling and landscape ecology analytics supplies
significant insights into the evolution of the spatial structure of urban expansion and identifies constraints and
informs intervention for spatial planning and policies in cities.

1. Introduction becomes important to monitor and understand the changes in spatial

complexity of an urban ecosystem as rapid urban expansion occurs.

Globally, urban expansion has increased over recent decades
(Cohen, 2006). This is expected to continue as urban areas are expected
to absorb most of the global population growth in the upcoming dec-
ades (United Nations Department of Economic and Social Affairs
UNDESA, 2012). Cities have grown rapidly in size and density (Turrini
and Knop, 2015) and in some developing countries, cities have tripled
in size (Seto et al., 2012), often denominated rapid urban expansion. In
Southeast Asia, the urban expansion rate is 2.8% higher when com-
pared to many urbanised regions of the world (Cohen, 2006; United
Nations Department of Economic and Social Affairs UNDESA, 2012). As
a consequence, urban green space has come under increasing pressure
during the urbanization process and this negatively affects ecosystem
services, cultural associations, psychological well-being and the health
of urban dwellers (Tian et al., 2011). The conversion of green spaces
into the built-up areas has become one of the major reasons for habitat
destruction worldwide (Turrini and Knop, 2015) and therefore, if some
of this green space can be retained, protected or reclaimed, then it
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Urban dynamics, planned or unplanned, can cause changes to the
structure, shape and functions of built and non-built areas (Madureira
et al., 2011). In Southeast Asia, the relatively weak structure of urban
policy poses challenges for the adoption of appropriate urban man-
agement strategies. Uncoordinated master planning strategies often
lack information on the past, present and future changes to the urban
and green space structure. In this study, we define the master plan as a
land use map that determines future urban growth. However, master
plans prepared to guide urban development have rarely been successful
(Sharifi et al., 2014; Todes, 2012). This is because these plans are often
created by international planning consultants who are not aware of the
local conditions (Seto et al., 2012; Sharifi et al., 2014). Subsequently,
the present understanding of the spatial effects of urban planning
arising from rapid urban expansion remains unclear and poorly un-
derstood.

The planners often employ simulation modelling to forecast future
urban expansion with a view to improve land management policies and
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practices (Bhatti et al., 2015). The integration of remote sensing, geo-
graphic information systems (GIS) and urban simulation modelling has
been successfully applied to create better understanding of urban de-
velopment dynamics and to anticipate urban planning activities (Zhang
et al., 2011). Numerous simulation modelling techniques have been
developed to 1 urban changes, for le; Artificial Neural
Networks (ANN), Markov Chain models, Land Change Models (LCM)
and cellular automata models (Losiri et al., 2016; Roy, 2016;
Triantakonstantis et al., 2015). While these models have potential to
inform urban planning, this is difficult to reach in practice as there is a
lack of empirical evidence on the relative effectiveness of urban plan-
ning in cities under rapid urban expansion (Zhou and Wang, 2011).

Here we seek to understand the effectiveness of these spatial models
to identify the effects of master planning strategies in cities experien-
cing rapid urban expansion. We use a combination of Land Change
Modeller (LCM) and Markov Chain modelling, incorporating GIS data
and remote sensing satellite imagery. The LCM is less complex, faster
and a more understandable process when compared to most modelling
techniques (Eastman, 2006; Triantakonstantis et al., 2015). The quan-
tity of change is modelled through a Markov Chain temporal analysis
for the LULC types, and the process relies on the historical transitions
and past changes (Sinha and Kumar, 2013), as there is evidence that
urban land use depends on the historical development process of each
city (Niemeld, 2014).

We then combine this with spatial metrics (indicators) associated to
the shape, form and spatial distribution of the urban green space. As the
landscape becomes urbanised, the resulting fragmentation affects
landscape structure and decreases the landscape connectivity (Vergnes
et al., 2012). Consequently, green spaces become isolated by a matrix
composed of buildings and streets, limiting the distribution and the
connectivity of green space patches. Spatial metrics quantify and in-
terpret the changing spatial urban characteristics and patterns based on
the characterisation of spatial pattern (size, density, shape, distance of
patches) due to the fragmentation of the green space. They are effec-
tively indicators (Uuemaa et al., 2013), describing the changes in shape
complexity and variety due processes of urban compaction, aggrega-
tion, dispersion and isolation (Aguilera et al., 2011). The quantification
of landscape structures using spatial metrics in a simulated model
(Kong et al., 2012) is important in assessing and monitoring the effec-
tiveness of master planning when rapid urban expansion occurs.

This paper aims to: (1) test the applicability of integrated LCM-
Markov Chain models for three cities undergoing rapid expansion
(Kuala Lumpur, Malaysia; Jakarta, Indonesia and Metro Manila,
Philippines) to model and simulate the observed spatial patterns of
urban expansion and changes to green space structure and (2) use the
developed LCM-Markov Chain model to describe, using spatial metrics,
the simulated rapid urban exp potential with proposed master
plan 2030. We also identify which are the main drivers, including
spatial planning, in the resulting spatial patterns. We hypothesised that
the spatial effect of rapid urban expansion and green space are influ-
enced by the historical spatial changes, implementation of the previous
master planning efforts and uncontrolled urban expansion.

2. Methods
2.1. Study area

The study focusses on three cities in Southeast Asia: Kuala Lumpur,
Malaysia; Jakarta, Indonesia and Metro Manila, Philippines (Fig. 1).
Kuala Lumpur, the capital of Malaysia, is located at the confluence of
the Klang and Gombak rivers and its total area is approximately 23
934 ha (239 km?). Jakarta, the capital city of Indonesia, consists of five
municipalities within a lowland context on the North Coast of Java
Island. The city occupies an area of 64 000 ha (640 km?). Jakarta has a
flat terrain, and the land gradually rises across the city from 5 to 50 m
above mean sea level (Murakami et al., 2005). Metro Manila, the capital
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of the Philippines consists of eight contiguous cities, including Manila,
and nine other municipalities, covering an area of approximately
63 800 ha (638 km?). The capital is located in the lowlands of south-
western Luzon Island and is situated on the eastern coast of Manila Bay
at the mouth of the Pasig River (Murakami et al., 2005).

2.2. Data acquisition

Landsat satellite imagery was used to obtain LULC (land use land
cover) information for each study area. 1988 and 1999 Landsat-5
Thematic Mapper 30 m resolution imagery for Kuala Lumpur was ob-
tained from the Malaysian Remote Sensing Agency (MRSA). The same
type of imagery for the years 1989 and 1999 were downloaded from the
Global Land Cover Facility (http://glef.umd.edu/) for Jakarta and
Metro Manila. Landsat-8 Enhanced Thematic Mapper 30 m resolution
images for 2014 covering the three cities were downloaded from the
U.S. Geological Survey (http://www.usgs.gov/). The images were
projected to the appropriate Universal Transverse Mercator UTM Zone
for each city on the WGS84 datum. The availability of satellite remote
sensing data has increased significantly in the last two decades, and it
constitutes a useful data source for mapping the composition of urban
settings and analysing changes over time (Patino and Duque, 2013).
The master plan maps for each city were obtained from the each city
authority (Kuala Lumpur City Hall, 2005; Government of Jakarta
Special Capital Region, 2011; Metropolitan Manila Development
Authority (MMDA, 2012).

2.3. Methodological framework

In this study, LULC categories were modelled using the Land Change
Modeller (LCM) software package (Eastman, 2006; available as ArcGIS
10.2 extension, http://www. clarklabs.org) to derive the predicted fu-
ture LULC maps (Eastman et al., 2005 Pérez-Vega et al., 2012;
Shooshtari and Gholamalifard, 2015). The LULC modelling procedures
consisted of two stages (Fig. 2). The first stage involved the modelling
of potential change using LULC maps of 1988/1989 and 1999 to si-
mulate the year 2014 (15 years interval). The model enabled the
comparison of the actual map for 2014 with the results from the si-
mulated model to verify the ability of the model to simulate urban
development. We assess the evidence of spatial effects of the urban
master plan on the urban expansion pattern by examining the differ-
ences between the predicted spatial patterns of urban expansion and the
actual expansion observed for 2014. The second stage involved mod-
elling the potential change using actual LULC maps of 1999 and 2014 to
generate simulations of the LULC in the year 2030 (15 years interval)
and then comparing this with the 2030 master plan map using land-
scape metrics to detect differences in spatial structure.

2.4. Image processing

Nine satellite images were processed using ERDAS Imagine 2014
(Intergraph Corporation, Madison, AL) and ArcGIS 10.2 (ESRI,
Redlands, CA) to produce LULC maps for each city. The geocoded sa-
tellite images were subsetted using the boundary of the cities obtained
from the Global Administrative Areas database (http://www.gadm.org/
) to extract the area of interest from the images. LULC types were
classified into three types: built-up area, green space and waterbody, to
match the LULC types used on the digitized master plan maps for 2030.
The LULC types were classified using maximum likelihood supervised
classification (ERDAS Imagine, Hexagon Inc., Jensen, 1996; Fonji and
Taff, 2014; Zhou and Wang, 2011) (Table 1). In the classification pro-
cess, the existing land use maps, topographic maps and visual inter-
pretation of Google Earth imagery were used to provide the training
data for the classifier and a separate validation dataset. The accuracy
assessment was based on an error matrix that compared the classifi-
cation results with the validation dataset, expressed as the overall
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Fig. 1. Location of the three case study cities in
Southeast Asia.
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accuracy and kappa statistic (Rozenstein and Karnieli, 2011). The va-
lidation samples for each class were identified using a stratified random
sampling approach (Yang et al., 2014) with 100 points assigned to each
LULC. The overall accuracy of the Kuala Lumpur was 88% for all image
dates. In Jakarta, the overall accuracies of the images were 87%, 88%
and 85%, respectively. In Metro Manila, the image classification ac-
curacies were 88%, 87% and 88%, respectively. The 12-15% in-
accuracy was due to misclassified mixed pixels in the waterbodies, for
example, pond areas which were spectrally confused with green space
because these areas are surrounded by gardens. The spectral confusion
occurs when several LULC types share a similar spectral response and
this is inherent in medium-spatial resolution images (Estoque and
Murayama, 2013; Hansen and Loveland, 2012). However, the levels of
accuracy were within the standard range and at an acceptable level, i.e.,
85-90%. These datasets were converted to vector and raster grid file
formats for simulation and spatial structure analysis.

2.5. Land change modelling

In stage 1, a transition map was generated for all LULC classes to
produce the empirical likelihood of change statistic (Eastman, 2009;
Shooshtari and Gholamalifard, 2015). The variables used to derive this
included: (1) distance from green space edge, (2) distance from roads,
(3) slope, (4) terrain height and (5) distance from waterbodies (Figs.
A.1-A.3 in supplementary materials). These natural and physical fac-
tors in urban systems are used to determine the spatial distribution of
potential urban land growth and green space (Mitsova et al., 2011).

All input datasets were prepared at a 30 m spatial resolution so that
they were consistent with that of the LULC maps. Layers of roads were
downloaded from DIVA-GIS (http://www.diva-gis.org/gdata) and were
calculated as the distance from the main road to the centre of developed
area to produce the road network buffer (Park et al., 2011). Main roads
were considered to be those linking major districts, including all na-
tional and local roads of autonomous entities in city areas (Bhatti et al.,
2015). The change of non-urban to urban land is strongly and nega-
tively related with the distance to roads. Road network development is
considered the most important spatial factor affecting urban land ex-
pansion (Gao and Li, 2011). Green spaces also become more fragmented
where built-up areas are in close proximity to roads. Urban expansion
also tends to occur at the edge of green space. Physical characteristics
such as slope were also considered as drivers of green space loss in the
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change analysis. Slopes can affect LULC changes, as green spaces in
flatter and more fertile areas are more likely to be cleared for devel-
opment (Batisani and Yarnal, 2009), as well as the infrastructure de-
velopment which is related to urban expansion. The pattern of land-
scape fragmentation is also influenced by the pattern of slope as there
tends to be an increase in human activities on the lower slope angles
(Gao and Li, 2011). Terrain height (Thapa and Murayama, 2011) and
distance from water bodies (Yin et al., 2011) are also considered im-
portant factors as urban development tends to occur in areas of rela-
tively higher elevation to avoid the risk of flooding (Perotto-Baldivieso
et al., 2011).

Based on these factors, maps of the variables were produced using
the ‘Euclidean Distance’ tool in ArcGIS 10.2. These maps were then
imported to raster format and incorporated in the LCM as explanatory
driver variables of change for a particular transition. Cramer's V ana-
lysis was used to quantify the association between LULC and the pre-
viously described drivers of change in a particular land transition
(Bhatti et al., 2015; Eastman, 2012; Friehat et al., 2015). Here, the
majority of variables had an acceptable associations (Cramer's V
value > 0.15) with a particular LULC; for example, the Cramer's V
value for distance to roads in Kuala Lumpur was 0.27, 0.18 in Jakarta
and 0.15 in Metro Manila.

The probability of LULC change for the period 1988/1989 to 1999
was modelled using an artificial neural network (ANN) approach based
on a Multi-Layer Perceptron (MLP). The advantages of using a MLP is
that it is a system capable of modelling complex nonlinear relationships
between variables (Joshi et al., 2011) and it is a robust method for
modelling the potential transitions (Eastman, 2009). Potential transi-
tion maps were generated for each LULC (see Supplementary material,
Fig. A.4). The probability values vary in the range between 0 to 1,
where there was less potential for transition if the value was nearer to 0
and higher if it is nearer to 1 (0: non-incidence and 1: incidence) (Fig.
A.4). The root-mean-square-error (RMSE) and the overall accuracy
rates of the MLP were used to evaluate the accuracy of the models of
potential transition g. In this study, most of the RMSE values were
below 0.4 and the overall accuracy rates were more than 80% (see
Supplementary Material in Table A.1).

2.6. Model verification

Before the simulation of the future scenarios, it was necessary to
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Fig. 2. Methodological framework.
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LULC dlassification scheme. of and di in the map.
Code  LULC Description LCM validation Revised Interpretation
categories i i
1 Built-up area  The built-up area includes areas with all types of artificial, Hits Agreement Model simulated change and
impervious surfaces and cleared land including LULC changed
residential, commercial and industrial areas as well as False alarm False negative Model simulated persistence and
transportation infrastructures LULC changed
2 Green space Al green areas covered with green space, trees, shrubs and Misses False positive Model simulated change and
grassland LULC persisted
3 Waterbody ~ River, drain, lakes and pond None Persistence Model simulated persistence and

evaluate the reliability of the LCM-Markov Chain models and the re-
levant variable settings (Pérez-Vega et al., 2012; Pontius et al., 2011;
Pontius and Petrova, 2010). The aim of the verification model was to
test “how well do a pair of maps agree regarding the transition in each
category?” (Zhang et al., 2011). Based on Pontius and Millones (2008),
a comparison of the agreement and disagreement between maps was
adopted by using the validation module in LCM comparing the 2014
simulated result to the observed LULC. In this study, we revised the
terminology used to describe the outputs from the analysis to aid the
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LULC persisted

interpretation of the results (Table 2). The relatively high levels of
agreement achieved allowed the simulation of future scenarios to be
carried out with confidence to their reliability (Zhang et al., 2011).

2.7. Comparison of simulated urban expansion 2030 and urban master
plans using spatial metrics

After the LCM model was verified, a similar process was conducted
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for the stage 2 so to generate simulated LULC in 2030 based on the
LULC maps in the period from 1999 and 2014 using the probability
Markov Chain modelling. The procedure determines how much land of
each LULC types would be expected to transition in the period from
2014 to the simulated date, based on a projection of the potential future
transition and the probability of change through the creation of tran-
sition probability file. This is a matrix that records the probability of
each LULC category changing into every other category (Araya and
Cabral, 2010). One of the advantages of Markov Chain modelling is the
efficiency of using multiple LULC types within the iteration of a cell
with the outcome of the prediction dependent upon the LULC types of
neighbouring cells (Vaz et al., 2012).

The simulated LULC maps were compared with digitised master
plans using landscape metrics to identify the impact of urban expansion
on green space structure and pattern. Landscape structure was analysed
in the FRAGSTATS software (McGarigal et al., 2002), at the class level
for simulated and master plan maps using six landscape metrics: per-
centage area (PAREA; %), patch density (PD; patches/100 ha), mean
patch area (MPA; ha), largest patch index (LPI; %), landscape shape
index (LSL; m/ha) and Euclidean nearest neighbour (MNN; m). We use
class level metrics to provide more specific information about the
spatial patterns on built-up areas and green spaces. Green space frag-
mentation in response to urban expansion was quantified using PAREA,
PD and MPA; high values of PD and low values of MPA indicate a
fragmented landscape composed of many small patches (Perotto-
Baldivieso et al., 2009). While the low values of PD and high values of
MPA indicate the aggregation of patches. Three metrics (LPI, LSI and
MNN) were calculated to represent patch structural relationships owing
to size, shape and patch distance. The LPI metric provides an indication
of dominance for the different LULC classes. The LSI is a standardized
descriptor of patch compactness that adjusts for the size of the land-
scape (Plexida et al., 2014). The MNN metric was selected to quantify
the distance between patches and define the connectivity, isolation and
dispersion between the patches (Aguilera et al., 2011; Paudel and Yuan,
2012).

3. Results
3.1. Model verification

In the model verification process the actual LULC map for 2014 was
compared with the results from the simulated model. In Jakarta, the
percentage of combined agreement and persistence was 86%, 4% false
negative and 10% false positive (Table 3; Fig. 3). In Metro Manila, the
combined agreement and persistence was 87%, and the false negative
and false positives were 4% and 9%, respectively. In Kuala Lumpur, the
combined agreement and persistence was lower compared to Jakarta
and Metro Manila at 70% and the false negative and false positive va-
lues were 12% and 18%, respectively (Table 3; Fig. 3). The reason why
the Kuala Lumpur results showed less agreement may be due to the
earlier initiation of the Kuala Lumpur Structural Plan 1984 when
compared to the other two cities. It is an integrated plan formulating
general policies related to landscape, townscape and conservation with
the implementation of a green planting programme along road in the
year 2000 and highway infrastructure (Kuala Lumpur City Hall, 2005).

Table 3
Percentage and area (ha) of agreement.
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Many of the false negative results in Fig. 3a can be seen following linear
features. Across the three cities, the low level of disagreement (false
negative and false positive) would indicate that the model and the re-
levant variable settings are appropriate. Given the observed level of
accuracy of the simulated LULC results given the observed changes,
there was sufficient confidence in the model for it to be used to simulate
LULC in the future urban expansion.

3.2. Comparison of simulated urban expansion 2030 and urban master
plans using spatial metrics

In 1989, the highest percentages of built-up areas were in Metro
Manila (63%) followed by Kuala Lumpur (50%) and Jakarta (42%)
(Figs. 4 and 5). Conversely, Metro Manila had the smallest area of green
space (31%). The percentages of green space were similar for Jakarta
(46%) and Kuala Lumpur (45%). By 2014, Jakarta and Metro Manila
had substantial built-up areas of 90% and 89% respectively, compared
to Kuala Lumpur with 78%. By 2014, the urbanised areas were almost
doubled in Kuala Lumpur and Metro Manila, while the green areas in
Jakarta had more than doubled compared to the extent in 1989 (Figs. 4
and 5).

The built-up areas were also the dominant LULC in the 2030 si-
mulated model: 96% in Jakarta, Metro Manila (91%) and Kuala Lumpur
(81%) (Fig. 4). In contrast, the city with the smallest area of green space
was in Jakarta (3%), followed by Metro Manila (8%) and Kuala Lumpur
(17%) (Fig. 4). However, compared to the master plan, urban expansion
was predicted to be highest in Kuala Lumpur (86%), followed by Metro
Manila (81%) and Jakarta (74%) (Figs. 4 and 6). The area of green
spaces was predicted to double in Jakarta (24%) and Metro Manila
(16%), compared to a decline in Kuala Lumpur (12%) (Figs. 4 and 6).

In the 2014 to 2030 time period, a major change is predicted from
green space to built-up areas in Jakarta, Metro Manila and Kuala
Lumpur with the Markov Chain values of 0.79 (4115ha), 0.76
(3898 ha) and 0.47 (2617 ha), respectively (Tables 4 and 5). The
Markov Chain value for the transition from built-up areas to green
space was the highest in Kuala Lumpur (0.09) compared with Jakarta
and Metro Manila (0.01) (Tables 4 and 5).

However, the distribution of urban expansion and green space
structure in the simulated 2030 data showed a different spatial pattern
compared to the master plan in all three cities (Fig. 7). In Kuala
Lumpur, the landscape metric values of the built-up areas showed that
the largest patch index (LPI) and Euclidean nearest neighbour (MNN)
were higher in the master plan compared with the simulated 2030 data.
Meanwhile, the landscape shape index (LSI) and the mean patch area
(MPA) were lower in the master plan compared with the simulated
2030 data (Fig. 7). This indicates that the patch size and distance be-
tween patches of the built-up area is greater and there is less variety of
shape in the master plan compared with the simulated 2030 data. Ja-
karta and Metro Manila indicate a different spatial pattern with com-
pacted and dispersed built-up areas exhibiting a variety of shapes but
with decreased size and distance between patches in the master plan
compared with the simulated 2030 data as indicated by the higher
patch density (PD) and landscape shape index (LSI) while there are
lower mean patch area (MPA), largest patch index (LPI) and Euclidean
nearest neighbour (MNN) values.

Study area Agreement Persistence False negative False positive

Area

ha % ha % ha % ha %
Kuala Lumpur 3977 16 12925 54 3235 12 4515 18
Jakarta 8038 12 48 249 74 2350 4 6495 10
Metro Manila 6012 10 43383 77 2133 4 4977 9
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Fig. 3. Verification of LCM-Markov Chain potential change of 2014 in (a) Kuala Lumpur, (b) Jakarta, (c) Metro Manila.

a) Kuala Lumpur

;\; 100 1
E 80 w = = 1988
i 60 m1999
E 40 @2014
é 20 i:l:h OSimulated 2030
< Built up area Green spaces Waterbody DIMastbr plan 2030
LULC
b) Jakarta
O\A" 100 4 —
F 80 “ =1989
E 60 “ B @1999
b4 40 ] 82014
é 20 [ OSimulated 2030
S o OMaster plan 2030

Built up area Green spaces Waterbody
LULC

¢) Metro Manila

__100 -
2
et 80
X m1989
S 60
o @1999
g 40
£ 22014
g 20 %
S .‘m ‘ oSimulated 2030
a0 OMaster plan 2030
Built up area Green spaces Waterbody a Pl

LULC

Fig. 4. The percentage area of LULC in 1988/1989, 1999, 2014, simulated 2030 and
master plan 2030 for (a) Kuala Lumpur, (b) Jakarta and (c) Metro Manila.

In contrast, the green space in Kuala Lumpur exhibits higher land-
scape shape index (LSI) and Euclidean nearest neighbour (MNN) values
in the master plan, compared to the simulated 2030 data. This indicates
that the variety of the shape and the distance between patches had
increased. In Jakarta, the fragmentation metrics (PD, MPA, LPI) and
landscape shape index (LSI) are higher but Euclidean nearest neighbour
(MNN) is lower in the master plan, compared to the simulated 2030
data (Fig. 7). This indicates that green space is fragmented with larger
mean patch areas, exhibiting a greater variety of shapes and with
shorter distances between patches. However, green space in the Metro
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Manila's master plan is aggregated, larger in size, with greater variety of
shape and smaller distances between patches in the master plan com-
pared with simulated 2030 data (Fig. 7), as illustrated by lower patch
density (PD) and Euclidean nearest neighbour (MNN) values; while the
mean patch area (MPA), largest patch index (LPI) and landscape shape
index (LSI) values were higher.

4. Discussion

For these cities, the training of the LCM model on 1988/1989 to
1999 interval was generally satisfactory and therefore there is some
confidence in using these models for proposing future transitions
(Fig. 3). Previous research shows that the data generated using LCM is
more accurate when the per transition susceptibilities are combined to
compose an overall potential change map (Pérez-Vega et al., 2012). It is
because the neural network outputs can express the simultaneous po-
tential change for various LULC types more adequately, than the in-
dividual probabilities obtained (Mas and Flores, 2008). These pre-
dictive capacities allow models to be useful tools for impact assessment
of urban change in the landscape. The overall verification results
showed that the proportion of agreement and persistence in three cities
is more than 70%, however, it should be noted that Kuala Lumpur
showed highest level of disagreement (30%) compared to the other two
cities. Many of the false negative results in Fig. 3a can be seen following
linear features describing the transition of built-up areas into green
space. This may be due to a green planting programme along roads and
highway infrastructure in 2000 (Kuala Lumpur City Hall, 2005). The
probability transition from built-up areas to green space were sig-
nificantly improved in Kuala Lumpur compared with Jakarta and Metro
Manila (Tables 4 and 5) when interventions that supported green space
conservation in Kuala Lumpur were included in the model.

Over the 25 year period, each of the three cities would experience a
decrease in green space and an increase in built-up area (Fig. 4). In all
three cities, the predictions indicate a further increase in built-up area
and a decrease in green space by 2030 (Fig. 4). The results further
suggest that built-up area expansion and the location of the variables
affecting the model outputs are the major drivers of green space change
and fragmentation. The projected Markov Chain conditional probability
matrices for 2030 revealed that the growth of built-up areas in all three
cities showed a multidirectional urban expansion growth pattern which
tend to occur in areas of better road accessibility, near the green space
edge, on higher elevations and steep slopes where there is a low risk of
flooding (Figs. A.1-A.3 and A.5). These results agree with the findings
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of other studies, where the distance from main roads is linked to the
degree of landscape fragmentation (Gao and Li, 2011; Wu et al., 2014).
The combined fragmentation and barrier effects of road networks
considerably degrade landscape connectivity and ecological processes
in the landscape (Fu et al., 2010). Inherently, green space edge has a
high probability of being fragmented and the results from Kuala
Lumpur show that development changes tend to start from the edge of
existing green space (Fig. A.1a).

The land change model described the influence of the spatial
transformation of urban expansion on green space structure. For in-
stance, for the period 2014 to 2030, the model predicts that there will
be a major change that will alter the green spaces to built-up areas in all
the three cities (Tables 4 and 5). The increase of the proportion of built-
up areas over the past period (Figs. 4 and 5) leads to a projected de-
crease in green spaces in 2030. This is comparable to other observa-
tional studies, such as the studies conducted in Bangladesh (Roy, 2016),
Vijayawada City India (Kumar et al., 2015); Pearl River Delta, China
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Fig. 5. Land use maps of 1988/1989, 1999 and 2014 for (a)
Kuala Lumpur, (b) Jakarta and (c) Metro Manila.

(Feng et al., 2012) and Nepal (Uddin et al., 2015), which predicted an
increase of urban expansion ranging from 30% to 50% in the next 20
years and causing decline of green space ranging from 10% to 30%. The
built-up patches become bigger, their forms more compact and con-
tiguous. The green space patches decrease in size and become more
heterogeneous (Li et al., 2012).

The observed effects of an increase in the proportion of built-up area
in this study can therefore be explained by the historical change tra-
jectories and through intensification of human activities (Peres et al.,
2010). The results from the various studies (Feng et al., 2012; Kumar
et al., 2015; Roy et al., 2016; Uddin et al., 2015) suggest that urban

pansion and a k in pl controlling and managing urban
development are key factors in green space loss (Byomkesh et al.,
2012). In this study, the built-up areas were the dominant LULC in the
2030 simulated model resulting in the smallest area of green space in
Jakarta compared with Metro Manila and Kuala Lumpur (Fig. 4).
However, compared to the master plan, the area of green spaces was
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Table 4
Markov Chain modelling values for 2030 based on the LULC maps of 1999 and 2014 (low:
0 — high: 1) (bold figures indicate no change).
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Fig. 6. Simulated and master plan 2030 LULC for (a) Kuala
Lumpur, (b) Jakarta and (c) Metro Manila.

Master plan 20385

Table 5
Area (ha) of expected transition of LULC to other LULC for 2030 (bold figures indicate no
change).

LULC Built-up area Waterbody Green space LULC Built-up area ‘Waterbody Green space
Kuala Lumpur Kuala Lumpur
Built-up area 0.89 0.01 0.09 Built-up area 18616 207 1932
Waterbody 0.28 0.40 0.31 Waterbody 162 229 181
Green space 0.47 0.01 0.51 Green space 2617 82 2847
Ji Jakarta
Built-up area 0.97 0.006 0.01 Built-up area 65060 424 916
Waterbody 0.55 0.31 0.12 ‘Waterbody 1126 643 253
Green space 0.79 0.02 0.18 Green space 4115 117 959
Metro Manila Metro Manila
Built-up area 0.97 0.006 0.01 Built-up area 54068 332 1025
Waterbody 0.17 0.61 0.2 ‘Waterbody 256 878 296
Green space 0.76 0.006 0.22 Green space 3898 35 1171
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predicted to double in Jakarta and Metro Manila compared to a decline
in Kuala Lumpur (Figs. 4 and 6). This indicates that land cover change
studies are a very useful tool in projecting and planning for rapid urban
expansion, indicating where interventions are likely to be effective for
conservation planning of urban green space.

The evidence of effective spatial planning on rapid urban expansion
and green space is reflected in the difference in size, density, distance,
shape and spatial configuration of landscape features between the
modelled and observed urban development in the period between 1999
and 2014. Based on the interpretation of spatial pattern such as frag-
mentation, aggregation, compaction, dispersion and isolation (Aguilera
et al.,, 2011), we were able to use spatial metrics to compare and
identify the land use patterns resulting from effective planning inter-
ventions. The several studies which used models to detect urban future
change were not able to quantify the developed urban pattern and
morphology (He et al., 2008; Kong et al., 2012; Weber, 2003). How-
ever, in this research, the use of spatial metrics allowed for quantifying
and categorising complex rapid urban expansion dynamics into simple,
quantifiable and identifiable patterns.

The present study is among the first quantitative studies to assess
the effect of master planning on rapid urban expansion patterns. The
various landscape metrics such as built-up area density, aggregation
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and compaction as defined by patch density (PD), mean patch area
(MPA), largest patch index (LPI) and landscape shape index (LSI) pro-
vide a measure of rapid urban expansion and help link pattern and
processes. Incorporating Euclidean nearest neighbour (MNN) into the
comparison between the simulated models and master plans identifies
the pattern of dispersion and isolation of connectivity patches.
Ecological factors such as biological diversity and dispersal are known
to be closely related to patch attributes such as size, shape, patch iso-
lation and connectivity to other remnants (Tian et al., 2011), the larger
sizes of green space provide a wider variety in biodiversity and con-
tribute more to the conservation of green space than small ones (Arifin
and Nakagoshi, 2011). Urban ecological studies of birds typically ob-
serve a decline in species’ richness with increasing urbanisation
(Sandstrom et al., 2006). For instance, studies in Metro Manila (Vallejo
et al., 2009) and cities in Brazil (Manhaes and Loures-Ribeiro, 2005)
showed significant declines in avian species abundancies and biodi-
versity with increasing fragmentation of green space due to urbanisa-
tion. In terms of ecosystem services, the process of green space frag-
mentation due to urban expansion results in similar decreases as
observed in a study in Baquio City, Philippines, where the overall an-
nual ecosystem service value (ESV) dropped approximately by 60%.
The human-to-ESV ration in the city has also decreased from 1:31 (US
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$/year) in 1988 to just 1:7 in 2009 (Estoque and Murayama, 2013).

There are important differences in the spatial patterns of built-up
areas and green space structure between the 2030 simulations and the
planned development under the 2030 urban master plans in all three
cities. The evidence suggests that these spatial patterns are influenced
by the rapid urban expansion and respective master planning policies of
the municipalities in the cities. Uncontrolled urban growth in a city
influences the structure and pattern of urban expansion and conse-
quently affects the fragmentation of green space. For instance, in Kuala
Lumpur, the master plan would result in built-up areas increasing in
size and distance between patches and will exhibit less variety of shape
(indicating the aggregation and compaction of built-up areas) when this
is compared to the simulation of 2030 (Figs. 6 and 7). The aggregation
and compaction of built-up areas results in the dislocation, dispersion
and isolation of green space (Fig. 7), where the green space area will be
smaller, with less connectivity and shape complexity. This is because in
the Kuala Lumpur Structure Plan 2020 (2000-2020), green space con-
servation seems uncoordinated and lacks persistent monitoring (Kuala
Lumpur City Hall, 2005). The continued green space decline in the
master plan (Fig. 4), suggests that the policies are currently inadequate,
which caused urban expansion to continue at the expense of green
space (Estoque and Murayama, 2013).

In contrast, the planned urban development based on the master
plan in Jakarta and Metro Manila would result in more compacted
built-up areas with a larger variety of shape, smaller patch sizes and
shorter distances between patches when this is compared to the simu-
lated patterns for 2030. The development of the master plans in Jakarta
and Metro Manila are controlled and there is a better master plan
strategy compared to Kuala Lumpur. This is illustrated by the proposed
increase in green space area in Jakarta, variety of shape and greater
connectivity between patches in the master plan when compared with
the 2030 simulation map. The Jakarta spatial plan (2008-2027) was
established to satisfy both economic development and environmental
preservation (water source preservation of Bogor Regency in the me-
tropolitan area; Government of Jakarta Special Capital Region, 2011).
Similarly, in Metro Manila, the master plan is also controlled as illu-
strated by the aggregation of green space indicated by the decreased of
patch density (PD) and increased mean patch area (MPA) values. The
latest development plan is the Metro Manila Green Print (2030) to lever
the metropolitan region towards the development of green infra-
structure systems (Metropolitan Manila Development Authority
(MMDA), 2012).

Given the observed importance of master planning on maintaining
green space structure and the potential for encroached green spaces to
become too small and isolated to meet user’s demands (Tian et al.,
2011), it is clear from this study that Kuala Lumpur is at risk of losing
its green space functions in the future. There is evidence that planning
policies have influenced the development of green space structure, and
their implementation success (or lack thereof) at regional or city-wide
scales in the different time periods can function as an important guide
to policy improvement in planning, monitoring the effectiveness of
plans and the management of green space. Based on results from these
models, the planning authorities could design interventions which
support planning at the landscape level with a better understanding of
the future spatial configurations of urban landscapes.

5. Conclusions

This study sought (i) to simulate rapid urban expansion and green
space using an integrated LCM-Markov Chain model; and (ii) to un-
derstand the spatial effect of master planning on rapid urban expansion
and green space. Overall, the result from this study suggests that the
master planning and future urban expansion has negative implications
on green space structure in Kuala Lumpur, but not in Jakarta and Metro
Manila. Notably, the spatial effect of master planning on rapid urban
expansion and green space are influenced by the historical spatial
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changes, implementation of the previous master planning efforts and
uncontrolled planning policies. An integrated LCM-Markov chain model
and spatial metrics might be an efficient model for simulating urban
expansion. The models allow for a set of diagnostic tools to assess
failure and successes in planning strategies. An analysis of future land
use changes in the longer term is recommended to compare potential
green space changes influenced by rapid urban expansion beyond the
year 2030.
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