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Abstract The problem of tweet popularity prediction, or forecasting the total
number of retweets stemming from an ancestral tweet, has attracted consid-
erable interest recently. The prediction can be accomplished by fitting a point
process model to the sequence of retweet times up to a certain censoring time
and project the fitted model to a future time point. However, models employ-
ing such approach tend to have inferior prediction accuracy when the censoring
time is too short before sufficient information can accumulate. To overcome
this, we propose an empirical Bayes type approach of parameter estimation
to combine internal knowledge on the times of historical retweets up to the
censoring time and external knowledge on complete retweet sequences in the
training data. We demonstrate the approach using several point process mod-
els with finite-dimensional parameters, where the prior distribution for the
parameter of each model is constructed based on the external knowledge, and
the likelihood is calculated based on the internal knowledge. The mode of the
posterior distribution is used as the estimator of the finite-dimensional param-
eter, and the mean of the predictive distribution for the number of retweets
implied by each of the estimated models is used to predict the tweet popular-
ity. Using a large Twitter data set, we reveal that the proposed methodology
not only enables prediction at time zero before the arrival of any retweet event,
but also substantially improves the prediction performances of existing models,
especially at earlier censoring times.
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1 Introduction

Twitter is a well-known microblogging platform. Users of Twitter can publish
short posts called tweets. A tweet published by a user can be shared by other
users as retweets. The retweets themselves can be further retweeted, leading
to a cascade or sequence of retweets stemming from the original tweet.

Tweet popularity prediction is an emerging area of research that has at-
tracted considerable interest recently. It has been used primarily to resolve
the problems of information overload on Twitter, although it also has other
usage scenarios, such as approximating the citation counts of research articles
(Eysenbach, 2011), assisting marketing firms to maximize revenues through
optimal placements of advertisements (Yang and Leskovec, 2011), and serving
as a proxy to the popularity of political candidates in election campaigns (Van
Aelst et al., 2017).

One specific prediction problem is to predict the number of retweets re-
ceived by a tweet. This can be viewed as a regression problem, and approached
using machine learning techniques such as logistic regression (Hong et al.,
2011), support vector regression (Bandari et al., 2012), Näıve Bayes (Ma et al.,
2013), deep neural network (Yang et al., 2014), and random forest (Mishra
et al., 2016). These methods typically require the features of the tweet content
as input, which can be expensive to extract.

Another approach to the prediction problem is to fit a mathematical model
to the observed retweet sequence up to a censoring time and project the fitted
model to a future time point to make predictions. Examples of such mod-
els include the SEISMIC (Self-Exciting Model of Information Cascades; Zhao
et al., 2015), the TiDeH (Time-Dependent Hawkes Process; Kobayashi and
Lambiotte, 2016), and the MaSEPTiDE (Marked Self-Exciting Process with
Time-Dependent Excitation Function; Chen and Tan, 2018).

As most tweets have relatively short lifespans, the ability to make accurate
popularity predictions early is desirable. However, the model-based approach
does not work when tweet popularity prediction is needed at the time of its
publication or shortly after, as the observed retweet sequence at such times is
either empty or too short to allow the reliable fitting of a model. Works that
address the problem of tweet popularity prediction at or within a short time
of the publication of the tweet have been scarce. Although the feature-driven
regression methods can be used for this purpose, they typically do not take
advantage of the point process nature of the observed retweet history, while
exploiting the history can lead to very good popularity predictions.

Combining the feature-based and model-based approaches should deliver
better prediction performances than each approach can separately achieve, as
demonstrated by the hybrid method of Mishra et al. (2016). Their method
works by training a feature-based regression model without using the retweet
sequence, fitting a point process model to the observed retweet sequence by
the censoring time, and then retraining the regression model with the param-
eters of the fitted point process as additional features. Despite its improved
prediction accuracy, the method does not always work as the step to fit the
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point process model will fail if the observation time for the retweet process is
too short, making unavailable the extra features required in the final step.

To overcome the aforesaid issues, we propose an alternative approach to
combine the strengths of the feature-based and the model-based approaches.
Similar to the model-based approach, we fit a point process model to the
retweet sequence and project the fitted model to future times for predictions.
However, when fitting the model, instead of the maximum likelihood (ML)
method used by Chen and Tan (2018) or the least squares (LS) method used
by Kobayashi and Lambiotte (2016), we adopt a Bayesian approach and use
the maximum a posteriori (MAP) method to estimate the model parameters,
where the prior distribution for the parameters is constructed from the training
data using a feature-based regression method, and the likelihood function is
still based on the observations of the retweet sequence up to the censoring
time, as in the ML method or the LS method. As the prior distribution is
empirically motivated, we term our approach an empirical Bayes (EB) type
approach.

At censoring time zero, no retweets have been observed and the likelihood
function equals 1. Therefore, the posterior of the model parameters is the
same as the prior, implying that the MAP estimator is simply the mode of the
prior. This means that at the time of publication of a tweet, we already have
an estimate of the point process model for its retweets, which can be used for
popularity prediction. At later censoring times, the likelihood function weighs
increasingly heavily in determining the posterior distribution and the MAP
estimator gradually shifts towards the ML estimator. The incorporation of
external knowledge in the estimation process through the prior distribution
not only avoids the failure to produce predictions at early censoring times
faced by the model-based method and Mishra et al.’s hybrid method, but also
leads to an objective function with better curvature than the (log-)likelihood
function at all censoring times. Therefore, our approach generally gives more
stable parameter estimates and overall more accurate popularity predictions.

In Section 2, we describe the Twitter data that motivated our work, which
contains the posting or publication time of each tweet relative to the beginning
of the day and the number of followers of the publisher, together with the times
of all the retweets within seven days and the respective numbers of followers
of the retweeters. In Section 3, we show how the proposed EB type approach
can be employed on different point process models. In Section 4 we present
the results of applying the proposed methodology on the Twitter data and
compare the prediction performances of various state-of-the-art approaches in
the literature. Finally, Section 5 concludes with a discussion.

2 The Twitter data

Throughout this work, we shall use the Twitter data1 collected by Zhao et al.
(2015) to demonstrate our modeling and prediction methodologies. The data

1 http://snap.stanford.edu/seismic/
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consists of 166,069 reasonably popular tweets, each with at least 49 retweets
within seven days of its publication, collected over a 15-day period. Following
Zhao et al. (2015) and Chen and Tan (2018), we use the 71,815 tweets collected
in the first seven days and the 94,254 tweets collected in the next eight days
as the training and test data sets respectively.

For each tweet and retweet, the publication time in days relative to the
beginning of the first day of data collection and the number of followers of
the corresponding tweeter or retweeter are available. For each retweet, it is
known which ancestral (original) tweet it refers to, but it is not known if it
directly retweets the ancestral tweet or a previous retweet, which implies that
the network structure of the retweets is not available. The contents of tweets
were also not included in the data, thus tweet features other than the posting
times are not available. See Fig. 1 for a plot of a random retweet sequence.
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Fig. 1 Plot of a randomly selected retweet sequence, where each bar represents a retweeter
with the corresponding followers plotted on the vertical axis (on the logarithmic scale).

The total numbers of retweets accumulated at the end of the observation
period are highly skewed, ranging from 49 to 33,484 with mean 205.5 and
median 109 in the training data, and from 49 to 17,183 with mean 210.7
and median 110 in the test data. The empirical cumulative distribution of
the retweet times relative to the original tweet publication times is shown in
Table 1. It can be observed that approximately half of the total numbers of

Table 1 The percentages of retweets that occurred up to each censoring time in the training
data. The majority of retweets have happened in the first 12 hours.

Censoring time (hours) 1 2 3 4 5 6 12 168
% of retweets 51.1 59.1 63.8 67.1 69.6 71.6 79.0 100.0

retweets have happened within one hour since the publications of the original
tweets, thereby exhibiting the transient nature of tweets. The right-skewed
distribution of the retweet times seems compatible with the heavy-tailed dis-
tributions of human response times found in the study of other activities, such
as e-mail correspondence (Malmgren et al., 2008). Such observation motivates
us to use a heavy-tailed function, for example the power-law function, when
modeling the variation of the retweet intensity over time.
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3 The models, the estimation and the prediction methodologies

In all the models considered in this work, we denote the publication time of the
original tweet by t0, the number of followers of the original publisher of tweet
by n0, the retweet times relative to t0 by τ1 < τ2 < . . . , and the corresponding
numbers of followers of the retweeters by n1, n2, . . . , respectively. The super-
script 0 in n0 and t0 is used as a reminder that these quantities are available
at the time of publication of the original tweet. Let N(t) = # {i ≥ 1 : τi ≤ t}
count the number of retweets up to time t ≥ 0 relative to t0. Then N(t), t ≥ 0
is a counting process or a point process. We denote its (conditional) intensity
process by λ(t), t ≥ 0, so that

λ(t) = lim
∆t↓0

1

∆t
E [N(t+∆t)−N(t)|τj , nj , j = 1, . . . , N(t−)] ,

with N(t−) denoting the number of retweets right before time t. For a small
increment in time ∆t > 0, E [N(t+∆t)−N(t)|τj , nj , j = 1, . . . , N(t−)] ≈
λ(t)∆t, so λ(t) represents the number of retweets per unit time to be ex-
pected at time t, given the history of the retweet process prior to time t. In
other words, λ(t) is the instantaneous event rate, which indicates how fast the
retweets are appearing at time t.

If the censoring time T is such that enough retweets have been observed by
T , then the ML method can be used to fit the intensity model, and the fitted
intensity can be used to predict the number of events to be expected until a
future time point. However, if the censoring time is too small and so is the
number of retweets N(T ), then the optimization of the log-likelihood function
can be numerically unstable, and the MLE might not even be well-defined.
This issue of the ML method is largely caused by the fact that it relies solely
on knowledge internal to the tweet whose popularity is to be predicted, or
more specifically, its retweet history by the censoring time, while the external
knowledge of the many retweet sequences originating from other tweets in
the training data set is ignored altogether. To address this issue, we propose
an empirical Bayes type approach to incorporate both internal and external
knowledge in the parameter estimation process, where the external knowledge
is used to construct the prior distribution for the parameters while the internal
knowledge is still used to define the likelihood.

Although our empirical Bayes type approach can be used on any point
process model, we shall first demonstrate its use on a relatively simple Poisson
process model, before showing how to apply it on more sophisticated models.

3.1 An inhomogeneous Poisson process model

With the Poisson process model, the sequence of retweet times is modelled by
an inhomogeneous Poisson process with a time-dependent intensity function
λ(t), which is assumed to take the following form,

λ(t) = p(t)d(t), (1)
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where p(t) reflects the effect of the age of the original tweet on its retweet
intensity at time t, hereinafter referred to as the infectivity function, and d(t)
reflects the time-of-day effect. As the older a tweet gets, the less likely it will
get retweeted, the function p(·) should be decreasing. Following Malmgren
et al. (2008), we assume it decreases at polynomial rate, so that

p(t) = α(1 + βt)−γ ,

for parameters α > 0, β > 0, and γ > 0. The parameter α indicates how
high the intensity is initially at time t = 0, β indicates how soon the intensity
decays to half its initial value, and γ indicates how fast the intensity decays
over time. They are referred to as the magnitude, the scale, and the shape
parameters respectively. These parameters are assumed to be tweet-specific,
and may differ for retweet sequences originating from different tweets.

The nonnegative function d(·) is introduced to account for the possible
time-of-day effect related to the circadian rhythm of human activity, and is
assumed to be periodic with period one day. Specifically, if we measure time
in days, then there is a function ρ(·) ≥ 0 such that

d(t) = ρ(t0 + t− bt0 + tc), (2)

where bxc indicates the greatest integer ≤ x. Note that the argument t in (2)
refers to the time since the publication time t0 of the original tweet, and t0 is
measured in (fractional) days relative to the beginning of the day on which it
was published. Thus, t0 + t−bt0 + tc ∈ [0, 1) refers to the time, in fractions of
a day, relative to the beginning of the day on which t0 + t falls.

In addition to the periodicity assumption, the function d(·) in (2) is as-
sumed to be smooth. For identifiability, we also assume that the function ρ(·)
integrates to unity, so that it is a probability density function supported by
[0, 1). The smoothness and periodicity of the function d(·) imply that the
function ρ(·) is smooth, and furthermore satisfies the continuity condition,

ρ(0) = lim
t↓0

ρ(t) = lim
t↑1

ρ(t). (3)

For convenience, the function ρ(·) shall be referred to as the rhythm function.

3.1.1 An empirical Bayes type approach to parameter estimation

The empirical Bayes type approach we propose is simply a Bayesian approach
with the prior distribution empirically constructed from the training data.
To discuss the construction of the prior distribution for the parameters θ =
(α, β, γ) of the Poisson model, we first discuss their ML estimation. The log-
likelihood of θ relative to a retweet sequence up to a censoring time T is given
by Daley and Vere-Jones (2003),

`(θ) =

N(T )∑
i=1

log λ(τi; θ)−
∫ T

0

λ(t; θ) dt. (4)
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To obtain the ML estimator of θ, we maximize (4), with λ(t) set to λ(t; θ) =
p(t; θ)d(t) = α(1 + βt)−γd(t), as a function of θ. Note however that the log-
likelihood depends on the unknown rhythm function ρ(·) discussed above via
the function d(·). The function ρ(·) is unspecified except for the smoothness
condition. For simplicity, we shall fix it at an estimated value ρ̂(·) and treat it
as known when estimating the other parameters θ.

Nonparametric estimation of the rhythm function
Since we have assumed that the rhythm function ρ(·) is a density function
representing the distribution of the tweet publication times in a day, we es-
timate ρ(·) nonparametrically using the kernel density estimator (KDE; see
Silverman, 1986, Section 2.4) based on the publication times of the original
tweets in the training data set. To correct for the boundary effects suffered by
the KDE, and to ensure the continuity condition in (3), we use a pseudodata
approach similar to the data reflection approach discussed in Section 2.10 of
Silverman (1986) and the pseudodata approach of Cowling and Hall (1996).

Specifically, if t01, . . . , t
0
n ∈ [0, 1) denote the data, that is, the tweet publica-

tion times measured in days since 00:00:00 on the days they were posted, we
augment the data by adding t01− 1, . . . , t0n− 1 and t01 + 1, . . . , t0n + 1. Following
this, we estimate the density on [0, 1) using the KDE with the augmented data,
and subsequently rescale the estimates so that the estimated density curve ρ̂(·)
integrates to unity. Finally, the estimated time-of-day effect function d(·) for
a retweet sequence originating from a tweet published at time t0 is

d̂(t) = ρ̂(t0 + t− bt0 + tc). (5)

In our implementation of the KDE, we have used the function density from
the stats package of R (R Core Team, 2019), with the biweight kernel K(x) =
15/16(1−x2)2+ and the bandwidth selected using the default normal reference
distribution approach based on the unaugmented data.

The prior distribution for model parameters
To construct the prior distribution for the parameters of the Poisson model
for a specific retweet sequence, we first compute the ML estimate for each
of the complete retweet sequences in the training data set, and denote these
estimates by θ̂0i = (α̂0

i , β̂
0
i , γ̂

0
i ), i = 1, . . . , 71815. Recall that the complete

retweet sequences in the training data set are all fairly long, so the numerical
stability of the ML estimator is not an issue here.

Next, we fit three separate nonparametric regression models with yi =
log α̂0

i , log β̂0
i and log γ̂0i as the respective response variables, and xi = (log(n0i+

1), t0i ) = (m0
i , t

0
i ) as the input variables or features, using the locally weighted

scatter-plot smoother (LOESS; Cleveland and Devlin, 1988). In our numeri-
cal implementation of the regression, we have used the loess function from
the stats package of R, with the degree of the local polynomial set to 2, the
kernel function set to the default tricubic kernel K(x) = 70

81 (1 − |x|3)3+, and
the respective span parameters selected using the generalized cross validation
(GCV; Golub et al., 1979) method.
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Then, for a tweet posted at time t0 by a tweeter with n0 followers (hence
with features x = (m0, t0)), we predict the three components of the log-
parameter vector η = (η1, η2, η3) ≡ (logα, log β, log γ) separately using the
respective nonparametric models obtained in the last step, and denote the
predicted log-parameter vector by η̃0 = (η̃01 , η̃

0
2 , η̃

0
3) ≡ (log α̃0, log β̃0, log γ̃0)

and the standard errors by (ẽ1, ẽ2, ẽ3). For implementation, we have used the
predict.loess function in R.

Finally, we define the prior density function for the log-parameter vector
η as follows,

π(η) = f(η1; η̃01 , ẽ
2
1)f(η2; η̃02 , ẽ

2
2)f(η3; η̃03 , ẽ

2
3),

with f(·;µ, σ2) denoting the normal density function with mean µ and vari-
ance σ2, so that η̃0 comes as the maximizer of π(η). Here, we note that the
prior distributions for the log-parameters η1, η2, and η3 are the respective con-
fidence distributions (Xie and Singh, 2013) based on the training data for their
means E [ηi], i = 1, 2, 3, when they are treated as random variables with means
depending on the features x = (m0, t0).

The empirical Bayes estimator
The posterior density function for the log-parameters, up to a normalizing
constant, is π(η) exp(`(eη)). The maximizer of the posterior density, or equiv-
alently, the maximizer of its logarithm (up to an additive constant)

˜̀(η) = log π(η) + `(eη), (6)

is a Bayes estimator of η, called the maximum a posteriori (MAP) estimator.
As a reminder, the `(θ) here is as in (4) with the λ(·) given by (1) and the
function d(·) replaced by its estimator (5). We denote the MAP estimator by
η̃, and define our EB estimator at time T for the parameters θ as θ̃ = eη̃.

As mentioned earlier, at censoring time zero, the log-likelihood in (4) is 0,
and so the maximizer of the prior density function, that is, η̃0, is also the max-
imizer of the posterior density, and therefore eη̃

0

will be taken as the estimator
of the tweet-specific model parameters, enabling tweet popularity prediction.
For reference, Figure A.1 summarizes the steps involved in obtaining the EB
estimates of the parameters.

3.1.2 Predicting the popularity

After the parameters are estimated, the model for a specific retweet time
sequence is identified. We can then use the mean or median of the predictive
distribution of the number of retweets implied by the identified model from
the censoring time T to a future time T̃ , plus the number of retweets observed
by time T , as a point prediction of the total number of retweets by T̃ .

For the Twitter data considered in this work, since we know a priori that
the final popularity value is at least 49, the mean and median of the distri-
bution for the number of future retweets should be calculated conditional on
N(T̃ )−N(T ) ≥ 49−N(T ). Under the Poisson process model, N(T̃ )−N(T )
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is Poisson distributed with its mean equal to the integral of the identified in-

tensity function from T to T̃ , ∫ T̃T λ(t; θ̃) dt = ∫ T̃−T0 λ(T + t; θ̃) dt. Thus, the
computations of its conditional mean and median are straightforward.

To compare the performances of different prediction models, we shall use
the mean and median absolute percentage errors (MAPE and MdAPE), which
have been used by various works in the literature (Zhao et al., 2015; Kobayashi
and Lambiotte, 2016; Chen and Tan, 2018). For convenience, the Poisson
model proposed here with its parameters estimated using the EB type ap-
proach shall be referred to as the EB Poisson model. When the EB approach
is applied on the MaSEPTiDE model and the TiDeH model, discussed be-
low in Sections 3.2 and 3.3, these models shall be similarly termed the EB
MaSEPTiDE model and the EB TiDeH model respectively.

3.2 The MaSEPTiDE model

The MaSEPTiDE model is a (marked) point process model that has a self-
exciting feature similar to how a tweet excites retweets and retweets excite
further retweets, and has been shown to produce more accurate tweet popu-
larity predictions than competing models (Chen and Tan, 2018). Under this
model, the intensity process λ(t) of N(t) is given by

λ(t) = αφ(t; δ1, δ2) +

N(t−)∑
i=1

p(τi;β)r(ni; γ)φ(t− τi; δ1, δ2),

p(τ ;β) = e−βτ ,

r(n;γ) = γ log(n+ 1),

φ(t;δ1, δ2) =
δ2(δ1 − 1)

δ1

(
1 +

δ2t

δ1

)−δ1
,

(7)

where as before, N(t−) denotes the number of retweets up to, but not in-
cluding, time t. The retweeters’ follower counts ni’s are assumed to be in-
dependent of past retweet times and i.i.d. (independent and identically dis-
tributed) lognormal with E [log(ni + 1)] = M and Var (log(ni + 1)) = σ2. The
log-likelihood function of the parameters θ = (α, β, γ, δ1, δ2,M, σ2) relative to
the retweet sequence observed up to the censoring time T is similar to (4),
although it has an extra term to account for the likelihood contribution of the
event marks mi = log(ni + 1):

`(θ) =

N(T )∑
i=1

log λ(τi)−
∫ T

0

λ(t) + log f(mi;M,σ2), (8)

with λ(t) given in (7) and f(·;µ, σ2) denoting the normal density function with
mean µ and variance σ2 as before.

Despite its ability to make relatively accurate popularity predictions at
early censoring times, with the ML method of model fitting the MaSEPTiDE
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model either gives unreasonably large popularity predictions or fails to produce
a prediction at all when the censoring time is too small. Fortunately, this issue
can be resolved by adopting the EB approach.

As in the Poisson model, the ML estimates of the parameter vector θ =
(α, β, γ, δ1, δ2,M, σ2) in the MaSEPTiDE model (7) can be obtained on the
complete retweet sequences in the training data, and subsequently used to
construct the prior distribution for model parameters used in the EB estima-
tion approach. Specifically, the prior density for the transformed parameters
η = (η1, . . . , η7) ≡ (logα, log β, log γ, log δ1, log δ2,M, log σ2) of the MaSEP-
TiDE model for a retweet sequence with features x = (t0,m0) is

π(η) =

7∏
k=1

f(ηk; η̃0k, ẽ
2
k) (9)

where f(·) denotes the normal density function as before, and η̃0k and ẽ0k denote
respectively the LOESS estimate of η0k and the associated standard error. The
EB estimate of η can then be obtained as the maximizer of the logarithm
of the posterior density function, which is formally given, up to an additive
constant, by (6), with π(·) given in (9) and `(·) in (8).

After the MaSEPTiDE model is estimated, the number of retweets up to a
future time point can be predicted using the solve-the-equation method or the
simulation-based method described in Section 2.5 of Chen and Tan (2018). The
former involves solving an integral equation for the conditional expectation of
the number of retweets given the observed retweet history as a function of the
future time point, and evaluating the solution function at the desired time
point. The latter involves simulating the retweet sequence from time T to T̃
given the retweet history by T according to the fitted model.

In the MaSEPTiDE model, the lognormality of the retweeters’ follower
counts ni’s is assumed to facilitate the estimation of the parameter M using
the EB approach. An alternative approach that does not require the lognor-
mality, or any other parametric assumption on the distribution of ni’s is the
following: when no retweet events have been observed for the target tweet, we
choose the retweet sequence in the training data set whose ancestral tweet is
the closest to the target tweet by the features (m0, t0), and use the empiri-
cal distribution of the follower counts n1, n2, . . . , nN(T̃ ) as an estimate of the
distribution of the follower counts, and when retweet events have arrived, we
revert to using the empirical distribution of the follower counts specific to the
target tweet’s retweeters. This alternative approach worked fairly well in our
numerical experiments.
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3.3 The TiDeH model

The TiDeH model (Kobayashi and Lambiotte, 2016) is a special case of the
SEISMIC model (Zhao et al., 2015), where the intensity process of N(t) is

λ(t) = p(t;α, β, γ, δ)

N(t−)∑
i=0

niφ̄(t− τi),

p(t;α, β, γ, δ) = α(1− β sin(2π(t+ γ)))e−t/δ.

The damped sinusoid form of the function p(·) accounts for the repetitive-
ness of human routine activities and the decreasing likelihood of a tweet being
retweeted, with the parameters α, β, γ and δ representing the overall retweet
intensity, the relative amplitude of oscillation and its phase, and the charac-
teristic time of popularity decay respectively. The function φ̄(·) is a power-law
kernel with parameters common to all the retweet sequences considered, esti-
mated ad hoc from some long retweet sequences selected from the training data
(Zhao et al., 2015) and treated as known when estimating other parameters.

The parameters θ = (α, β, γ, δ) in the infectivity function p(·) can be esti-
mated via a two-step approach based on nonparametric smoothing and least
squares (Kobayashi and Lambiotte, 2016) or the ML method (Chen and Tan,
2018). Both methods require some retweet events to be observed before esti-
mation is possible. To overcome this constraint, we can again adopt the EB
estimation approach and estimate the parameters using the MAP method.
Specifically, we use the following normal prior for the transformed parameters
η = (η1, η2, η3, η4) ≡ (logα, β, γ, log δ),

π(η) =

4∏
i=1

f(ηi; η̃
0
i , ẽ

2
i )

with η̃0 = (η̃01 , η̃
0
2 , η̃

0
3 , η̃

0
4) ≡ (log α̃0, β̃0, γ̃0, log δ̃0) and (ẽ1, ẽ2, ẽ3, ẽ4) being

the predicted parameters and their standard errors by the LOESS regression
method. Note here that the logarithmic transformation of the model parame-
ters β and γ is not used as they can take negative values.

The future numbers of retweets can be predicted via the solve-the-equation
method or the simulation-based method detailed in Chen and Tan (2018). For
fair comparison with the EB Poisson model, the a priori knowledge on the
lower bound of the popularity should be incorporated into predictions based
on the EB MaSEPTiDE and the EB TiDeH models. This can be done by
repeatedly simulating the number of retweets from the censoring time T to
T̃ = 7 days and retaining only those numbers ≥ 49 − N(T ), and when none
of the simulated retweet counts meets the condition, the mean and median of
the predictive distribution can simply be approximated by the lower bound.
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4 Application to the Twitter data

In this section we present the results of applying the models and prediction
methods discussed in Section 3 to the Twitter data discussed in Section 2.
In particular, we compare their prediction performances with state-of-the-art
methodologies in the literature and with each other.

4.1 The EB Poisson model

The estimated rhythm function ρ(·) is shown in Figure 2, which shows that the
peak hours of tweet activity are between 23:00 and 03:00 UTC (Coordinated
Universal Time) or 6:00 to 10:00 PM CST (Central Standard Time), with its
lowest point hovering around 14:00 UTC or 9:00 AM CST. This suggests that
a tweet is more likely to attract retweets between 23:00 and 03:00 UTC.

0.
6

0.
8

1.
0

1.
2

t  (UTC)

ρ̂(
t)

0:00 4:00 8:00 12:00 16:00 20:00 0:00

Fig. 2 Estimated function ρ(·) showing the diurnal patterns of Twitter users’ activity levels,
which suggests that the peak hours of activity are between 23:00 and 03:00 UTC.

The EB estimates of the log-parameters, together with their corresponding
ML estimates using only the internal history of the retweet sequence, at dif-
ferent censoring times for two randomly selected retweet sequences in the test
data set are illustrated in Figure 3. Note, at time zero, Figure 3 only shows the
EB estimates, but not the ML estimates, as the ML estimates are unavailable
due to the lack of any observations. The figure reveals that the EB estimates
at different times are substantially more stable compared to the ML estimates,
suggesting that the use of prior distribution has a strong regularization effect
on the ML estimates. Essentially, the EB type approach is a penalized maxi-
mum likelihood approach whereby a concave quadratic penalty is added to the
log-likelihood to penalize parameters far from the initial LOESS estimates of
the parameters. The presence of the quadratic penalty causes the penalized
log-likelihood to have larger curvature than its unpenalized counterpart, thus
leading to more stable estimators of the parameters.
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Fig. 3 Estimates of the log-parameters for the Poisson process model using the empirical
Bayes (EB) type approach and maximum likelihood (ML) approach at different censoring
times, for two random cascades. The top panel of each subfigure shows the sample path of
the counting process N(t) for the corresponding retweet sequence up to 12 hours, the lower
panels of each subfigure show the estimated log-parameters at T = 0, 1, . . . , 12 hours.

For the two sample cascades in Figure 3, we show in Table 2 the predicted
popularity values N(T̃ )pred based on the ML and EB estimates obtained at
censoring times T = 0, 1, 2, 3 hours, and the associated APE values. The com-
parisons at later censoring times are similar, and therefore not shown. It can be

Table 2 The observed popularity, the prediction and APE values for the Poisson model
using the ML and EB estimation approaches, and the final popularity at T̃ = 7 days for
each of the two sample cascades in Figure 3 at censoring times T = 0, 1, 2, 3 hours.

T
(hours)

N(T )
ML EB

N(T̃ )
N(T̃ )pred APE N(T̃ )pred APE

Sample 1

0 0 - - 194.73 60.90

498
1 296 296.03 40.56 310.32 37.69
2 333 362.31 27.25 371.37 25.43
3 370 371.25 25.45 430.94 13.47

Sample 2

0 0 - - 3718.62 61.25

9597
1 3670 5034.44 47.54 5077.92 47.09
2 4338 38535.07 301.53 6558.05 31.67
3 4846 4898.07 48.96 7721.68 19.54

observed from the APEs in Table 2 that, the predictions obtained based on the
EB type approach are consistently more accurate than those based on the ML
approach. In addition, the predictions obtained from the ML approach seem
very volatile when the tweet in question is highly popular, in contrast to the
increasingly more accurate predictions yielded using the EB type approach.
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To benchmark the EB Poisson method against the state-of-the-art predic-
tion methodologies, we compare the prediction performance of our model with
that of the MaSEPTiDE and the TiDeH models, since they have been shown
to outperform pre-existing methods such as the SEISMIC (cf. Kobayashi and
Lambiotte, 2016; Chen and Tan, 2018). Figure 4 shows the boxplots of APEs
based on the final popularity predictions at T̃ = 7 days, by the EB Pois-
son model, the (ML) Poisson model, the MaSEPTiDE model, and the TiDeH
model, at censoring times T = 0, 1, . . . , 12 hours. As the distributions of the
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Fig. 4 The APEs of different prediction methods across different censoring times at T =
0, 1, . . . , 12 hours. The Poisson model is also included for comparison. The circular point in
each boxplot shows the MAPE, while the horizontal thick bar shows the MdAPE. The EB
Poisson model is clearly the best performing model at all the censoring times, and is able
to make a prediction even at time zero.

prediction APEs of these methods have very long right tails, especially those
with the MaSEPTiDE model, the outlying APEs have not been shown for
better visualization. Note that at time zero, only the EB Poisson model can
produce predictions but not the other models due to the unavailability of the
parameter estimates. Also, as the smoothing parameter used in the nonpara-
metric estimation of the TiDeH model infectivity function is set to one hour,
the approach cannot produce any meaningful predictions at T = 1 hour, and
is therefore excluded from comparison at that time.

Figure 4 shows that both the MAPE and MdAPE values decrease as the
censoring time increases for each method considered, thereby indicating a grad-
ual improvement in the prediction accuracy. It can also be seen that although
the Poisson model-based approach (with ML estimates of parameters) is not
competitive at all censoring times, the EB Poisson model consistently outper-
forms the other competing approaches across the censoring times according
to both metrics. For fair comparisons, the predictions by all the three models
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considered have incorporated the extra knowledge on the lower bound of the
final popularity value. However, even without incorporating such knowledge,
the EB Poisson model would still stand out as the best performing model.

4.2 The EB MaSEPTiDE and the EB TiDeH models

This section presents the popularity prediction results by the EB MaSEPTiDE
and the EB TiDeH models, and compare them with the EB Poisson model. We
calculated the MAPEs and MdAPEs of predictions by the three models with
observations up to censoring times T = 0, 1, 2, . . . , 12 hours, and discovered
that the EB Poisson model outperforms both the EB MaSEPTiDE and the
EB TiDeH models at time zero, but the EB MaSEPTiDE model outperforms
both the EB Poisson and the EB TiDeH models from T = 1 hour onward.

For fine-grained comparisons between the EB Poisson and the EB MaSEP-
TiDE models, we show in Table 3 the prediction error metrics by these two
models at various censoring times between T = 0 and T = 60 minutes, which
shows that the EB MaSEPTiDE model outperforms the EB Poisson model
(and the EB TiDeH model) from T = 3 minutes onward. These results suggest

Table 3 The prediction MAPEs and MdAPEs of the EB Poisson and the EB MaSEPTiDE
models, at various censoring times between T = 0 and T = 1 hour. The EB MaSEPTiDE
model outperforms the EB Poisson model from T = 3 minutes onward.

T
(minutes)

MAPE (%) for EB MdAPE (%) for EB
Poisson MaSEPTiDE Poisson MaSEPTiDE

0 47.9 196.2 43.6 62.0
1 44.6 66.4 37.7 42.5
2 50.6 55.4 37.9 39.6
3 48.8 47.7 37.3 36.8
4 44.8 43.4 35.3 34.7
5 41.5 40.4 33.4 32.9
10 35.2 33.5 29.6 27.9
20 33.0 29.4 28.3 24.3
30 31.2 27.7 26.5 22.2
40 29.8 26.4 24.6 20.7
50 28.6 25.3 23.2 19.4
60 27.4 24.4 21.8 18.3

that at early censoring times when fewer retweets are observed, simpler models
such as the Poisson process model tends to achieve more accurate popularity
predictions, while at later censoring times when more events accumulate, so-
phisticated models such as the MaSEPTiDE model is better at capturing the
dynamics among the retweet events, thereby producing more accurate predic-
tions. On another note, upon inspecting the goodness-of-fit (GOF), the EB
models, which generally predict better than their ML counterparts, pass the
GOF tests at various significance levels on noticeably lower percentages of
cascades. This implies that models with better fit to historical data do not
necessarily have better out-of-sample prediction performances.
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5 Conclusion and discussion

In this paper, we have proposed an empirical Bayes (EB) type approach, which
uses the maximum a posteriori (MAP) method to estimate the parameters of
point process models based on knowledge internal and external to a retweet
sequence. With the MAP estimators, the fitted models were found to produce
reasonable estimates of tweet-specific parameters, and sensible predictions for
all instances of tweets considered.

When comparing the performances of different prediction models with the
MAPE and MdAPE as the performance evaluation metrics, we have used the
predictive mean as the functional for its ease-of-computation. Employing the
EB type approach on a simple Poisson model leads to more accurate popularity
predictions, compared to two state-of-the-art popularity prediction methods
based on the TiDeH (Kobayashi and Lambiotte, 2016) and the MaSEPTiDE
(Chen and Tan, 2018) models respectively. However, when fitted using the
EB type approach, these two models have markedly better prediction per-
formances, with the EB MaSEPTiDE model surpasses even the EB Poisson
model if the retweet sequence is observed for three minutes or longer.

In constructing the prior distribution for the parameters, although we have
used the LOESS regression, other machine learning regression methods can
also, in principle, be used for this purpose, as along as the standard error
of the regression estimator is available. Comparing the performances of the
EB type approach with different methods of prior construction could be an
interesting problem for future research.

As a remark, the Twitter data used in this work does not contain other
features of the original tweet and its author that are available at or before
its publication which might be useful for popularity prediction, such as the
account age, the author’s geolocation, the length of the original tweet, the
presence/absence of external links, images, videos, specific keywords or certain
hashtags, or the machine-learned topics of the original tweet (Blei et al., 2003;
Kant et al., 2020). When such extra information is available, the EB type
approach still applies, and the resulting prediction performance is expected to
improve even further, although the LOESS regression step in prior distribution
construction may be computationally more expensive.
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Appendix

Fig. A.1 A summary of the procedures involved to obtain the empirical Bayes estimates.
The final criterion function combines the knowledge internal and external to a retweet
sequence, depending respectively on the current log-likelihood function and the log-prior
density function. When the censoring time is at zero, the maximizer of the prior density

function is η̃0, and eη̃
0

will be taken as the estimator of the tweet-specific model parameters.
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